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Abstract

In this paper, we consider hierarchical Bayesian analysis for P(Y < X)
using Gibbs sampler, where X and Y are independent normal distributions
with unknown means and variances, respectively. Also numerical study using
real data is provided.

Key Words and Phrases: Gibbs sampler, Hierarchical Bayes, Reliability, Stress-
strength model.

1. Introduction

The stress-strength model has been widely in a variety of areas including esti-
mating for the reliability of a design procedures. This model was first introduced in
1950’s and used on various applications in civil, aerospace engineering, et.al..

In the simplest stress-strength model, X is the strength placed on the unit by
the operating environment and Y is the stress of the unit. A unit is able to perform
its intended function if its strength is greater than the stress imposed upon it. In
this paper, we define reliability (R) as probability that the unit performs its task
satisfactorily. That is, reliability is the probability that the unit is strong enough to
overcome the stress, that is, R = P(Y < X). In particular, Related problems have
been widely presented in the literature when X and Y have independent normal
distributions, respectively.
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Let the strength distribution be normal with mean p; and variance o, and let
the stress distribution be normal with mean p2 and variance 05 . Then the reliability
of stress-strength model becomes

R=P(Y < X) = &(6), (1)

where 0 = ﬁ

For frequentist approach, first, Church and Hariss(1970) obtained an estimator
and an approximate confidence interval for the reliability when the distribution of
stress is known. Downton (1973) derived the uniformly minimum variance unbi-
ased estimator of R. Reiser and Guttman (1986) considered statistical inference
for R, where X and Y are independent normal variates with unknown means and
variances, respectively. For the stress-strength model with explanatory variables,
Duncan(1986) gave some specific examples and Guttman, Johnson, Bhattacharyya
and Reiser(1988) obtained confidence limits for R. For the random effect model,
Aminzadeh(1991) derived approximate confidence interval based on the asymptotic
normal distribution for the R. Weerahandi and Johnson(1992) considered testing for
reliability in a stress-strength model. Cho(1995) obtained some approximate confi-
dence intervals for R when the stress and strength each depend on some explanatory
variables, respectively.

In Bayesian approach, Enis and Geisser(1971) obtained predictive estimates
and posterior Bayesian limits from a Bayesian viewpoint. Weerahandi and John-
son(1992) considered a Bayesian analysis for stress-strength model with conjugate
prior. But study of hierarchical Bayes analysis for stress-strength model in normal
case considered until now.

In this paper, we consider the hierarchical Bayes analysis for reliability of the
stress-strength model in normal model using Gibbs sampler. In section 2, we review
the Gibbs sampler. In section 3, we describe the computation methods for Bayes
estimation for R using Gibbs sampler. In section 4, we implement the stress-strength
model with an illustration from the rocket-motor experiment data.

2. Gibbs Sampler

For convenience, we define the following notations. Densities are denoted gener-
ically by brackets, so joint, conditional, and marginal forms, for example, appear as
[X,Y], [X|Y], and [X]. Multiplication of densities is denoted by * ; for example,
[X,Y] = [X]|Y] x [Y]. The process of marginalization (i.e., integration) is denoted
by forms such as [X|Y] = [[X|Y, Z, W] * [Z|W,Y] * [W|Y], with the convention
that all variables appearing in the integrand but not in resulting density have been
integated out. Thus the integration is with respect to Z and W. More generally, we
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use notation such as [ h(Z, W) x [W] to denote, for given Z, the expectation of the
function h(Z, W) with respect to the marginal distribution for W.

