# 흰쥐 시각교차위핵（suprachiasmatic nucleus）의 출생직후 GABA 성 신경종말의 분포양상 

이 성 준<br>경북대학교 수의과대학<br>（2000년 11월 1일 게재승인）

# The postnatal distribution pattern of GABAergic terminals of the suprachiasmatic nucleus in rat 

Seong－joon Yi<br>College of Veterinary Medicine，Kyungpook National University<br>（Accepted by November 1，2000）


#### Abstract

The present study was carried out to reveal the role of $\gamma$－aminobutylic acid（GABA）during postnatal period in rat．The suprachiasmatic nucleus（SCN）of hypothalamus has been known as the regulation center of circadian rhythm in the mammalians．In this study，we could find many GABAergic terminals in the SCN from day 1 to day 7 after birth．On the basis of these results，it can be said there are some kinds of inhibitory effects by GABA to the light stimulation of newborn rat．


Key words：GABA，suprachiasmatic nucleus，circadian rhythm，rat

## 서 론

일주기를 조절하는 중추（pacemaker of circadian rhythm）로 알려진 시각교차위핸（suprachiasmatic nucleus） 은 시상하부（hypothalamus）의 신경핵（nucleus）로서 최근 에 중요한 연구과제 중 하나이다 ${ }^{1.2}$ ．시상하부의 뇌실주 위구역（periventricular zone）중 앞구역（anterior region）에 위치하며 시각교차（optic chiasm）위에 있는 시각교차위 핵은 매우 작고 밀집한 신경세포로 구성되어 있으며 시 각교차에 의해 앞배쪽으로 경계지어 있고，시각위교차 （supraoptic commissure）에 의해 뒤배쪽으로 경계되어 진 다．횐쥐에서 시각교차위핵은 전두면으로 절단된 뇌조 직절편에서 일반적으로 Nissl 염색 또는 조직화학염색방 법에 의해 세포구축학적으로 둥쪽내측부（dorsomedial portion）와 배쪽외측부（ventrolateral protion）로 명확히 나 뉘어 지는데 둥쪽내측부는 배쪽외측부보다 상대적으로 더 작은 신경세포들로 구성되어 있다3．

포유동물의 일주기성 행동 리듬이 시각교차위핵에 의 해 조절되는데，이는 일주기에 맞추어 행동으로 발현된

다 ${ }^{4}$ ．외과적으로 시각교차위핵이 제거된 동물에서 일 주기의 소실 또는 심한 손상이 보고되었으멱，또한 손 상을 유발시킨 동물에게 시각교차위핵을 이식했을 경우 에는 공여돟물의 일주기가 회복되었다는 연구도 보고 된 바 있다 ${ }^{6}$ ．시각교차위핵은 일주기의 조절이외에도 환경조절의 변화에 민감하게 반웅하는데，특히 빛 자 극에 의한 내인성 시간조절에 관여한다．이러한 활동 은 시각교차위핵의 배쪽외측부가 망막시상하부로 （retinohypothalamic tract，RHT）와 무룦시상하부로 （geniculohypothalamic tract，GHT）를 각기 수용하기 때문에 가능한 것으로 알려져 있다7．

일주기와 관련되어 GABA 는 중추신경계퉁에 널리 퍼 져 있는 대표적인 억제성 신경전달물질로서 특히 stress 나 노인성 치매 등에 의해 일주기의 조절에 혼란이 오 면 임상적으로 불면증을 일으키게 되는데，이때 치료에 이용되는 benzodiazepine 둥과 같은 약물은 GABA 작용 을 촉진시키는 역할을 하여 일주기를 정상적으로 유지 하도록 하는 것으로 보고되고 있어，일주기 조절에서 GABA 는 매우 중요한 역할올 하는 것으로 알려져 있다8．

[^0]특히 랫드를 비롯한 포유류는 대부분 출생 후 일정기 간 동안 눈을 뜨지 못하는데, 이와 같은 현상은 망막신 경절세포와 시각교차위핵을 비롯한 뇌의 여러부위에서 강한 빛을 수용할 준비가 되어 있지 않기 때문으로 사 료되나 이에 대한 개체발생학적 연구는 미미한 실정이 다. 따라서 본 연구는 일주기 조절에 중요한 역할을 하 는 젓으로 알려진 시각교차위핵에 있어 출생 후 일주일 간 GABA 성 신경종말의 분포를 동정하여 태자에 있어 빛 수용과 억제성 신경전달물질간의 상호관계를 추론해 보고자 수행하였다.

