일반시설에서 사육되는 마우스의 품질향상을 위한 기초조사 연구
 이홍식 • 성노현＊• 김경진＊＊•김철규＊＊
 서울대학교 수의과대학 및 농생명공학부，생명과학부＊
 국립독성연구소 병리부＊＊
 （2000년 8월 22일 게재승인）

Survey on environmental condition and health state of laboratory mouse in conventional facility

Heungshik S．Lee，Rho Hyun Seung＊，Kyungjin Kim＊，Chul－kyu Kim＊＊
College of Veterinary Medicine and School of Agricultural Biotechnology，
School of Biological Sciences＊，Seoul National University， National Institute of Toxicological Safty Research＊＊

（Accepted by Aug 22，2000）

Abstract

For the improvement of quality control of laboratory mouse，we investigated the environmental condition，histopathological findings and serological test using ELISA to mouse hepatitis virus（MHV），Mycoplasma pulmonis（MP），Clostridium piliforme（TZ）and Sendai virus （HVJ）of ICR，C57BL／6，CBA and $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ mice that were supplied from conventional laboratory animal facility． 1．The ammonia concentration of facility was below the recommended concentration， 15 ppm ， by the KNIH ，and the room temperature $\left(21 \sim 23^{\circ} \mathrm{C}\right)$ and relative humidity $(40 \sim 60 \%)$ was optimum range recommend by the Ministry of Health and Welfare，respectively．

2．The incidence rate of inapparent disease was 86.6% and the major findings in the liver were vacuolar degeneration with nucleic pleomorphism．The lung was shown the thickening of alveolar wall and interstitial pneumonia with congestion．The kidney and spleen were observed the mild congestion and extramedullary hematopoiesis，respectively．

3．The positive reaction rates against MHV and MP in serological test was 97.9% and 37.5% ， respectively but HVJ and TZ were negative．

These results suggest that laboratory mice could be infected with MHV and MP under con－ ventional environments．Therefore we recommend to select thoroughly inapparent infected mice and to convert conventional system into SPF facility as soon as possible．

Key words ：microbiological monitoring，mouse，environmental condition，Mycoplasma pul－ monis，mouse hepatitis virus．

이 논문은 서울대학교 연구처 정책연구비 지원과 수의 과대학 부속 수읙과학연구소 연구비 지원에 의하여 수행되었음． Address reprint requests to Dr．Heungshik S．Lee，College of Veterinary Medicine，Seoul National University，Suwon 441 － 744，Republic of Korea．

서 론

실혐동물 사육에서 실험동물의 질병관리가 중요하게 다루어지는 것은 환경관리나 유전학적 관리가 아무리 완벽하다 하더라도 병에 굴린 실험동물을 대상으로 한 실험결과는 정상 데이타일 수 없기 때문이다 ${ }^{1}$. 일반적으 로 실험동물 사육장에서는 외견상 병에 걸린 실험동물 이 실험동물 사육장 관리인에 의하여 발견 즉시 도태되 는 것이 관례이므로 크게 문제되지 아니할 수도 있다.

그러나 문제가 되는 것은 외견상 건강해 보이지만 약 물투여, 스트레스, 환경변화 등에 의해 질병이 야기될 수 있는 잠재질병의 불현성 감염유무이다. 이것은 어떤 실 험적 처치로 인하여 잠재질병이 발현되어 실험목적이 달성되기도 전에 실험군이 모두 사망할 수도 있고, 죽지 않는다해도 혈액치, 혈액화학치, 맥박, 호홉, 혈압, 체중 등에 변화를 가져와 연구결과를 해석할 때 오류를 유발 할 가능성이 크기 때문이다 ${ }^{2,3}$.
따라서 이 연구에서는 실험동물로 많이 사용되는 마 우스를 대상으로 Clostridium piliforme (이하 TZ), Mycoplasma pulmonis (이하 MP), mouse hepatitis virus(이하 MHV), Sendai virus(이하 HVJ) 등의 불현성 감염실태를 확인하 기 위해 혈청항체점사와 간장, 폐장 등에 대한 병리조직 학적 검사를 시행하고 아울러 일반사육시설의 사육환경 을 조사하여 실험동물의 사육환경 개선과 실험돔물 품 질향상의 기초자료를 마련코자 시도하였다.

재료 및 방법

실험동물 : 실내 공기정화기가 설치된 일반사육시설 (conventional facility)에서 생산공급되는 9 주렴의 ICR, C $3 \mathrm{H} / \mathrm{He}, \mathrm{C} 7 \mathrm{BL} / 6$ 및 CBA 마우스(암컷)를 무작위로 각각 6 마리씩 1차군(3월)과 2차군(5월)으로 선별하여 병리조 직학적 및 혈청학적 검사를 실시하였다. 이들 실험돔물 은 펠렛사료와 수돔ㅁㄹ을 자유섭식시켜 사육하였으며 깔 짚은 대패밥을 주로 사용하고 주 1희 교체하여 사육하였 다.

사육환경조사방법 : 1 월부터 8 월 사이에 마우스 사육 실의 온도, 습도, 암모니아 농도를 측정하였다. 온도와 습도는 Hydrothermometer(Isuzu, Japan)를 사육실 중앙에 설치하여 1 주일 단위로 측정하였고 공기중의 암모니아

농도는 오전 9 시 30 분에 사육실 중앙부분의 1 m 높이에 서 Gastec(Kitagawa, Japan)을 이용하여 100 cc 의 공기를 Gastec pipet을 통해 흡입한 후 표준색도와 비교하여 측 정하였다.
병리조직학적 검사 : 각 계통 6 마리중 3 마리는 잠재질 병 발현을 유발하기 위해 Fujiwara 증폭법 ${ }^{\text {에 따라 cor- }}$ tisone을 마리당 1 mg 씩 주사하여 3 일후 부검하였으며 나 머지 3마리는 cortisone을 주사하지 않고 부검을 실시하 였다. 부검은 먼저 실험동물을 ether 마취후 개복하여 복 강장기 및 흥강장기들의 육안소견을 확인한 후 간장, 비 장, 신장, 페장, 심장을 적출하여 10% 중성포르마린에 고정하였다.