The Gibbs sampler is an iterative Monte Carlo integration method, developed
formally by Geman and Geman(1984) in the context of image restoration. Gelfand
and Smith(1990) developed the Gibbs sampler for fairly general parametric set-
tings. To summarize the method briefly, suppose we have a collection of p r.v.’s
Ui, ---,U, whose full conditional distributions, denoted generally by (U|U,,r #
s, s =1,2,---,p are available for sampling. Under mild conditions, these full con-
ditional distributions uniquely determine the full joint distribution [Uy, - - -, U,] and
hence all the marginal distributions [Us], s =1,2,---,p

The Gibbs sampler generates from the conditional distributions as follows: Given

0) (1)
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an arbitrary starting set of values U] .. -, Up’ , wedraw U} from [U; |U2 , U,EO}],

Uél) from [U2|U1(1), Uéo) U(O)] , and so on up to Uz(,l) from [Up|U1(1), ,UIEI_) ] to
complete one iteration of the scheme. After ¢t such iterations we arrive at a join?
sample (U; U yore U,St)) from [Uy,---,Up]. Under mild conditions, Geman and Ge-
man(1984) showed that (U, - --,U,St)) —d (Uy, -+, Up) ~ [Uh,--, U, ast — oo.
Hence for sufficiently large ¢, U can be regarded as a sample from [Uj].

Parallel replications [ times yields [ i.i.d. p-tuples: (U1J ,oo U ® ), 3=1,2,---,1.

» ¥ pj
For any function T of Uy, - - -, U, whose expectation exists,
1 ; :
7 ZT(U1(1)7 T U}SZ)) - E[T(Ula Tt UP)]7 asl— oo (2)
i=1

almost surely. The distribution of (Uy,---,Up) can be approximated by the em-

pirical distribution of Ul(? , Ug), Jj =1,2,---,1. Similarly the marginal of U,

can be approximated by the empirical distribution of U, s(;) If [Us|Uy, 7 # s] can be
computed, then

N|p—-t

!
}: U9, 4], (3)

For any T'(Uy,---,Up), let Tj(t) = T(Ul(;),---,U}E;)), the empirical distribution of

Tl(t), RN Tl(t) provides an estimate of [T'(Uy, - - -, Up)].

3. Hierarchical Bayes Formulation for Stress-Strength Model

In this paper, we consider the general hierarchical Bayes model as following:
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(1) Underline distributions of stress and strength are as followings, respectively.
[zilﬂ'l, 0'%] ~Aid. N(pl, 0'%), where i =1,2,---,m.

[y;luz, 03] ~*+% N(ug,03), where j =1,2,---,n.

(ii) Prior distributions of u1, u2, 03,04 are given as followings, respectively.
[mler, df] ~ N(ey,d}),
[ualez, d3) ~ N(cz,d3),
[6le1, fi] ~ IG(e, f1),
[03]ea, fo] ~ IG(es, fo),
where IG(a,b) denotes an inverted gamma (a, b) random variable that has

probability distribution function f(z|a,b) = W&e)—-_;'“%”' And e; and ey are

known positive constants.
(iii) Hyperprior distributions of c1, c2,d?, d3 are given as followings;
[e1lg1, 73] ~ N(g, 1Y),
[c2lg2, B3] ~ N(go, h3),
[&Elp1,q1] ~ IG(p1,qu),
[dBIp2, @2} ~ IG(p2,q2),

where p; and ps are known positive constants.

To implement the Gibbs sampler, we need to calculate the full conditional distri-
butions. From the hierarchical structure, the full conditional distributions are given
as

™ (@i—p)? —e)?
(1) [palz, o3, 03, €1, , %, B, 2, ] o« eap(— ZasiZak — Lacgly
Where z = {mla L2, )xm} and y= {yliy27 te )yn}
That is,

Z;’;l mz’d% + 010'% U%dg ) (4)
md?+o0}  'md?+o2”

[#1|#2:U%,Ug,cl,cz,d%,d%,ﬁ,g] ~ N(

o Wi—p2)? —c9)?
(II) [“2“1'1’0%’037clvc?,d%’d%&v g] X emp(—Z]‘lg;% - (“22;%:2) )

That is,

Z;'l:l yjd% + CZU% U%d% ) (5)
ndi+o0% ndi+o3”