## 재료 및 방법

## 심험동뮬의 처리

본 실험에서는 출생 후 1 일부터 일주일 동안 Wister 계 신생 랫드를 암수구별 없이 일렁별로 사용하였다. 먼 저 실험동물은 ketamin hydrochloride(케타라, 유한양행) 와 xylazine(롬푼, 한국 바이엘)을 각각 체중 100 gm 당 0.15 ml 및 0.05 ml 씩 혼합하여 복강 내에 주사하여 마 취시킨 뒤 심장을 통하여 관류고정을 실시하였다. 관류 고정은 실험동물의 흉강을 열고 심장을 확인한 뒤 왼쪽 심실을 통해 오름대동맥으로 canula를 삽입하고, 오른쪽 심장귀를 절단한 다음 peristaltic pump를 이용하여 0.1 M sodium phosphate buffer(이하 PB 라 함)에 heparin을 혼 합한 용액을 관류시켜 혈액을 제거하였다. 이 때 관류속 도 및 시간은 실험동물의 상태와 관류되는 완충액의 색 깔을 관찰하면서 실험동물에 따라 최적의 조건으로 조 절하였다. 혈액을 제거한 다음에는 $4 \%$ paraformaldehyde-lysine-periodate를 고정액으로 이용하여 관류시켰다. 관 류고정이 끝난 후 두개골을 열고 뇌를 적출하여 동일고 정액에 담가 냉장고에서 4시간 동안 후고정한 다음 $20 \%$ phosphate buffered sucrose에 12시간 내지 24시간 동안 담가 동결보호하였다.
동결보호가 끝난 조직은 동결절편기(cryostat)를 이용 하여 약 $15 \mu \mathrm{~m}$ 두께의 관상연속절편을 제작하여 gelatin 이 coating 된 slide glass에 없어 건조시킨 다음 GABA 에 대한 antibody를 사용하여 면역조직화학 염색을 시행 하였다.

## 면역조직화학 염색

염색은 1:500으로 rabbit anti-GABA(Sigma)를 1차 항 체로 사용하여 조직절편위에 점적하여 $4^{\circ} \mathrm{C}$ 에서 12 내지 24 시간 동안 반웅시켰다. 이 때 항체의 희석액은 PB 에 $1 \%$ normal goat serum( ABC kit, Vectastain)과 $0.3 \%$ Triton X-100(Sigma) 혼합액을 사용하였다. 그 후 조직 절편은 실온에서 15 분간 2회 PB 로 세척하고 $1: 200$ 으로

희석된 biotinylated anti-rabbit $\operatorname{IgG}(\mathrm{ABC}$ kit, Vectrastain) 을 2 차 항체로 사용하여 실온에서 2 시간 가량 반웅시켰 다. 다시 실온에서 PB 로 2회 세척한 다음, peroxidase가 표지된 ABC 용역에 실온에서 1 시간 반웅시켰다. 그 후 PB 로 15 분간 2회 수세한 후, 30 mg 의 3,3-diaminobezidine 을 150 m 의 PB 에 녹인 뵹액에서 갈색의 발색반웅을 시 행하였다. 이 때 반웅시간은 발색의 정도를 관찰하면서 절편에 따라 조절하였다. 반응이 끝난 조직들은 cresyl violet으로 대조 염색을 실시한 다음 통상적인 방법에 따 라 탈수와 투명화 과정을 거쳐 permount로 봉입햐여 광 학헌미경으로 관찰하였다.