고정된 조직은 통상절차에 따라 파라판으로 포매한 다음 microtome(AO, USA)으로 $4 \mu \mathrm{~m}$ 두께의 조직절편을 만들어 Hematoxylin-Eosin(HE) 엽색을 하여 광학현미경 으로 관찰하였다.
ELISA 측정 : 부검과 동시에 모든 마우스의 하대정맥 을 통하여 혈액을 채취하였다. 채취된 쳘액에서 혈청을 분리하기 위하여 상온에서 1 시간 방치한 후 10 분간 1,000 rpm 으로 원심하여 혈청을 분리하 였으며 $-70^{\circ} \mathrm{C}$ 에 혈청을 보관하면서 항체가를 측정하였다.

항체가 측정은 ELISA 법을 이용하여 MHV 분석용 kit 인 MHV EIA kit, HVJ분석용 kit인 HVJ EIA kit, MP 분석 용 kit인 MP EIA kit 및 TZ 분석용 kit인 TZ EIA kit (Denka Seiken, Japan)를 사용하였으며 Single wave length 의 microplate-spectrophotometer상 492 nm 에서 optical density (OD)를 구하여 표준혈청의 low positive 보다 높은 OD 값 을 나타내는 것을 양성으로 판정하였다.

결 과

사육환경조사결과:
암모니아 농도: 1월부터 5 월 사이에는 평균 5 ppm 이 하의 암모니아양이 측정되었지만 여름철인 6 월에서 8 월 사이에는 이들 보다 훨씬 높은 $10 \sim 15 \mathrm{ppm}$ 의 암모니아가 측정되었고 심할 때는 17 ppm 에 이른 경우도 간혹 있었 다. 톡히 주중과 주초를 비교해보면 주초에 암모니아 농 도가 현저히 높았다(Text-Fig 1).

실온: 1 월부터 8 월까지의 사육실의 실내온도는 큰 차이를 보이지 않고 통상 21 C 에서 $23^{\circ} \mathrm{C}$ 사이를 유지하 였다(Text-Fig 2).

Text-Fig 1. The concentration of ammonia in conventional animal rooms from January to August.

Text-Fig 2. The changes of temperature in conventional animal rooms from January to August.

Text-Fig 3. The relative humidity in conventional animal rooms from January to August.

습도 : 겨울철인 1월과 2월의 경우 사육실은 37~40\% 의 습도를 유지하였으나 봄철인 3월부터 5 월까지는 40~ 60% 그리고 여롬철인 6월부터 8 월까지는 $60 \sim 80 \%$ 의 습 도를 나타내었다. 특히 장마철인 7 월에는 80% 이상의 습도를 기록하였다(Text-Fig 3).
병리조직학적 소견 : 1 차 및 2 차군의 신장, 비장, 간장, 심장, 폐장 등에서 미약한 병변에서 고도의 병변까지 병 변발현의 차이는 있었으나 병변을 확인할 수 있었으며 그 병변발현율은 86.6% (1 차 $93.3 \%, 2$ 차 79.9%)였고 각 장기별 병변은 다음과 같았다(Table 1, 2).
신장에서의 병변은 주로 미약한 충혈과 신세관변성 소견을 보였으며 1 차 $(95.8 \%$) 및 2 차 $(79.1 \%$)의 평균 병변 발현율은 87.4% 였지만(Fig 1) 1 차의 $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ 마우스에서 는 신세관변성이 관찰되지 않았다.

비장의 병리조직학적 소견은 주로 골수외조혈이 관찰 되었는데 이는 cortisone 투여군이 보다 심한 병변을 보 였으며 이 소견과 병행하여 중호성백혈구 침윤이 있었 으며 이들의 병변발현율은 79.1% 였다(Fig 2, 3).
간장의 가장 뚜렷한 병변은 cortisone 투여군과 비투여 군 모두에서 공포변성과 핵다형성이였다. 한편 cortisone 투여군의 경우 단핵구 침윤이 1 차의 $\mathrm{ICR}, \mathrm{C} 3 \mathrm{H} / \mathrm{He}, \mathrm{C}$ 57BL/6 및 CBA 마우스에서 관찰되었는데 병변발현율은 91.6% 였으나 2 차 관찰에서는 cortisone 비투여군의 CBA 마우스에서는 이들 병변을 관찰할 수 없었다(Fig 4, 5).

심장은 모든 마우스의 경우 1 차 및 2 차의 cortisone 투 여군과 비투여군의 구분없이 미약한 충쳘소견을 보였으 며 1차(100%) 및 2 차(87.5%)의 평균 병변발현율은 93.7% 였다.

폐장은 1 차 및 2 차의 경우 주로 폐포벽의 비후소견과 함께 충혈소견, 립프구양세포중식(lymphoid cell hyperplasia)을 관찰할 수 있었는데 이들 병변의 정도는 2 차군 이 1 차군보다 심하였으며 1 차 (100%) 및 2 차(62.5%)의 평 균 병변발현율은 81.2% 였다(Fig 6,7). 이들 소견과 함께 간질성 폐렴소견도 관찰되었는데 이들 소견 역시 1 차군 보다 2차군의 C57BL/6와 CBA 마우스의 cortisone 투여군 에서 분명하게 관찰되었다(Fig 8).

