Journal of the Korean

Data & Information Science Society

2000, Vol. 11, No. 2. pp. 181 ~ 188

A Method of Choosing a Value of the Bending Constant in Huber's M-Estimation Function ¹

Ro Jin Park ²

Abstract

The shape of an M-estimation function is generally determined in the sense of either/both maximizing efficiency of an M-estimator at the model or/and bounding the influence function of an M-estimator. We propose an empirical method of choosing a value of the bending constant in Huber's ψ -function, which is the most widely used M-estimation function when estimating the location parameter.

Key Words and Phrases: Influential Observation; M-estimation; Robustness

1. Motivation and Algorithm

We assume that the observations X_1, X_2, \ldots, X_n are i.i.d., each according to the distribution $F_{\theta}(x) = F(x - \theta)$, where F is known and θ is unknown. Any estimator $\hat{\theta}$, if σ is known, defined by a minimum problem of the form

$$\sum_{i=1}^{n} \rho\left(\frac{X_i - \hat{\theta}}{\sigma}\right) = \min!,$$

where ρ is an arbitrary differentiable function, is called an M-estimator. In practice, σ should be estimated by a proper estimator, say $\hat{\sigma}$.

We would like to measure the influence of a particular observation, say the *i*th observation, by comparing $\hat{\theta}$ by $\hat{\theta}_{-i}$, where $\hat{\theta}_{-i}$ is the M-estimate of θ computed without the *i*th observation. By a second order Taylor series, we have the followings:

$$\sum_{i=1}^{n} \rho \left(\frac{X_{i} - \hat{\theta}_{-i}}{\hat{\sigma}} \right) - \sum_{i=1}^{n} \rho \left(\frac{X_{i} - \hat{\theta}}{\hat{\sigma}} \right) \approx$$

$$- \left(\frac{\hat{\theta}_{-i} - \hat{\theta}}{\hat{\sigma}} \right) \sum_{i=1}^{n} \rho' \left(\frac{X_{i} - \theta}{\hat{\sigma}} \right) \Big|_{\theta = \hat{\theta}} + \frac{1}{2} \left(\frac{\hat{\theta}_{-i} - \hat{\theta}}{\hat{\sigma}} \right)^{2} \sum_{i=1}^{n} \rho'' \left(\frac{X_{i} - \theta}{\hat{\sigma}} \right) \Big|_{\theta = \hat{\theta}}. \tag{1}$$

¹This research was supported by BSRI-98-015-D00049.

²Assistant Professor, Department of Information and Statistics, Taejon University, Taejon, Korea

182 Ro Jin Park

Let us define twice of the left-hand side of (1) as the measure of Influence of ith observation for an M-estimation function in estimating a location parameter, and denote it as IM_i . The first term on right-hand side of the equation (1) is in fact zero, so that we have

$$IM_{i} = 2\left\{\sum_{i=1}^{n} \rho\left(\frac{X_{i} - \hat{\theta}_{-i}}{\hat{\sigma}}\right) - \sum_{i=1}^{n} \rho\left(\frac{X_{i} - \hat{\theta}}{\hat{\sigma}}\right)\right\}$$

$$\approx \left(\frac{\hat{\theta}_{-i} - \hat{\theta}}{\hat{\sigma}}\right)^{2} \sum_{i=1}^{n} \rho''\left(\frac{X_{i} - \hat{\theta}}{\hat{\sigma}}\right). \tag{2}$$

For Huber's proposal (Huber, 1981) such as $\rho'(t) = \psi_k(t)$, where

$$\psi_k(t) = \min\{k, \max\{t, -k\}\} = t \cdot \min\left\{1, \frac{k}{|t|}\right\}$$

for $0 < k < \infty$, the sign ' \approx ' in (2) can be replaced by '=', so that we have

$$IM_i(k) = \left(rac{\hat{ heta}_{-i} - \hat{ heta}}{\hat{\sigma}}
ight)^2 \sum_{i=1}^n \mathrm{I}_{[-k,k]} \left(rac{X_i - \hat{ heta}}{\hat{\sigma}}
ight).$$