## 겸 과

횐쥐 태자를 대상으로 출생 1 일부터 시각교차위핵에 서 GABA 성 신경종말의 분포를 관찰한 결과, 시각교차 위핵의 형성은 다소 불완전한 형태를 보였으며, 출생 1 일령부터 양성반웅을 보인 신경종말이 다수 관찰되었으 며 이는 7 일령까지 비슷한 앙상을 보여 일령에 따른 큰 차이점은 보이지 않았다(Fig 1-7). 다만 신경핵의 형성이 7 일렁에서는 불완전하게 형성되기 시작하는 것이 관찰 되었다(Fig 7)

## 고 찰

시각교차위핵은 일주기를 조절하는 중추로서 알려 져 있고, 또한 시각 및 시각반사의 경로로서의 역할 을 하는 것으로 알려져 있단. 또한 일주기 조절 이외 에 시각교차위핵은 환경변화에 민감하게 반응하여 특 히 빛 자극에 의한 내인성 시간조절에 관여하는 것으 로도 알려져 있는데, 이와 같은 기눙은 시각교차위핵으 로 유입외는 수입신경섬유들의 협력작용으로 가능한 것으로 보고되어 있다 ${ }^{8}$. 이미 시각교차위핵의 vasoactive intestinal polypeptide(VIP) 함유 신경세포가 망막시상 하부로(geniculohypothalamic tract)와 무룦시상하부로 (geniculohypothalamic tract)를 통해 망막으로부터 신경 전도를 받는 것으로 보아 VIP는 일주기 조절 신호를 전 달하는 주된 세포일 가능성이 있다. 이외에도 vasopressin (VP), neuropeptide Y(NPY), GABA, L-glutamate 둥 $30^{\circ}$ 여 종의 신경전달물질 또는 신경펩티드가 분비조절 작용을 통해 그 활성을 유지하고 있는 것으로 알려져 있어 이 에 대한 연구를 통해 아직 명확하게 밝혀져 있지 않은 밤과 낮의 행동리듬에 있어서의 신호전달의 기전이 점 차 밝혀지고 있다9-12

이러한 신경전달물질 중 GABA 는 대표적인 억제성 신경전달물질로서 이미 널리 알려져 있고, 시각교차위


Fig 1. Immunoreactive GABAergic terminals(arrows) in SCN at postnatal day 1, respectively. Note the terminals surrounding the soma. X100.
Fig 2. Immunoreactive GABAergic terminals(arrow) in SCN at postnatal day 2, X100.
Fig 3. Immunoreactive GABAergic terminals(arrow) in SCN at postnatal day 3, X100.
Fig 4. Immunoreactive GABAergic terminals(arrow) in SCN at postnatal day 4, X100.
Fig 5. Immunoreactive GABAergic terminals(arrow) in SCN at postnatal day 5, X100.
Fig 6. Immunoreactive GABAergic terminals(arrow) in SCN at postnatal day 6, X100.
Fig 7. Immunoreactive GABAergic terminals(arrow) in SCN at postnatal day 7, X100.

핵내에서 일주기 변화에 따른 각종 생리현상에 있어 억 제성을 작용하여 생리주기의 변화 등에 영향을 미치는 것으로 보고되어 있다 ${ }^{13}$.

본 실험에서는 생후 1일에서 7일 사이의 태자에 있어 서 눈을 뜨지 못하는 여러 가지 요인 중에 빛자극에 따 른 일주기 조절에 영항을 미치는 시각교차위핵 내에서