ELISA분석성적 :
MHV 양성율 : MHV 양성반웅은 총 48마리중 47마리 예서 양성반웅이 관찰되어 MHV에 대한 양성율은 97.9 $\%$ (1 차 $95.8 \%, 2$ 차 100%)였다(Table 3). 아울러 ICR, CBA, $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ 는 마우스 계통에 관계없이 cortisone 투여군이나

Table 1. Histopathological findings in first sacrified mice

Group	ICR		$\mathrm{C} 3 \mathrm{H} / \mathrm{He}$		C57BL/6		CBA	
	NC	C	NC	C	NC	C	NC	C
Kidney								
Congestion	3(W)	3(W)	3(W)	3(W)	3(W)	2(W)	3(W)	3(W)
Interstitial nephritis	0	0	2(W)	0	0	0	0	0
Tubular degeneration	0	3(W)	0	0	2(W)	2(W)	1(W)	3(W)
Subcapsular hemorrhage (Incidence rate)	l(W)	0	0	0	$1(W)$	0	0	0

Spleen

Extramedullary hematopoiesis	$2(\mathrm{M})$	$3(\mathrm{M})$	$2(\mathrm{M})$	$3(\mathrm{~W})$	$3(\mathrm{M})$	$2(\mathrm{~W})$	$2(\mathrm{M})$	$2(\mathrm{M})$
Hemosiderosis	0	$\mathrm{l}(\mathrm{W})$	0	$3(\mathrm{M})$	0	0	0	0
Atrophy of white pulp	0	$3(\mathrm{~S})$	$2(\mathrm{M})$	$3(\mathrm{~S})$	0	$2(\mathrm{~S})$	0	$2(\mathrm{~s})$
Hypertrophy of white pulp	$\mathrm{I}(\mathrm{M})$	0	0	0	$2(\mathrm{M})$	0	$1(\mathrm{M})$	0
Neutrophil infiltration	0	$1(\mathrm{~W})$	0	$3(\mathrm{M})$	0	$1(\mathrm{~W})$	0	$1(\mathrm{M})$
(Incidence rate)			(79.1%)					

Liver

Mononuclear cell infiltration	0	2(W)	0	2(M)	0	3(W)	0	0
Vacuolar degeneration	1 (W)	3(W)	1(W)	2(W)	2(W)	3(W)	1(W)	2(W)
Hydropic degeneration	0	3(S)	0	$1(\mathbf{S})$	0	3(S)	0	2(S)
Nucleic pleomorphism	3(M)	3(M)	3(W)	1(M)	3(S)	3(W)	3(W)	2(W)
Coagulation necrosis	I(W)	0	0	1(W)	0	0	0	2(W)
Hemorrhage	0	0	0	0	0	0	1(W)	0
Apoptosis	0	0	1(W)	0	1(W)	0	0	0
Kupffer cell hyperplasia (Incidence rate)	0	0	1(W)	0	0	0	0	0
Heart								
Congestion (Incidence rate)	3(W)							

Lung

Thickening of alveolar wall	3(W)	2(W)	1(W)	1(W)	3(W)	2(W)	3(W)	3(W)
Interstitial pneumonia	0	0	0	0	1(W)	0	0	0
Congestion	3(M)	3(M)	3(M)	3(M)	2(M)	3(M)	3(M)	3(M)
Mononuclear cell infiltration	0	0	0	0	2(W)	0	0	0
Lymphoid cell hyperplasia	$1(\mathrm{M})$	0	1(M)	1 (M)	1(M)	0	0	0
Hemorrhage (Incidence rate)	$1(\mathrm{M})$	0	0	1(M)	2(W)	0	0	0

[^0]Table 2. Histopathological findings in second sacrified mice

[^1]Table 3. ELISA of mice serum to mouse hepatitis virus (MHV)

Group	Strain	Cortisone treated group			Non-cortisone treated group		
		1	2	3	1	2	3
First sacrifed group	ICR	0.792	1.081	1.351	0.611	0.978	0.828
	CBA	1.258	1.526	0.647	1.273	0.843	0.443
	$\mathrm{C} 3 \mathrm{H} / \mathrm{He}$	1.258	1.854	1.072	0.986	1.530	1.492
	C57BL/6	0.250	0.502	0.680	0.623	0.485	0.880
	(Positive rate)						
Second sacrificed group	ICR	1.451	0.875	0.568	0.628	0.798	0.629
	CBA	1.481	1.393	0.581	0.523	0.944	0.792
	$\mathrm{C} 3 \mathrm{H} / \mathrm{He}$	2.063	1.364	1.242	1.662	1.384	1.200
	C57BL/6	1.394	1.149	1.213	0.910	1.556	1.284
	(Positive rate)						

*Note : Low positive 0.397 , High positive 0.663 .

Table 4. ELISA of mice serum to Mycoplasma pulmonis (MP)

* Note : Low positive 0.401, High positive 1.487.

비투여군 모두 양성반웅을 보였으나 C57BL/6 마우스는 cortisone 투여군의 경우 1 마리만이 음성반옹을 보였다. 2차군 의 경우에는 cortisone 투여군과 비투여군의 모든 마우스가 양성 반응을 나타내 100% 의 양성율을 보였다. MP 양성율 : MP 양성율은 48마리중 18 마리가 양성반

웅을 보여 37.5% (1차 $29.2 \%, 2$ 차 45.8%)의 감염율을 나타 내었다(Table 4). 그러나 $\mathrm{ICR}, \mathrm{C} 3 \mathrm{H} / \mathrm{He}, \mathrm{C} 57 \mathrm{BL} / 6$ 및 CBA 마 우스 사이에 양성울에 차이가 있었고 cortisone 투여군과 비투여군 사이에도 차이를 보였다. 즉, 1 차 ICR 마우스 와 C57BL/6 마우스 각 6마리중 전자는 cortisone 투여군

1 마리만이 양성반웅을 보여 16.7% 의 양성율을 보였다. 그러나 CBA 마우스는 모두가 음성반웅을 보였고 C3H/ He 마우스는 cortisone 투여군 모두가 양성반응을 보여 100% 의 양성율을 나타내었다. 한편 2차군의 ICR 마우스 와 $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ 마우스는 cortisone 투여군과 비투여군 모두 가 양성반융을 보여 100% 감염율을 나타낸 반면 CBA 마우스와 C57BL/6 마우스는 모두가 음성반웅을 보였다.

