Journal of the Korean
Data & Information Science Society
2000, Vol. 11, No. 2, pp. 335 ~ 345

A Comparison Study on the Error Criteria in
Nonparametric Regression Estimators !

Sung. S. Chung 2

Abstract

Most context use the classical norms on function spaces as the error criteria.
Since these norms are all based on the vertical distances between the curves,
these can be quite inappropriate from a visual notion of distance. Visual errors
in Marron and Tsybakov(1995) correspond more closely to ”"what the eye sees”.
Simulation is performed to compare the performance of the regression smoothers
in view of MISE and the visual error. It shows that the visual error can be used
as a possible candidate of error criteria in the kernel regression estimation.
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1. Introduction

The goal of regression curve fitting is to find a relationship between variables
{Xi};—, and {Y;}]_,, where we consider X; to explain the value of Y;.

Consider the problem of estimating the regression function m(z) = E(Y|X = z)
with the constant variance, 02 = var(Y|X = z). Here, m(z) is assumed to be a
smooth but unknown function. This regression relationship is commonly modelled
as

Yi=m(X)+e i=1,---,n 1)

where ¢;’s are independent random variables with the expectation 0 and the variance
o? denoting the variation of Y around m(X).

!This research was supported by the Basic Science Research Institute Program, Project No. 1998-
015-D00048

%Associate Professor, Division of Mathematics and Statistical Informatics, Chonbuk National Uni-
versity Chonju, Chonbuk, 561-756, Korea



336 Sung S. Chung

To estimate the regression function nonparametrically, kernel-based smoothers
are often used because of their simplicity and implementation. There are a great
deal of theoretical research on kernel-based smoothers. See Silverman(1986), Hsrdle
(1990), Wand and Jones(1995) and Fan and Gijbels(1996). An intuitively attrac-
tive kernel-based regression estimator is Nadaraya-Watson estimator proposed by
Nadaraya(1964) and Watson(1964). Priestley and Chao(1972) and Gasser and
Miiller(1984) introduced the alternative kernel regression estimators. An improved
estimator is local polynomial estimator, proposed by Fan(1992). These estimators
are based on moving locally weighted averaging.

As the approach of how to assess the performance of various estimators, most
contexts is using the classical mathematical norms on function spaces ( e.g., L1, Lo, or
Ly). Since these norms are all based on the vertical distances between the curves,
these can be quite inappropriate from a visual notion of distance. Marron and
Tsybakov(1995) developed and investigated alternative measures of error which cor-
respond more closely to "what the eye sees”. Their visual error was using both
vertical and horizontal information. This can be useful to capture the qualitative
features, e.g., number of modes or inflection points. In this paper, their proposed
error criterion is studied in cases of the regression problem. Although this criterion
works well in a visual sense, it is not ideal for all statistical problem. In particu-
lar, if a regression is to be used solely for prediction purposes, then the Ly fit has
important optimality properties and is preferable to the visual error fit.

<Figure 1> shows three well-known estimates using the Gaussian kernel for
the Canadian Earning Power Data from Ullah(1985). The raw data {(X;, Y;)}~,,
n = 205, are overlaid with scatterplot. The bandwidth, hrsw, in <Figure 1> is
chosen by a plug-in method propsed by Ruppert, Sheather and Wand(1995). The
solid line is the local linear estimate and seems to be a appropriate estimate. <Table
1> shows sum of squared error(SSE) and sum of squared visual error(SVE) of three
estimates. Here SVE is defined as follows :

n
SVE =} infeenll(zi, %) — (z,(z; h))|?
i=1
where || - || denotes the usual euclidean distance. Therefore, SVE is the sum of the
minimum squared distances from each data point to the graph. SVE shows same
pattern as SSE. And the local cubic estimate seems best among three estimates with
respect to both error criteria but seems to be more wiggly.
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<Figure 1> Kernel regression estimates for Canadian Earning Power Data, overlaid
with scatterplot of the raw data. Solid line : My (z;h) (the local linear
estimate), the dotted line : i yw (z; k) (Nadaraya-Watson estimate), and
the dashed line : Mo (z;h) (the local cubic estimate). Ruppert, Sheather
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and Wand bandwidth, hpew, is used.