[,uglul,a%,cr%,cl,cz,d%,d%,g,g] ~ N(
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7"

(IH) [Ullp'hl‘2’02’01’02’d1ad2’m y] X _12_2' 63317( "J:Jé—:zr—#i p= o fl)
That is,
[Ullﬂl,ﬂ2,02,01,02,d17d2, y]

~ IG(—2—+el, (Zi=1($z—ﬂl) +l)—1)_

2 fi
1 )
(IV) {U2|ll1;ﬂ2, 01761,627d1>d27 y] 158 _12_2' C-TP( —E—%]Tu_z —E'IE)
That is,
[U%‘NI,/142,0%,01,02,(1%,‘1%,3? y]
> 5=1(Y; N2)2

~ IG(= i= + ).

B 4y, (22 5

—_ 2 _ 2
(V) [C] |IJ‘17 H2, 0%7 U%) C2, d%) d%) Z, :’i} X emp(_(l‘l2d§1) _ (Cl2h9¥l) )

That is,

pih? + gid?  d2h?
[clllJ'l)/JQ’0%103;62"1%7(@’@73] ~ N( h%l-l-d% ahg d2)

—0n)2 —nn)2
(VI) [02“"'1’ 142, U%a 0%7 C1, d%’ d%’ &, _y_] X e.’Ep(— (N22d§2) — (C22h!]%2) )

That is,

pzh + god} fm)
h2+d: 'hZ4+di”

[C2|M1,N2,U%,U%acl,d%,d%,Ly_] ~ N(

(VII) [dllu‘l,ﬂ'?aal’Ug>617027d27 ’y] X _3:2p_lewp( (—ﬂ% dlql .

That is,

[dllul,p,g,dl,O'%,Cl,02,d2,:1: y] ~ IG( + D1, +
2 2 q1
(VIII) [d3|p1, po, 08,03, 1, ¢2, A%, 2, y] o ;mﬁewp( ﬂz—?)‘
That is,
1 —c9)? 1
[dglﬂl,#%diag,cl,cm d%)@?ﬁ] ~ IG(_2' +P2, ((_/1,22—2) + '('1';)_1)-

((Nl - 01)2 __];_)—l).

(9)

(10)

(11)
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To implement the Gibbs sampler, we should be able to draw samples from the
conditional densities given in (4)-(11). Simulation from the conditional densities can
be done by standard methods.

In implementing Gibbs sampler in our problems, we follow the recommendation
of Gelman and Rubin(1992). By Gelman Rubins’ algorithm, independently simulate
[ > 2 sequences, each of length 2¢, with starting points drawn from an overdispersed
distribution. To diminish the effect of the starting distribution, discard the first ¢
iterations of each sequence, and focus attention on the last ¢.

Hence, we obtain Bayes estimators of 1, ug, 0’%, 0‘% and 6 as following;

22

Q

L . N :
—izl M M1|ng)>01j2(k),02j2(k) mﬁj),méj),dl 26) dy 20 gyl (12)
=1 k=t+1

,“2|,“1] 7‘71] ®) ‘72j2(k) ng)’mé§)>dIJ2(k) d2] ,Z,y) (13)

IPﬁt\j

ll
y—tz

k k
Z Z o216l 18, 02,20, mP) mE) | d,2®), 4y 2 2,y (14)
] 1 k=t41

12
k k

Z Z 02|#13 “u;]) o.J2(k),m(J)’m( ) dy; 2(k) , dy;j 2(k) Lz y] (15)

j=1k=t+1

E(o3ly) ~

NIH

Now, we can see that the hierarchical Bayesian analysis of R is equivalent to that
of @ since ®(-) is one-to-one function. Hence we must to obtain Bayes estimator of
@ to obtain Bayesian estimator of R.

To estimate the posterior distribution of 6, it is necessary to find the full condi-
tional distribution of 8.