We can notice that there is a relationship between IM_i and Cook's distance (Cook, 1977a; Cook and Weisberg, 1982), defined as

$$D_i \equiv D_i(\mathbf{X}^T\mathbf{X}, p\hat{\sigma}_n^2) = rac{(\hat{\mathbf{b}}_{(i)} - \hat{\mathbf{b}})^T(\mathbf{X}^T\mathbf{X})(\hat{\mathbf{b}}_{(i)} - \hat{\mathbf{b}})}{p\hat{\sigma}_n^2},$$

where

X is an $n \times p$ full – rank matrix of known constants, **Y** is an n – vector of observable responses, $\hat{\sigma}_n^2$ is a sample variance of residuals and $\hat{\mathbf{b}}$, and $\hat{\mathbf{b}}_{(i)}$ are the vectors of the least squares estimates of the vector of regression parameters, \mathbf{b} , with all observations and observation except the *i*th observation, respectively.

The D_i is a result of the second-order expansion of $\rho(\mathbf{Y} - \mathbf{X}\hat{\mathbf{b}})$ w.r.t $\hat{\mathbf{b}}_{(i)}$ if $\rho(\mathbf{Z}) = \mathbf{Z}^T\mathbf{Z}$ for a matrix \mathbf{Z} . Furthermore, if p = 1, D_i turns out

$$D_{i} = n \left(\frac{\bar{X}_{-i} - \bar{X}}{\hat{\sigma}_{n}} \right)^{2} = 2 \left\{ \sum_{i=1}^{n} \left(\frac{X_{i} - \bar{X}_{-i}}{\hat{\sigma}_{n} / \sqrt{n}} \right)^{2} - \sum_{i=1}^{n} \left(\frac{X_{i} - \bar{X}}{\hat{\sigma}_{n} / \sqrt{n}} \right)^{2} \right\}, \tag{3}$$

where $\bar{X} = \sum X_i/n$, $\hat{\sigma}_n^2 = \sum (X_i - \bar{X})^2/(n-1)$, and \bar{X}_{-i} is a sample mean calculated without an *i*th observation. D_i in (3) is in fact a location parameter version of Cook's

distance. The above quantity is also a special case of IM_i when M-estimating function, $\rho'(t) = \psi(t) = t$ for all t. The (3) is in fact also a special case of the likelihood displacement in Cook, et al. (1988). The values of $D_i(\mathbf{X}^T\mathbf{X}, p\hat{\sigma}_n^2)$ can be converted to a familiar probability scale by comparing computed values to the F(p, n-p) distribution. For example, if $D_i(\mathbf{X}^T\mathbf{X}, p\hat{\sigma}_n^2)$ equals the 0.5 value of the corresponding F distribution, then deletion of the i-th case would move the estimate of \mathbf{b} to the edge of a 50% confidence ellipsoid relative to $\hat{\mathbf{b}}$, a potentially important change (Cook, 1977b). If the largest D_i is substantially less than 1, deletion of a case will not change the estimate of \mathbf{b} by much.

Consider how to figure out a proper value of the bending constant for a particular data set by using IM_i . We want Huber's M-estimating function effectively to handle influential observations, so that no observation is considered as an influential observation; that is, we want IM_i for all i to be less than or equal to a proper value from F distribution. In order to attain our goal, we want the largest k, say k^* satisfying that

$$\max\{IM_i(k)\} \le F(1-\alpha, 1, n-1),$$
 (4)