HVJ 바이러스와 TZ 양성율 : 1차 및 2 차 ICR, C3H/ $\mathrm{He}, \mathrm{C} 57 \mathrm{BL} / 6$ 및 CBA 마우스의 cortisone 투여군과 비투 여군 모두가 HVJ 바이러스 및 TZ균에 음성반응을 보였

다(Table 5, 6).

고 찰

의학, 수의학, 생물학, 약학 둥의 생명과학분야에 제공 되는 건강한 실험동물은 각종 연구와 실험에서 신뢰성 있는 데이터률 얻는데 가장 기본이 되는 요소이다. 따라 서 실험동물의 고품질화률 위한 품질관라로서 현성감염 이 전혀 없는 실험동물올 제공하거나 잠재질병의 불현 성 감염을 통제하여 각종 연구와 실험에 필요한 실험동

Table 5. ELISA of mice serum to Sendai Virus(HV))

Group	Strain	Cortisone treated group			Non-cortisone treated group		
		1	2	3	1	2	3
First sacrifed group	ICR	0.184	0.182	0.204	0.199	0.208	0.21 I
	CBA	0.311	0.230	0.237	0.221	0.212	0.310
	$\mathrm{C} 3 \mathrm{H} / \mathrm{He}$	0.198	0.234	0.229	0.209	0.200	0.191
	C57BL/6	0.222	0.208	0.206	0.282	0.219	0.197
Second sacrificed group	ICR	0.219	0.226	0.198	0.217	0.218	0.224
	CBA	0.223	0.224	0.198	0.228	0.258	0.218
	$\mathrm{C} 3 \mathrm{H} / \mathrm{He}$	0.225	0.276	0.226	0.218	0.341	0.243
	C57BL/6	0.220	0.195	0.229	0.196	0.198	0.197

* Note : Low positive 0.538, High positive 2.098 .

Table 6. ELISA of mice serum to Clostridium piliforme (TZ)

			Cortisone treated group				Non-cortisone treated group		
Group	Strain	1	2	3	1	2	3		
	ICR	0.181	0.191	0.196	0.189	0.188	0.200		

[^2]물을 실험동물사용자에게 제공하는 것은 실험동물공급 자가 가져야 될 최고의 의무이다.

이와같은 견지에서 현재 선진국에서 동물실험에 사용 되는 실험동물은 대부분이 barrier system에서 번식, 유지, 공급되는 SPF 실험동물이라는 점에서 실험동물의 기생 충 감염, 불현성 감염, 질병발생 등 실혐동물의 건강상태 는 전혁 문제가 되지 않고 있다. 따라서 외국에서는 무 감염동물, 무질병동물, 특정미생물감염동물(Gnotobiote) 의 개발 둥의 연구가 활발히 이루어지고 있을 뿐 아니라 어떤 인체질병에 어떤 실험동물을 선택하여야 하느냐 하는 질병모델동물의 개발에 주력하는 형편이다 ${ }^{1,5,6}$.

그러나 우리나라의 경우에는 계통이 불확실한 실혐동 물을 사용하여 연구결과를 발표하므로 국제적으로 좋은 업적임에도 공인 못받는 일이 종종있으며 최근까지도 우리나라가 보유하고 있는 근교계의 실태조차 정확히 파악되지 못한채 단지 실험동물실태에 관한 조사가 이 루어 졌을뿐이며 실험동물 건강과 관련해서는 혈청학 적, 기생충학적, 병리조직학적 방법에 의한 잠재질병 조 사는 단편적인 보고가 있을 뿐이다?

실험동물 사육조건의 환경적 요인은 온도, 습도, 기류 등의 기후요인, 먼지, 취기, 소음, 조명 등의 물리화학적 요인, 사육상, 깔짚 등의 주거요인, 사료와 음수 둥의 영 양요인 등 그 요인이 다양하다 ${ }^{8,9}$.
이들 중에서도 사육시설내 온•습도와 취기의 경우 실험동물의 종류에 따라 다소 차이는 있으나 마우스를 비롯한 설치류의 경우 1988 년 6 월 10 일부로 시행된 보건 사회부 고시 88 -39호 "실험동물의 사육 및 관리 둥에 관 한 기준(88.5.27)"에 의하면 온도 $20 \sim 26^{\circ}$, 상대습도 $40 \sim$ 60%, 암모니아 농도 20 ppm 이하로 규정하고 있으며 이 규정의 세부사항을 규정한 국립보건안전연구원 예규 88-51호 "SPF 실험동물사용 및 사육관리규정(1993. 7. 5)" 에 의하면 온도 여름 $24 \pm 1^{\circ} \mathrm{C}$, 겨울 $25 \pm 1{ }^{\circ}$ C, 습도 55%, 암모니아 취기 20 ppm 이하, 조명 $300 \sim 500 \mathrm{Lux}$, 소음 50 폰 이하로 규정하고 있다. 한편 보건사희부의 KGLP 해설 서 ${ }^{10}$ 에 의하면 실험동물사육실내 환경조건은 온도 20~ 26%, 습도 $40-60 \%$, 암모니아농도 20 ppm 이하, 실내조명 작업면상 $40 \sim 85 \mathrm{~cm}$ 에서 $150 \sim 300 \mathrm{Lux}$, 소음 60 폰 이하로 규정하고 있다.

