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A Method of Choosing a Value of the Bending Constant
in Huber’s M-Estimation Function !

Ro Jin Park 2

Abstract

The shape of an M-estimation function is generally determined in the sense
of either/both maximizing efficiency of an M-estimator at the model or/and
bounding the influence function of an M-estimator. We propose an empirical
method of choosing a value of the bending constant in Huber’s ¥-function, which
is the most widely used M-estimation function when estimating the location
parameter.
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1. Motivation and Algorithm

We assume that the observations X3, X», ..., X, are i.i.d., each according to the
distribution Fy(z) = F(z — 6), where F is known and 6 is unknown. Any estimator
0, if o is known, defined by a minimum problem of the form

>, ( )zmin!,

1=1
where p is an arbitrary differentiable function, is called an M-estimator. In practice,
o should be estimated by a proper estimator, say &.
We would like to measure the influence of a particular observation, say the ith
observation, by comparing é by 0_2, where 0_z is the M-estimate of 8 computed
without the ith observation. By a second order Taylor series, we have the followings;
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Let us define twice of the left-hand side of (1) as the measure of Influence of ith
observation for an M-estimation function in estimating a location parameter, and
denote it as IM;. The first term on right-hand side of the equation (1) is in fact
zero, so that we have

IM;. = Q{ip(X_,;_Oi> “zn:'p(Xi(;é>}
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For Huber’s proposal (Huber, 1981) such as p’(t) = 9 (t), where
V() = min{k, max{t,—k}} = ¢ - min {1, IYkI}

Q

for 0 < k < oo, the sign ¢ &’ in (2) can be replaced by ¢ = ’, so that we have
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IM;(k) = ( P ) > iy < 5 ) .
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We can notice that there is a relationship between IM; and Cook’s distance
(Cook , 1977a; Cook and Weisberg, 1982), defined as
(b — B)T(XTX)(b;) — b)

—_ T N -

where

X is an n X p full — rank matrix of known constants,

Y is an n — vector of observable responses,

62 is a sample variance of residuals and b, and

f)(,-) are the vectors of the least squares estimates of the vector
of regression parameters, b, with all observations and

observation except the ith observation, respectively.

The D; is a result of the second-order expansion of p(Y — Xb) w.r.t B(i) if p(Z) =
ZTZ for a matrix Z. Furthermore, if p = 1, D; turns out

(%= & (xi-xu\ & (x-x\
oon(SE) S (55R) 2(GAA) ) o

where X =Y X;/n, 62 = ¥ (X;—X)?/(n—1), and X_; is a sample mean calculated
without an ith observation. D; in (3) is in fact a location parameter version of Cook’s
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distance. The above quantity is also a special case of IM; when M-estimating
function, p/(t) = ¥(¢t) = t for all . The (3) is in fact also a special case of the
likelihood displacement in Cook, et al. (1988). The values of Di(XTX, p52) can
be converted to a familiar probability scale by comparing computed values to the
F(p,n — p) distribution. For example, if D;(XTX, p52) equals the 0.5 value of the
corresponding F distribution, then deletion of the i-th case would move the estimate
of b to the edge of a 50% confidence ellipsoid relative to b, a potentially important
change (Cook, 1977b). If the largest D; is substantially less than 1, deletion of a
case will not change the estimate of b by much.

Consider how to figure out a proper value of the bending constant for a partic-
ular data set by using IM;. We want Huber’s M-estimating function effectively to
handle influential observations, so that no observation is considered as an influential
observation; that is, we want IM; for all ¢ to be less than or equal to a proper value
from F distribution. In order to attain our goal, we want the largest k, say k*
satisfying that

max{IMz(k)} < F(l -—a,l,n— 1)7 (4)

where F(1—-a,1,n—1) is the (1—a) x100% point of the F distribution with 1 and n—1
degrees of freedom, for a given a. The observations bounded by k* and —k* are no
longer influential observations in terms of Cook’s distance, and in that sense Huber’s
estimate with that k* is a robust alternative to a sample mean. Let see how Huber’s
estimates behaves according to the various values of a. We have generated 1000
samples of 20 random observations from the normal distributions in which samples
are from N(0,1) with probability 1.0, 0.9, 0.8, 0.7, 0.6, respectively, and otherwise
from N(5,1); that is, samples are simulated from (1 — €)N(0,1) + eN(5,1) for € ==
0.0, 0.1, 0.2, 0.3, and 0.4. For each sample, we picked up the largest k satisfying;
max{IM;(k)} < F(1 - a,1,19) for & = 0.5,0.625, and 0.75, and calculated Huber’s
estimates for each level of a with bending constants obtained. The box-plots of
the various estimates for a location parameter y show how the estimates behave
according to a’s under various contamination (Figure 1). There are five sections
separated by the vertical lines according to the levels of contamination, and in each
section. The box-plots of sample means, Huber’s estimates according to the upper
limit in (4) with a=0.5, 0.625, 0.75, the estimates with ¥ = 1.28 (suggested by
Wilcox, 1997) and k = 1.36 (suggested by Hampel, et al., 1986), and medians are
plotted from the left to the right. Under the normal density Huber’s M-estimator
attains its asymptotic efficiency 0.94 and 0.95 when k=1.28 and 1.36, respectively.
When a = 0.5, the Huber’s M-estimates are closer to sample means, but when
a = 0.75, the estimates are closer to medians. When a level of contamination is
30% and more, Huber’s M-estimates with £ = 1.28, 1.36 seem to break down while
Huber’s M-estimates with a = 0.75 are robust as the medians. However, Huber’s
M-estimates with a = 0.75 and the medians have larger standardized errors than
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Table 1: Means and Standardized errors in parentheses of the various M-estimates;
a = o stands for the M-estimates based on (1 — ag)th quartile of F-distribution