where $F(1-\alpha, 1, n-1)$ is the $(1-\alpha)\times 100\%$ point of the F distribution with 1 and n-1degrees of freedom, for a given α . The observations bounded by k^* and $-k^*$ are no longer influential observations in terms of Cook's distance, and in that sense Huber's estimate with that k^* is a robust alternative to a sample mean. Let see how Huber's estimates behaves according to the various values of α . We have generated 1000 samples of 20 random observations from the normal distributions in which samples are from N(0,1) with probability 1.0, 0.9, 0.8, 0.7, 0.6, respectively, and otherwise from N(5,1); that is, samples are simulated from $(1-\epsilon)N(0,1)+\epsilon N(5,1)$ for $\epsilon=$ 0.0, 0.1, 0.2, 0.3, and 0.4. For each sample, we picked up the largest k satisfying; $\max\{IM_i(k)\} \leq F(1-\alpha,1,19)$ for $\alpha = 0.5, 0.625$, and 0.75, and calculated Huber's estimates for each level of α with bending constants obtained. The box-plots of the various estimates for a location parameter μ show how the estimates behave according to α 's under various contamination (Figure 1). There are five sections separated by the vertical lines according to the levels of contamination, and in each section. The box-plots of sample means, Huber's estimates according to the upper limit in (4) with α =0.5, 0.625, 0.75, the estimates with k=1.28 (suggested by Wilcox, 1997) and k = 1.36 (suggested by Hampel, et al., 1986), and medians are plotted from the left to the right. Under the normal density Huber's M-estimator attains its asymptotic efficiency 0.94 and 0.95 when k=1.28 and 1.36, respectively. When $\alpha = 0.5$, the Huber's M-estimates are closer to sample means, but when $\alpha = 0.75$, the estimates are closer to medians. When a level of contamination is 30% and more, Huber's M-estimates with k = 1.28, 1.36 seem to break down while Huber's M-estimates with $\alpha = 0.75$ are robust as the medians. However, Huber's M-estimates with $\alpha = 0.75$ and the medians have larger standardized errors than

184 Ro Jin Park

Table 1: Means and Standardized errors in parentheses of the various M-estimates; $\alpha = \alpha_0$ stands for the M-estimates based on $(1 - \alpha_0)$ th quartile of F-distribution

	007	1007	2007	2007	100
	0%	10%	20%	30%	40%
sample mean	-0.0103	0.5216	0.9397	1.4921	1.9947
sample mean	(0.2126)	(0.2145)	(0.2161)	(0.2138)	(0.2278)
	(0.2120)	(0.2140)	(0.2,101)	(0.2130)	(0.2210)
Huber's	0.0138	0.3307	0.7273	1.2850	1.7566
with α =0.5	(0.2059)	(0.2431)	(0.7727)	(0.4587)	(0.4284)
	(=====)	()	(3111-1)	(******)	(37-23-)
Huber's	0.0124	0.2432	0.5649	1.0714	1.5258
with α =0.625	(0.2133)	(0.2400)	(0.3285)	(0.4886)	(0.5313)
	,	, ,	, ,	, ,	` /
Huber's	0.0093	0.1801	0.4044	0.7890	1.1967
with $\alpha = 0.75$	(0.2220)	(0.2390)	(0.2905)	(0.3837)	(0.4956)
Huber's	0.0041	0.1591	0.4461	0.9521	1.7471
with $k = 1.28$	(0.2278)	(0.2494)	(0.2746)	(0.3511)	(0.3513)
Huber's	0.0040	0.1656	0.4634	0.9992	1.7858
with $k = 1.36$	(0.2267)	(0.2486)	(0.2760)	(0.3608)	(0.3373)
	•	•	•	•	,
median	-0.1394	0.2571	0.2571	0.5118	0.3821
	(0.2587)	(0.3126)	(0.3126)	(0.3742)	(0.4497)

Huber's M-estimates with 1.28 and 1.36. That is, the plots are suggesting that there is a trade-off between robustness and efficiency as the level of contaminations increases. However, the ranges of Huber's M-estimates with k=1.28 and 1.36 are wider than Huber's M-estimates with $\alpha=0.75$, that is, Huber's estimates with a fixed bending constant are less stable than Huber's M-estimates with $\alpha=0.75$.

The fact is that when we consider robustness, 20% contamination at is a lot. We can notice that Huber's M-estimates with $\alpha=0.75$ perform quite well over Huber's M-estimates with 1.28 and 1.36 at lower levels of contamination. Hence, we propose that Huber's M-estimator based on the algorithm in this article with $\alpha=0.75$ should be a good alternative to those with k=1.28 and 1.36.