사육실 환경조사를 실시한 본 조사연구의 경우 실내 온도가 1 월부터 8 월까지 대체로 $21 \sim 23$ C를 유지하였고 습도는 $40 \sim 60 \%$ 를 유지하였으며 암모니아농도는 1월부

터 5 월까지는 5 ppm 이하, 6 월부터 8 월까지는 대체로 $10 \sim$ 15 ppm 이 측정되어 온도, 습도, 암모니아 농도 등이 보건 사희부고시 88-39호 및 KGLP ${ }^{10}$ 를 충족하였으나 국립보 건안전연구원 예규 $88-51$ 호에서 규정하고 있는 온도, 습 도와는 다소 차이가 있었다. 이와같은 점은 사육시설이 SPF 시설이 아니라 해도 차후 SPF 시설로의 개보수가 필히 요구되므로 참고되어야 할 사항으로 지적될 수 있 을 것으로 사료된다. 아울러 여름철에는 습도가 $60 \sim 80 \%$ 로 높고 암모니아 농도가 $10 \sim 15 \mathrm{ppm}$ 정도로 높았었다는 점은 사육환경개선올 위해 참고해야 될 사항으로 생각 된다.

본 실험에서는 조명, 소음, 배기, 기류 등을 조사한 바 없어 사육환경검토에 참고할 수는 없겠으나 이들 기준 도 실험동물사육조전상 무시할 수 없는 주요 요소라는 점에서 차후 조사할 필요가 있는 것으로 사료된다. 특히 암모니아 농도의 경우 주중에 비해 주초에 헌저히 높았 다는 사실은 일요일 휴무에 의해 환기, 청소 등이 이루 어지지 못한데 기인한 것으로 사료되는 바 생물사육에 서 휴무가 있을 수 없다는 점에서 사육관리에 문제가 있 는 것으로 판단된다. 그리고 장마철인 7월에는 80% 이 상의 습도가 기록되었는데 이것은 장마에 의한 자연조 건에 원인이 있겠으나 사육실에 적절한 습도를 일정하 게 유지할 수 있는 방안이 마련되야 할 것이다.

한편 암모니아 취기는 20 ppm 이하로 유지되어 크게 문제는 되지 않았으나 암모니아 취기가 주로 오줌의 분 해에 기인하고 이것은 깔짚의 양보다 깔짚의 질에 문제 가 되므로 오줌의 홉수가 곻은 zeolite 따위를 깔짚으로 쓰는 것도 바람직하나 경제적인 면에서 부담이 되므로 주말에서 주초까지 암모니아가 증가되는 것을 막기 위 해서는 분뇨가 알카리로 되는 것을 방지할 목적으로 주 말에 깔짚에 구연산철이나 염화철을 소량 분무하는 방 법을 강구하는 것도 권고할 만한 사항이 되겠다 ${ }^{8}$. 그리고 공조시설을 자동화하여 휴일에도 환기가 자동적으로 이 루어지도록 조절하는 것이 바람직할 것으로 사툐된다.

아울러 박 둥 ${ }^{11}$ 이 지적한 바와 같이 암모니아 발생억 제와 수분흡수가 뛰어난 경질깔짚과 안락성이 좋은 연 질깔짚의 흔합에 의한 엔리치먼트(enrichment)도 권장될 수 있을 것으로 사료된다.

일반적으로 사육환경개선에 관해서는 흔히 SPF 시설 에서만 논의되지만 ${ }^{12,13}$ 일반사육시설도 사육환경을 개선 한다면 보다 건강한 실험동물을 사육공급할 수 있는 가

능성이 있으므로 SPF 시설로 개보수가 이루어지기 전에 라도 이에 대한 재고가 필히 요구된다.
마우스의 불현성 감염을 일으키는 주요 질병은 살모 넬라병(salmonellosis), TZ병(Tyzzer disease), HVJ병(Sendai virus infection), 마우스간염(mouse hepatitis), 마이코프라 즈마병(mycoplasmosis) 등인데 이들은 각종 약물, 스트레 스, 환경요인 둥에 의해 발병이 쇱게 되거나 2 차 감염의 원인이 둴 뿐 아니라 외관상 건강하게 보이는 불현성 감 열을 일으키므로 근절이 매우 어려워 관행 사육을 하는 일반사육시설에서는 질병콘트롤에 큰 애로를 야기한다 ${ }^{14}$.
나아가서 이와같은 불현성 잠재질병감염 실혐동물을 대상으로 실험하는 경우 그 신뢰성이 크게 저하되어 학 술적으로 인정되지 않는 것이 국제적인 통례이다 ${ }^{2,3}$.
본 실험결과 1 차 및 2 차군의 신장에서 미약한 충혈소 견이 cortisone 투여군이나 비투여군 모두에서 관찰되어 이 등 ${ }^{\top}$ 이 신장에서 이와같은 소견을 불 수 없었다는 보 고와는 차이를 보였다. 본 실험결과에서 관찰된 소견은 일반적으로 인정되는 바와 같이 사육환경이 불량하면 신장에 미약한 병변이 야기된다는 보고에 비추어 ${ }^{15}$ 사육 환경 불량에 기인된 것으로 사료된다. 비장의 경우 이 등 ${ }^{7}$ 은 어떤 병변소견도 관찰할 수 없었다고 하였지만 이 연구에서는 이 등ㅎ-18 이 보고한 것과 같이 골수외조혈 소견을 관찰할 수 있었는데 이는 cortisone 투여에 의한 면역억제로 잠재질병이 증폭되어 출현하는 소견일 수도 있으나 사육시설 불량이나 인위적인 스트레스에 의해서 도 유발되고 실험동물의 경우 영양불량에 의해 야기될 수 있다는 점에서 볼 때 ${ }^{19}$ 이들이 복합적으로 작용한 것 으로 생각된다.
간장에서는 1 차 또는 2 차군의 경우 이 등 ${ }^{16-18}$ 이 보고 한 것과 걑이 핵다형성과 공포변성이 관찰되었다. 이들 소견이 대체로 바이러스 감염에 의해 출현된다는 일반 론에 입각해볼 때 ${ }^{20}$ 아마도 마우스에 흔히 출현되는 마 우스 간염 바이러스에 의한 소견 ${ }^{21}$ 이 아닌가 사료되며 이는 혈청학적 조사에서 MHV가 97.9% 의 양성율을 보 였다는 사실에 의해 뒷받침될 것으로 판단된다.
아울러 간장에서 관찰되는 공포변성은 사료부족, 음 수불량, 공기혼탁, 밀집사육 등에 의한 스트레스에 의해 발병된다는 점에서 ${ }^{20}$ 앞으로 사육환경이나 사료 및 음수 공급에 보다 관심있는 관리가 요구된다.
폐장의 경우 1 차 및 2 차 모든 경우 이 등7,6-18 ${ }^{7}$ 의 보고와 같이 주로 폐포벽 비후소견과 함께 림프구양세포중식