<Table 1> SSE and SVE of Kernel regression estimates

50

myw(x;h) | mpp(z;h) | Mmro(x; k)
SSE 56.601 53.810 51.626
SVE 56.343 52.609 49.808
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In section 2, we describe the kernel-type regression estimators including Nadaraya-

Watson estimator and local polynomial estimator. In section 3, the usual norms in
L5 and the visual error criterion are discussed. In section 4, we perform the sim-
ulation to compare the performance of four regression smoothers in four testing
function. mrc(z; k) and myg(z; h) has the good properties in aspect to both MISE

and the visual error. In particular, myg(z; h) is most stable, so it can be used as a
good candidate in the kernel regression problem.

2. The Nonparametric Regression Smoothers

In this section we consider the kernel-type regression smoothers. Given a set of
bivariate data (X1,Y1), - -, (X, Yn), we want to estimate the regression function in

(1), based on the data. For simplicity, we will assume X; takes the value in [0,1].
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Nadaraya-Watson estimator (7 yw (z; h)) independently proposed by Nadaraya(1964)
and Watson (1964) is given by

_ nl Y Kn(X; — 2)Y;
M (wih) = == r Kp(X;—2) @

Note that the denominator in (2) is the kernel density estimator of f(z), the marginal
density of X. Here, Kj(u) = K(u/h)/h and K is called the kernel function. The
scale parameter, h, is called the bandwidth or smoothing parameter, and is crucial to
the performance of /i(z; h). The kernel function, K, is a continuous and symmetric
probability function. It is well known that the choice of the kernel function, K,
is of essentially negligible concern compared to the choice of the bandwidth. See
Silverman(1986). Ruppert, Sheather and Wand(1995) proposed the ” Direct Plug-in”
bandwidth, hrsw, which possessed attractive theoretical and practical properties.

As an improved estimator, there is the local polynomial regression estimator(Fan,
1992). This estimate the regression function, m(z), at a particular point by locally
fitting a pth degree polynomial to the data via weighted least squares. It is given
by the value of 50 when b = (b, -+, b,)* is chosen to minimize the weighted least
squares function

S (i~ by — - — by — )P} Kn(X — ).

=1

Note that myw(z; k) in (2) is the special case of the local polynomial regression
estimator (p = 0). When p = 1, this is called the local linear regression estimator,
and it can be expressed as follows

-1 i {32(1‘; h) - §1(a:; h)(Xi - a:)}Kh(Xl — .'L‘)Yz
P 52(z; h)So(x; h) — 51(x; h)?

mrp(z;h) =n

where 8.(z;h) = n ! Y0 (X — )" Kn(X; — z), r =0,1,2. And when p = 3, it
is called the local cubic regression estimator (Mpc(z;h)). Wand and Jones(1995)
showed that odd degree polynomial fits had attractive bias and boundary properties
and suggested using either the local linear or the local cubic estimator.

3. Error Criteria

The analysis of the performance of the estimator requires the specification of
appropriate error criteria for measuring the error when estimating the regression
function, m(z), at a single point as well as over the whole real line. The classical ap-
proach is using the mathematical norms on the function spaces ( e.g., L1, L2, or Lo).
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We often consider optimizing Ly norm (e.g., the mean squared error(MSE), the in-
tegrated squared error(ISE) or the mean integrated squared error (MISE)) because
of its mathematical simplicity.

MSE is to consider 7 (z;h) as an estimator of m(z) at a some point z € R.
Rather than simply estimating m(z) at a fixed point, it is usually desirable, especially
from a data analytic viewpoint, to estimate m(x) over the whole real line. One such
error criterion is the integrated squared error(ISE) given by

ISE {A( - ;h)} = / {#(z; h) — m(z)} da.

The ISE is appropriate if we are only concerned with data set at hand, but it
does not take into account other possible data sets. Therefore, some researchers

prefer to work with the expected ISE(MISE),

MISE {( - ; h)} = E[ISE {( - ; h)}] = E / {A(z; h) — m(z)} da.