2. Examples

In the following three examples, an M-estimate of location is a result of the first iteration of an iterative estimation procedure known as the Newton-Raphson method, that is,

$$T_n = T_n^0 + S_n^0 \sum \psi \left(rac{X_i - T_n^0}{S_n^0}
ight) \left/\sum \psi' \left(rac{X_i - T_n^0}{S_n^0}
ight),$$

where $T_n^0 = \text{median}$ and $S_n^0 = (\text{Median Absolute Deviation}) / 0.6745.$

Example 1: The Cushney and Peebles Data. In 1904, Cushney and Peebles published their experimental results on "The Action of Optimal Isomers" in the *Journal of Physiology*. The following data are copied from Table 4.1 of Staudte and Sheather (1990, p97), and written in order:

- The mean is 1.58 and the median is 1.3.
- The 20% two-sided trimmed mean is 1.40.
- The mean without {0.0, 2.4, 4.6}, which are considered outliers, is 1.26.
- F-distribution: when k = 0.51 ($\alpha = 0.75$), 1.18 ($\alpha = 0.625$), and 2.36 ($\alpha = 0.5$), Huber's estimates are 1.3, 1.37, and 1.40.
- Huber's estimates with k = 1.28 and 1.36 are 1.338 and 1.343.

Example 2: Lifetimes of EMT6 Cells (Staudte, R. G. and Sheather, S. J., 1983). Mammalian cells in culture have lifetimes (cell cycle times) typically varying from 8 to 24 hours; the following is a typical data set of lifetimes in hours:

- The mean and median are 9.93 and 9.1, respectively.
- F-distribution: when k = 0.53 (α =0.75), 2.43 (α =0.4), and 3.07 (α =0.5) Huber's estimates are 9.25, 9.42, and 9.45.
- Huber's estimates are 9.375 when both k = 1.28 and 1.36.

186 Ro Jin Park

Example 3: Self-Awareness Data (Wilcox, 1997, p33). Dana (1990) conducted a study dealing with self-awareness and self-evaluation. One segment of his study measured the time subjects could keep a portion of an apparatus in contact with a specified target. The following shows some data for one of the groups:

77, 87, 88, 114, 151, 210, 219, 246, 253, 262, 296, 299, 306, 376, 428, 515, 666, 1310, 2611.

- The sample mean and the sample trimmed means with 10% and 20% trimmings are 448, 343, and 283.
- Huber's M-estimate with k = 1.28, 1.36 are 285.1 and 2.8853.
- F-distribution: when k = 1.01 ($\alpha = 0.75$), 1.68 ($\alpha = 0.4$), and 2.24 ($\alpha = 0.5$) Huber's estimates are 227.56, 298.68, and 314.72.

Figure 1: Box-plots of the estimates under various contaminations; sample means, Huber's M-estimates based on $\alpha = 0.5, 0.625$ and 0.75, and Huber's M-estimates with k = 1.28 and 1.36, and medians in order from the left to the right in each section.

References

- Cook, R. D. (1977a). Detection of outliers in Linear Regression, Technometrics, 19, 15-18.
- 2. Cook, R. D. (1977b). Letter to the editor, Technometrics, 19, 348.
- Cook, R. D., Peña, D., and Weisberg, S. (1988). The Likelihood Displacement: A Unifying Principle for Influence Measures, Communications in Statistics -Theory and Methods, 17(3), 623-640.
- 4. Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression, Chapman & Hall, New York.
- 5. Cushny, A. R. and Peebles, A. R. (1904). The Action of Optical Isomers II, Hyoscines, *Journal of Physiology*, 32, 501-510.
- 6. Dana, E. (1990). Salience of the self and salience of standards: Attempts to match self to standard., Unpublished Ph.D. dissertation, University of Southern California.
- 7. Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust Statistics, the Approach Based on Influence Functions, John Wiley & Sons, New York.
- 8. Huber, P. J. (1981). Robust Statistics, John Wiley & Sons, New York.
- 9. Staudte, R. G. and Sheather, S. J. (1990). Robust Estimation and Testing, John Wiley & Sons, New York.
- 10. Wilcox, R. R. (1997). Introduction to Robust Estimation and Hypothesis Testing, Academic Press, New York.