및 간질성 폐렴소견이 관찰되었는데 이는 마이코플라즈 마병의 특징적인 소견이라는 점 ${ }^{14}$ 에서 아마도 MP에 의 한 병변으로 판단된다. 이는 MP의 양성율이 본 실험결 과 37.5% 였다는 사실에 의해 입중된다고 사료된다. 그 러나 마우스 폐렴을 일으키는 원인이 MP 이외에도 Pasteurella 감염, HVJ 감염 및 PVM(peumonia virus in mice) 등이 있다는 점 ${ }^{8,22-24}$ 에서 이들에 의한 원인도 추정 될 수 있으나 본 실험에서 행한 HVJ 바이러스의 혈청학 적 진단에서 양성이 없었다는 점에서 HVJ 바이러스에 의한 병변은 아닌 것으로 추정된다.
한편 이 둥${ }^{7}$ 은 $\mathrm{ICR}, \mathrm{C} 57 \mathrm{BL} / 6, \mathrm{CBA}, \mathrm{C} 3 \mathrm{H} / \mathrm{He}$ 마우스률 대상으로 폐장병변을 관찰한 바 이들중 ICR 마우스가 병변이 심하였다고 하였으나 본 실험에서는 마우스 계 퉁과 관계없이 병변을 관찰할 수 있었다. 그러나 김과 임 ${ }^{22}$ 이 432마리의 ICR 마우스를 대상으로 병리조직학적 검색을 한 바 마이코플라즈마병을 나타낸 것이 12.5% 였다는 점에서 볼 때 본 실혐에서 관찰된 마이코플라즈 마병은 일반사육시설에서 유의하여 콘트롤해야 뒬 질병 으로 사료된다.
$\mathrm{ICR}, \mathrm{C} 57 \mathrm{BL} / 6, \mathrm{CBA}$ 및 $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ 마우스를 대상으로 한 혈청학적 검사에서 행한 본 실험의 MHV 양성율이 97. 9% 였다는 사실은 이 등 ${ }^{16,17}$ 이 조사보고한 $40 \sim 60 \%$ 보다 $1.5 \sim 2$. 배나 되는 양성율이였으며 7개 사육장의 ICR 마 우스 189 마리를 대상으로 검색한 결과 MHV 양성율이 50.3% 였다는 보고 ${ }^{25}$ 및 5 개 사육장의 ICR 마우스 190 마 리를 대상으로 검색한 바 $34 \sim 7 \%$ 의 양성율을 보였다는 보고 ${ }^{26}$ 보다 1.1 배 내지 2.8 배 되는 양성율을 보였다는 점 은 일반사육시설의 질병관리가 문제가 있는 것으로 판 단되어 사육관리 환경개선을 위한 조치가 조속히 이루 어져야 될 것으로 사료된다.
한편 높은 양성율을 나타낸 원인은 환경개선을 위해 공기정화기를 설치한 것과 연관지어 고찰할 수도 있겠 으나 MHV 는 주로 경구감염이고 일부 비강감염에 의해 비점막에서 바이러스가 증식된다는 점 ${ }^{8,23}$ 에서 깔죺이나 분변이 감염마우스와 접촉하여 증가되지 않았는지 의심 된다. 따라서 바이러스의 확산방지를 위해서 cortisone 주 사에 의한 증폭법에 의해 검색된 잠재질병마우스를 하 루 속히 제거하고 베리어시스템 설치를 대신한 임시 조 치로 케이지에 filter cap을 장착하거나 각각의 사육실에 laminar flow 후드를 설치하는 것도 바람직할 것으로 사 료된다.

MP는 마우스에서 만성호홉기 질병을 일으키는 대표 적인 미생물로 이 둥 ${ }^{23}$ 은 44 마리의 마우스중 17 마리가 MP 양성반웅을 보여 38.6% 의 양성율을 보였다고 하였 고, 김과 김 ${ }^{25}$ 은 7 개 사육장을 대상으로 조사한 바 15.0% 내지 87.5% 로 평균 59.3% 의 감염율을 보였다고 하였다. 한편 최 둥 ${ }^{26}$ 은 10.8% 의 감염율을, 김과 임 ${ }^{22}$ 은 12.5% 의 검색율을 보고하는 둥 다양한 MP 감염율을 보고한 바 있어 본 실험에서 관찰된 평균 37.5% 와는 차이를 보였 다. 한편 MP는 흔히 계통간에 감염율에 차이가 있는 것 으로 ${ }^{27}$ 알려져 있는 것과 같이 본 실험에서도 1 차 검색의 경우는 $\mathrm{ICR}, \mathrm{CBA}, \mathrm{C} 3 \mathrm{H} / \mathrm{He}, \mathrm{C} 57 \mathrm{BL} / 6$ 중 $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ 마우스가 83.3% 의 뚜렷한 감염율을 나타낸 반면 2차 검색에서는 ICR 및 $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ 마우스가 100% 의 감염율을 나타내었지 만 CBA 나 $\mathrm{C} 57 \mathrm{BL} / 6$ 는 음성반웅을 보였다.
MP도 흔히 잠재질병으로 각종 실험연구에 지대한 영 향을 미치므로 MP가 없는 마우스의 공급을 위해서는 MP가 공기전염된다는 점에 착안하여 양호한 사육환경 을 유지하도록 노력해야 될 것이다. 아울러 암모니아의 농도상숭이 상부호흡기도의 병변의 발현을 촉진한다는 사실에 입각하여 실내환기나 공기유통 등에 유의하여야 될 것이다 ${ }^{8}$.