There has been an controversy over which should be called the ”optimal band-
width in the Ly sense”, between the respective minimizers of ISE and MISE. It is
seen that despite important mathematical and conceptual differences there is often
little difference in term of assessing bandwidth selectors in most practical situations.
However MISE does give better resolution in comparing bandwidth selectors than
ISE. So we use MISE in the simulation. See Grund, Hall and Marron(1992) for
references and discussion.

The classical mathematical norms on the function spaces are based on the vertical
distance between the two functions. But the eye does not works in this way. Marron
and Tsybakov(1995) proposed the visual error criteria which can be appropriate
from a graphical viewpoint. See that paper for the motivation and the detailed
discussion.

A continuous function m : [a,b] — R can be represented by its ”graph”,

Gn = {(.’It,y) SRS [a,b],y = m(:z:)} C R’

The shortest distance from the given point (z,y) to the graph G can be represented
as follows:

d((z,y), G) = inf(z yyeall(z, y) — (=, 9)]].
Then the asymmetric visual error criterion proposed by Marron and Tsybakov(1995)
is

]1/2

b
VE( - m) = [ [ {d((@m(@ih), Gm)Yda (3)
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Lemma.
B(VEG = m?) = [ Eld((am(h), Ga))de
b B((rh(z; h) — m(z))?)
/ T+ m@pE =

b bz(:c) + 02(:1:)
s 1+ m@R "

where b(z) = %m”(m) f: u?K (u)du and 0?(x) = 7—171%55 1P K (u)?du.
Proof. Similar to Marron and Tsybakov(1995).

Note that there is less error at z where m(x) is steep (i.e., |m/(z)]| is large), but
roughly the usual error at locations where m(z) is flat (i.e., m/(z) =~ 0). And if
we choose b = O(n~1/%) as the bandwidth, EVE = E(VE(fy, — m)?) = O(n~4/5),
same asymptotic rate of MISE.

For computation of MISE and EVE, we need discretizing the continuous function.
Denote a set of an equally spaced compact grid (with grid spacing Az , say) of =
locations by R and the discretized version of a graph G, of a function m(x) by
Gdiser — {(z,m(z)) : x € R}.

The discretized version of VE(7, — m) is given by

_ . . 1/2
VES (i, — m) = [Ac Y {d((w, m(z; b)), Gy .
zeR
Since the error criteria, VE, depends heavily depend on the relative scale of  and y,
the figure will give results different from visual impression. For this reason it need
linearly transforming x and y so that both {a,b] and [inf exm(z),supyepm(z)] are
mapped to [0, 1].

4. Simulation

In this section, we carry out Monte Carlo simulation to compare the performance
of the various regression smoothers in view of MISE and EVE.
We consider four testing regression functions as follows

(m1) m(z) = sin(27rz).
(m2) m(z) = sin(4rx).
(m3) m(z) =z(1 - z).
1 (z — 0.5)2 }

(md) m(z) = 0.1\/2_7rexp{ - 200.1)2
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We choose the function (ml) as a standard function since it is smoothed and
easy to estimate. The function (m2) is more wiggly and (m3) is more smoothed in
the interior region but has the more sharp end point. (m4) has a peak in the center
and is flat near the boundary.

The sample size is taken as n = 100 and 500 replications are performed to
estimate MISE and EVE. And we take the equally spaced fixed design because the
sample size is relatively small to 401 grid points. We generate ¢; ~ N(0,0?%) with
o = 0.2 from randn function of MATLAB. We use the Gaussian kernel as the kernel
function, and the direct plug-in bandwidth selector, hrsw, of Ruppert, Sheather
and Wand(1995) as the bandwidth for myw (z; k), Mmrr(z; h) and Mrc(z; k). For
myEg(z; k), we apply the minimizer, hyg, of VE(m;, — m) in (3). But as the
bandwidth goes to zero, the estimate goes to interpolation of data points. So we use
the local linear estimators as the function class of myg(z; h). Therefore, My g(z;h)
is the estimate minimizing VE(7; — m) among the local linear estimates.