0% 10%  20% 30% 40%
sample mean 0.0103 0.5216  0.9397 1.4921 1.9947
(0.2126) (0.2145) (0.2161) (0.2138) (0.2278)
Huber’s 0.0138  0.3307 0.7273 1.2850 1.7566
with «=0.5 (0.2059) (0.2431) (0.7727) (0.4587) (0.4284)
Huber’s 0.0124  0.2432  0.5649 1.0714 1.5258

with 0=0.625  (0.2133) (0.2400) (0.3285) (0.4836) (0.5313)

Huber’s 0.0093 0.1801  0.4044  0.7890  1.1967
with a=0.75 (0.2220) (0.2390) (0.2905) (0.3837) (0.4956)

Huber’s 0.0041  0.1591  0.4461 09521  1.7471
with k =128  (0.2278) (0.2494) (0.2746) (0.3511) (0.3513)

Huber’s 0.0040  0.1656 0.4634  0.9992  1.7858
with k=136  (0.2267) (0.2486) (0.2760) (0.3608) (0.3373)

median -0.1394 02571 0.2571  0.5118  0.3821
(0.2587) (0.3126) (0.3126) (0.3742) (0.4497)

Huber’s M-estimates with 1.28 and 1.36. That is, the plots are suggesting that
there is a trade-off between robustness and efficiency as the level of contaminations
increases. However, the ranges of Huber’s M-estimates with k=1.28 and 1.36 are
wider than Huber’s M-estimates with a = 0.75, that is, Huber’s estimates with a
fixed bending constant are less stable than Huber’s M-estimates with a = 0.75.

The fact is that when we consider robustness, 20% contamination at is a lot. We
can notice that Huber’s M-estimates with o = 0.75 perform quite well over Huber’s
M-estimates with 1.28 and 1.36 at lower levels of contamination. Hence, we pro-
pose that Huber’s M-estimator based on the algorithm in this article with oo = 0.75
should be a good alternative to those with &£ = 1.28 and 1.36.
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2. Examples

In the following three examples, an M-estimate of location is a result of the
first iteration of an iterative estimation procedure known as the Newton-Raphson
method, that is,

where T = median and S? = (Median Absolute Deviation) / 0.6745.

Example 1: The Cushney and Peebles Data. In 1904, Cushney and Peebles
published their experimental results on “The Action of Optimal Isomers” in the
Journal of Physiology. The following data are copied from Table 4.1 of Staudte and
Sheather (1990, p97), and written in order:

0.0,0.8,1.0,1.2,1.3,13,14, 1.8, 24, 4.6.

e The mean is 1.58 and the median is 1.3.
e The 20% two-sided trimmed mean is 1.40.
e The mean without {0.0, 2.4, 4.6}, which are considered outliers, is 1.26.

o F-distribution: when k = 0.51 (a=0.75), 1.18 (=0.625), and 2.36 (a=0.5),
Huber’s estimates are 1.3, 1.37, and 1.40.

e Huber’s estimates with k = 1.28 and 1.36 are 1.338 and 1.343.

Example 2: Lifetimes of EMT6 Cells (Staudte, R. G. and Sheather, S. J.,
1983). Mammalian cells in culture have lifetimes (cell cycle times) typically varying
from 8 to 24 hours; the following is a typical data set of lifetimes in hours:

10.4, 10.9, 10.5, 8.8, 8.5, 8.7, 10.4, 7.8, 8.4, 9.1,
9.8,10.3, 9.5, 10.4, 9.0, 8.9, 7.7, 8.2, 9.1, 22.2.

¢ The mean and median are 9.93 and 9.1, respectively.

e F-distribution: when k& = 0.53 (a=0.75), 2.43 (a=0.4), and 3.07 (a=0.5)
Huber’s estimates are 9.25, 9.42, and 9.45.

o Huber’s estimates are 9.375 when both k£ = 1.28 and 1.36.



186 Ro Jin Park

Example 3: Self-Awareness Data (Wilcox, 1997, p33). Dana (1990) conducted
a study dealing with self-awareness and self-evaluation. One segment of his study
measured the time subjects could keep a portion of an apparatus in contact with a
specified target. The following shows some data for one of the groups:

77, 87, 88, 114, 151, 210, 219, 246, 253, 262,
296, 299, 306, 376, 428, 515, 666, 1310, 2611.

e The sample mean and the sample trimmed means with 10% and 20% trimmings
are 448, 343, and 283.

o Huber’s M-estimate with k = 1.28,1.36 are 285.1 and 2.8853.

o F-distribution: when k£ = 1.01 (a=0.75), 1.68 (a=0.4), and 2.24 (a=0.5)
Huber’s estimates are 227.56, 298.68, and 314.72.
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Figure 1: Box-plots of the estimates under various contaminations; sample means,
Huber’s M-estimates based on a = 0.5,0.625 and 0.75, and Huber’s M-estimates
with k¥ = 1.28 and 1.36, and medians in order from the left to the right in each
section.
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