이와같은 개선이 요구되는 것은 2 차 검색시 암모니아 농도가 다른 계절보다 다소 높았다는 사실로 입즘된다. 아울러 사육환경개선을 위해 설치한 실내공기정화기에 의해 폐셰된 공간에서 계속 순환되는 공기가 좋지 못한 환경을 조성하지는 않는지 하는점과 함께 국립보건안전 연구원 예규 88-51호에 규정된 대로 기류가 초당 13~ 18 cm 의 속도로 순환되었으며 시간당 $14 \sim 18$ 회 배기하여 공기가 정화되었는지도 검토되어야 할 것이다.

HVJ에 의해 야기되는 HVJ 병은 마우스의 급성 호홉 기병으로 외국에서는 1968 년에 $44 \%^{28}, 1973$ 년예 $64 \%^{29}$, 1977 년에 $66 \%^{30}$ 둥으로 중가되고 있어 크게 문제가 되고 있는데 다행히도 본 조사에서는 검출되지 않았다. 그러 나 우리나라에서 HVJ 검출이 1990 년에 62.4% 의 양성율 을 보였다는 보고 ${ }^{25}$ 와 1997 년에 2% 의 양성율을 보였다 는 보고 ${ }^{18}$ 에 비추어 보아 결코 안심할 수 없다고 사료되 므로 질병침입의 원천봉쇄를 위해 수시로 cortisone 주사 에 의한 증폭법 ${ }^{4}$ 에 의한 검색을 실시하여 발견 즉시 도 태시키는 방법으로 바이러스 침입의 가능성을 원천적으 로 배제하여야 될 것이다.

아울러 Clostridium piliforme 에 의해 야기되는 TZ병도

본 조사에서는 1 차 및 2 차 모두에서 검출되지 않았는데 이것 역시 국내 양성율이 $6.8 \sim 16.9 \%$ 나 된다는 점 ${ }^{18,25}$ 에서 TZ 가 일반사욕시설에 침입할 가능성을 배제할 수 없으 므로 무작위로 선발한 마우스를 대상으로 cortisone을 대 량 연속 7 일 투여하여 발현시키도록 하는 방법을 웅용하 여 발견 즉시 도태시키는 것이 바람직하다고 사료된다.

본 연구조사에서 TZ나 HVJ가 비록 음성반융을 보였 다 해도 건강한 마우스률 대상으로 인접사육실 간에 MHV, HVJ, MP 등의 혈청변환(seroconversion)여부를 조 사한 바 혈청변환이 이들 사이에서 쉽게 일어났다는 주 장 ${ }^{31}$ 에 비추어 볼 때 일반사육시설내 상호감염방지를 위 한 위생관리는 보다 철저히 이루어지지 않으면 안된다 고 사료된다.

결 론

실헙동물의 품질향상을 위한 기초자료를 마련코자 일 반시설욜 한 실험동물사육장의 실내환경조사를 실시하 고 일반사육시설에서 공급되는 $\mathrm{ICR}, \mathrm{C} 57 \mathrm{BL} / 6, \mathrm{CBA}$ 및 $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ 마우스를 대상으로 병리조직학적 검색 및 혈청 학적 조사률 조사한 바 다음과 같은 결과를 얻었다.

1. 사육실의 암모니아 농도는 15 ppm 이하로 국립보건 안전연구원 예규 88-15호 실험동물사육 및 사육관리규 정에 부합하였고 사육실의 온도와 습도는 각각 $21 \sim 23{ }^{\circ} \mathrm{C}$ 및 $40 \sim 60 \%$ 로서 보건사회부 고시 $88-39$ 호 실험동물의 사 육 및 관리기준에는 부합하였다.
2. 간장, 비장, 심장, 폐장, 신장을 대상으로 병리조직 학적 검색을 실시한 바 조사대상 동물의 86.6% 가 미약 한 병변에서 고도의 병변까지를 나타내었다. 즉, 신장은 미약한 충혈을 보였고 비장은 골수외조혈 소견을 보였 다. 간장은 공포변성과 핵다형성 소견을 보였고 폐장은 립프구양세포증식과 폐포벽 비후의 간질성 폐럼소견을 나타내었다.
3. Mouse hepatitis virus(MHV), Sendai virus(HVJ), Mycoplasma pulmonis (MP) 및 Clostridium piliforme (TZ)에 대한 혈청학적 조사률 실시한 바 MHV 97.9\%, MP $\mathbf{3 7 . 5 \%}$ 의 양 성율을 보여 심각하였으나 HVJ와 TZ는 음성반응을 나 타내었다.

이상의 결과로 미루어볼 때 일반사육시설에서 사육되 어 공급되는 마우스는 마우스 간염 및 마이코풀라즈마 병의 잠재가능성이 크므로 향후 잠재질병이 없는 건강

한 마우스 궁급을 위해 ELISA 기법에 의한 정기적인 잠 재질병 검색과 도태가 요구되며 관행사욱시설을 조속히

SPF 시스템으로 개보수하여야 할 것으로 판단된다.

Legends for figures

Fig 1. Note glomerular congestion, second sacrificed ICR mouse, non-cortisone treated group. HE, $\times 400$.
Fig 2. Note splenic extramedullary hematopoiesis, first sacrificed ICR mouse, cortisone treated group. HE, $\times 400$.
Fig 3. Note splenic extramedullary hematopoiesis, second sacrificed $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ mouse, cortisone treated group. $\mathrm{HE}, \times 400$.
Fig 4. Note hepatic vacuolar degeneration with nuclear pleomorphism, first sacrificed $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ mouse, cortisone treated group. HE, x 400.