GABA 의 역할에 대해 연구한 바 다수의 신경종말이 시 각교차위핵내에서 관찰되었다. 이와 같은 결과는 GABA 에 의해 생후에 바로 눈을 뜨지 못하는 젓인지 아니면 다른 요인에 대한 부수적인 작용으로 GABA 성 신경종 말의 분포가 많은 것인지 정확하지는 않지만, GABA가 태자의 일주기에도 작용한다는 사실을 말해주는 것으로 사료된다. 하지만 본 연구에서는 태자의 안구에 신경로 추적자를 주입하여 시각경로의 각 단계에서 GABA 의 역할을 규명하고자 하였으나, 태자에 주입했을 경우, 그 주입의 결과에 대한 신빙성에 의문이 가고 또한 누출 동 이 문제가 되어 이번 연구에서는 배제하였기 때문에 정 확한 신경핵의 형성여부에 대한 지견은 제시하지 못하 였지만, 앞으로 좀더 효과적이고 정확한 주입방법을 고 안하여 시각교차위핵을 중심으로 한 전체 시각전달 경 로에 위치하는 모든 신경핵의 형태학적 동정과 병행하 여 GABA의 분포를 관찰한다면 태아가 눈을 뜨는 시기 와 GABA 의 역할에 대해 보다 명확한 자료를 얻으리라 기대된다.

## 겨 吾

생후 1일에서 7일째까지의 횐쥐 태자의 시상하부에 위치한 시각교차위핵에서 GABA 성 신경종말의 분포를 관찰한 결과 다수의 신경종말이 전 실험군에서 관찰되 어 태자의 있어 빛자극에 대한 반웅에 GABA 가 억제성 역할을 수행하고 있는 것을 알 수 있었다.

## 참 고 문 헌

1. 김진상. 횐쥐의 일주기조절중추내 바이러스 감염에 대한 매개변수 분석. 대한물리치료학회지, 10(2):113125, 1998.
2. 김진상, 이성준. Colchicine 투여 후 횐쥐와 모래쥐 시

각교차위핵내 bombesin에 대한 면역조직화학반웅. 대 한물리치료학회지, 11 (2):115-122, 1999.
3. van den Pol An. The hypothalamic suprachiasmatic nucleus of rat intrinsic anatomy. J Comp Neurol, 191:661-702, 1980.
4. 김재봉, 박환태, 임미경 등. 횐쥐 시각교차위핵에서 c-AMP responsive element modulator의 발현 및 조절 에 관한 연구. 대한해부학회지, 29(4):349-356, 1996.
5. Rusak B, Zucker I. Neuronal regulation of circadian rhythm. Physiol Rev, 59:449-526, 1979.
6. Ralph MR, Foster RG, Davis FC, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science, 247:975-978, 1990.
7. Johnson RF, Morin LP, Moore RY. Lateral geniculate lesions alter circadian activity rhythm in the hamster. Brain Res Bull, 22:411-422, 1989.
8. Johnson RF, Morin LP, Moore RY. Retinohypothalamic projections in the hamster and rat demonstrated using cholera toxin. Brain Res, 462:301-312, 1988.
9. Chen G, van den Pol AN. Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons. J Neurophysiol, 80(4):1932-1938, 1998.
10. Biggs KR, Prosser RA. GABA-B receptor stimulation phase-shifts the mammalian circadian clock in vitro. Brain Res, 807(1-2):250-254, 1998.
11. Ingram CD, Ciobanu R, Coculescu IL, et al. Vasopressin neurotransmission and the control of circadian rhythm in the suprachiasmatic nucleus. Prog Brain Res, 119:351-364, 1998.
12. Gribkoff VK, Pieschl RL, Wisialowski TA, et al. Phase shifting of circadian rhythm and depression of neuronal activity in the rat suprachiasmatic nucleus by neuropeptide Y: mediation by different receptor subtypes. $J$ Neurosci, 18(8):3014-3022, 1998.
13. Jarry H, Wise PM, Leonhardt S, et al. Effects of age on GABA turnover rates in specific hypothalamic areas in female rats. Exp Clin Endocrinol Diabetes, 107(1):59$62,1999$.


[^0]:    이 논문은 1997년 한국학술진흥재단 학술연구조성비에 의하여 지원되었슴．
    Address reprint request to Dr．Seong－joon Yi，College of Veterinary Medicine，Kyungpook National University，Taegu 702－701，Korea．