With Gibbs sequence from the full conditional distributions, we can obtain

ROBG
9§k)=_1f_i §=1,2---1, k=t+1,2---,2¢ (16)

20 4 2R

Then the 8% can be regard as samples from unknown postorior distribution of 8
J . .
because of continuity of 6.
From the Gibbs sampler procedure, if {0{“, -++,0%} is a sample from posterior
of 6, Bayes estimator of the 8 is approximated by

T Mgk) _ Mgk)
0~ = 3 ey 17
i 2 T (a7

015 T 0y
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Table 1: Rocket-motor Experiment Data,

| Chamber burst strength (X) | Operating pressure (Y) |

15.30 17.10 16.30 7.74010 7.77490 7.72270
16.05 16.75 16.60 7.77925 7.96195 7.44720
17.10 17.50 16.10 8.07070 7.89525 8.07360
16.10 16.00 16.75 7.49650 7.57190 7.79810
17.50 16.50 16.40 7.87640 8.19250 8.01705
16.00 16.20 7.94310 7.71835 7.87785
7.29040 7.75750 7.31960

7.63570 8.06055 7.91120

Also, the 95 percent credibility interval(equal tails) is

(Bo0.025x1t) » O.975x14);5 (18)

where [0.025 x {t] and [0.975 x [t] are the (0.025 x lt)th and (0.975 x lt)th order
statistics of 6.( See Dey and Lee(1992) ).

We can check the monitor convergence of the iterative simulation by Gelman and
Rubin’s statistics(See Gelman and Rubin(1992) ), which declines to 1 as t — oo.

4. THustration

In this Section, an illustrative example is represented by the rocket-motor ex-
periment data reported by Guttman, Johnson, Bhattacharyya, and Reiser (1988).
Suppose that one is interested in testing the reliability of the rocket motor at the
highest operating temperature-namely, 59 degrees centigrade-at which the operat-
ing pressure (Y) distribution tends to be closest to the chamber burst strength (X)
distribution. As in the work of Guttman et al., each distribution is assumed to be
normal; a quantile-quantile plot of data has supported this assumption. Shown in
Table 1 are some observed values of 17 motor cases and a sample size 24 from the
operating pressure distribution.

The observed summary statistics are Z = 16.485, 7 = 7.789, s? = 0.3409, 8% =
0.05414, and = 13.836, where s? and sg are sample variances of random variables
X and Y, respectively. Also an approximate 95 percent confidence interval for € is
[9.52, 17.67).

In Gibbs sampling approach, we place diffuse second stage prior on p; = 1,¢q; =
1073, p2 = 1, g0 = 1075 and h? = h3 = 10000.

133
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To implement the Gibbs sampler, we consider | = 3 independent sequences each
with a sample of size 2¢t = 3000.

Figure 1 present estimated marginal posterior distribution of §. From figure 1,
we can see that the estimated marginal posterior distribution has unimodal and that
Bayes estimate of 9 is 13.4. Figures 2-3 present traces and autocorrelation function
of 6 out to lag 50. To check convergence of Gibbs sampler, figure 4 presents the plot
of statistics proposed by Gelman and Rubin(1992). We can check that the statistics
declines to 1. From figures 2-4, the Gibbs sampling algorithm seemed to achieve the
convergence. The figures were obtained by use of Win BUGS software version 1.2.

As results of Gibbs sampling algorithm, Bayes estimate of the interest parameter
6 is 13.4 and it’s standard error is 2.136. Also, 95 percent Bayesian credible interval
is (9.311, 17.52). The results of Bayes estimate are similar with nonBayes estimate
given by Guttman et.al.(1988). In spite of small sample size, Bayesian viewpoint
provide estimated probability distribution function, standard error, and interval
estimate, respectively. But, nonBayesian viewpoint by Guttman et.al. provide stan-
dard error, interval estimate, and estimated probability distribution function only
for large sample.
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Figure 4: Gelman and Rubin’s Statistics for 8

137