To reduce computational effort, we use the binning approach suggested by Fan
and Marron(1994). This is useful because the data only need to be binned once. So
binned computation has the advantage of requiring only O(N) kernel evaluation, and
this allows very fast computation of mi(z; h) over the grid points. Here N denotes the
number of grid points. We use N = 401 recommended by Fan and Marron(1994).
As the method for obtaining grid counts that has good properties, we use ”linear
binning” by Hall and Wand(1993).

<Table 2> shows the estimates of MISE and EVE of four regression smoothers.
maw(z;h) and mpr(z;h) have almost similar errors. The errors of mpc(z;h)
are very similar to those of myg(z;h) and are less than those of myw(x; k) and
mrr(z; h), as shown in Wand and Jones(1995). As we can expect, EVE is smaller
than MISE. But the differences in (m3) are due to the linear transformation from
[infzenm(z),sup epm(z)] to [0,1] in VE. As we can see in (m3) of <Figure 2>
and <Figure 3>, Mmrc(x; h) is unstable because it has largest errors(small bias but
relatively large variance) among four estimators. This seems due to overfitting of
mrc(x; h) since (m3) is the quadratic function.

<Figure 2> shows the kernel regression estimates under four regression func-
tions (m1)-(m4), respectively. myw(x;h) and Mmrr(z; h) can not be discerned at
almost middle points. My g(z; k) (dash-dotted line) has largest biases in the middle
region in (m3) but it has smallest M SE(7(z;h)) in <Figure 3>. This says that
it has smallest variances and the biases are dominated by the variances. Except
(m3), mrc(x;h) and Mmyg(z; h) have less biases than Mmyw(z; h) and mrr(z;h),
especially in the region having the high curvature, i.e., the peak and the valley.
This corresponds to the result of Wand and Jones(1995). <Figure 3> shows the
estimates of M SE(m(x; h))’s of four estimates under the regression functions (m1)-
(m4), respectively. It shows that M SE(m(z;h))'s of Myw(z; h) and Mpr(z; k) have
same features with the biases except (m3). MSE(m(x;h))’s have similar pattern
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as the biases of <Figure 2> except (m3). So we can say that the variances are
dominated by the biases. The above discussion says that myc(z;h) and My g(x;h)
are better than myw(z;h) and Mmrr(z;h) for estimating the true function. And
myE(z; k) has good performance in all regression function including (m3) with re-
spect to MSE(m(z; h)).

< Table 2 > Estimates of MISE and EVE,

Error Regression function
criteria | Estimator ml m2 m3 m4
myw (z; h) | 0.0069 | 0.0159 | 0.0014 | 0.0647
MISE mrr(z; k) | 0.0068 | 0.0160 | 0.0014 | 0.0647
mrc(z;h) | 0.0028 | 0.0041 | 0.0023 | 0.0067
myg(z; h) | 0.0032 | 0.0056 | 0.0010 | 0.0077
. myw (z; h) | 0.0576 | 0.0392 | 0.4679 | 0.0441
EVE | mypr(z; h) | 0.0581 | 0.0369 | 0.4706 | 0.0435
x102 | Mmrc(x;h) | 0.0182 | 0.0137 | 0.7225 | 0.0123
myg(z; k) | 0.0207 | 0.0146 | 0.3025 | 0.0144

5. Discussion

We have seen through the simulation that mrc(x; k) and My g(z; h) have better
performance than the other two estimates except (m3). In (m3), mrc(z;h) has
much larger variance than other estimates. myg(z; h) shows the good performance
in all regression functions with respect to MISE and EVE. Therefore the visual error
criteria can be used as a good candidate in assessing the kernel regression estimators
since it correspond more closely to what the eye sees. It should be studied further
to select the data-driven bandwidth minimizing EVE.
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<Figure 2> Kernel regression estimates under four regression functions (m1l)-
(m4), respectively. Heavy solid line(true function), light solid line (mrr(x;h)) ,
dotted line (Myw(x;h)), dashed line(Mrc(z; h)) and dash-dotted line(myg(z; h)).
hpsw is used.
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<Figure 3> Estimates of M SE(m(x;h)) under four regression functions (m1)-
(m4), respectively. Solid line (7ipy(z;h)), dotted line (mNw(z; h)), dashed line
(Mrc(z; k) and dash-dotted line (Myg(z;h)). hrsw is used.