Fig 5. Note hepatic mononuciear cell infiltration and Kupffer cell hyperplasia, second sacrificed ICR mouse, non-cortisone treated group. HE, $\times 400$.
Fig 6. Note pulmonary hemorrhage and thickening of alveolar wall, first sacrificed $\mathrm{C} 3 \mathrm{H} / \mathrm{He}$ mouse, cortisone treated group. $\mathrm{HE}, \times 400$.
Fig 7. Note pulmonary peribronchial lymphoid cell hyperplasia, second sactificed C57BL/6 mouse, non-cortisone treated group. HE, \times 400.

Fig 8. Note pulmonary hemorrhage and interstitial pneumonia, second sacrificed CBA mouse, cortisone treated group. $\mathrm{HE}, \times 400$.

참 고 문 헌

1. Fujiwara K, Tokenake S, Shumiya S. Carrier state of antibody and viruses in a mouse breeding colony persistently infected with sendai and mouse hepatitis viruses. Lab Ani Sci, 26:153-159. 1976.
2. Hotchin J. The contamination of laboratory animals with lymphocytic choriomenigitis virus. Am J Path, 64:747-769. 1971.
3. Manaker RA, Piczak CV, Miller AA, et al. A hepatitis virus complicating studies with mouse leukemia. J Natl Cancer Inst, 27:29-51. 1961.
4. Fujiwara K, Tanishima Y, Tanaka M. Seroscreening of laboratory mouse and rat colonies for common murine pathogens. Exp Anim, 28:297-306. 1979.
5. Parker CJ, Hercules JI. von Kaenel E. The prevalence of viruses in mouse colonies. Nat Cancer Inst Monogr, 20:25-45 . 1967.
6. Carthew P, Verstaete A. A serological survey of accredited reeding colonies in the United Kingdom for common rodent viruses. Lab Anim, 12:29-32. 1978.
7. 이훙식, 이영순, 이정주 둥. 일반사육시설 마우스의 잠재질병 조사연구. 한국실험동물학혜지, $10: 167$ 176. 1994
8. 이영순. 실험동물의학. 서울대학교 출판부, 서울.p. 35, 302, 343, 441. 1989.
9. 보건사희부. KGLP 해설서. 의약품안전성시험관리 기준. 서울, 보사부, p.32. 1987.
10. 연세대학교 의과대학 실험동물부. Laboratory animal manual(99-00 version), 서울, 연세의대, p.57. 2000.
11. 박종성, 김희진, 이민재 둥. 실험동물 엔리치먼트로 서의 깔짚종류별 암모니아 가스 농도변화에 관한 연구. 한국실험동물학회지, 15;221-226. 1999.
12. 이민재, 장자준. 청정동물시설(SPF시설) 설비에 관 한 고찰 I. 공기조화기 및 급배기시설시 고려사항. 한국실험동물학회지, 14:103-108. 1998.
13. 이민재, 김길수. 청정동물시설(SPF시설) 설비에 관 한 고찰 III. 급배수설비시 고려사항. 한국실험동물 학회지, 14:115-120. 1998.
14. Percy DH, Barthold SW. Pathology of laboratory ro-
dents and rabbits. Ames, Iowa State Univ. Press. pp.369. 1993
15. Liebelt AG. Unique features of anatomy and ultrastructure, kidney, mouse. In Jones TC, Mohr U, ed, Monographs on pathology of laboratory animals : urinary system. New York, Springer-Verlag, pp.24-44. 1986.
16. 이홍식, 이인세, 강태천. 관행사육 마우스의 불현성 감염 조사연구. 서울대수의 대논문집, 22;35-44. 1997.
17. 이홍식, 황인구, 윤성태 둥. 개방식 시설 사육 마우 스의 건강실태 조사연구. 서울대수의대논문집, 24 ; 55-65. 1999.
18. 이병희, 이영순, 김경진 등. Conventional 사육환경에 서 생산되는 마우스의 건강상태 조사. 한국실험동 물하희지, 13:179-185. 1997.
19. Bannerman RM, Hematology. In Foster HF, ed. The mouse in biomedical research. III. Normative biology, immunology, and husbandry, New York, Academic Press, pp.293-312, 1983.
20. Jones TC. Pathology of the liver of rats and mice. In Cotchin E. Roe FJC, ed. Pathology of laboratory rats and mice. Oxford, Blackwell, pp.1-17. 1967.
21. Barthold SW. Mouse hepatitis virus infection, liver, mouse. In Jones TC, Mohr U, ed. Monographs on pathology of laboratory animals. III. Digestive system. New York, Springer-Verlag, pp.134-139, 1985.
22. 김달현, 임창형. 마우스의 마이코퓰라즈마 폐렴에 관한 병리학적 관찰. 한국실험동물학회지, 5:37-45. 1989.
23. Saito M, Nakagawa M, Kinoshita K, et al . Etiological studies on natural outbreaks of pneumonia in mice. Jpn J Vet Sci, 40:283-290. 1978.
24. Foster HL, Small JD, Fox JG. The mouse in biomedical research, Vol. II. pp. 86-88, 93, 110-133,173183, New York. Academic press, pp. 86-88, 93, 110-133,173-183, 1982.
25. 김철규, 김재연, 실험동물에 있어 미생뮬 모니터링 에 관한 연구. 한국실험동물학회지 6권 1호 부록(실 험동물), pp.14-32.1990.
26. 최재윤, 조정식, 이철원 등. 실험동물에 있어서 $M y$ coplasma 의 혈청학적 및 세균학적 조사연구 (I) Mycoplasma 분리율과 분리방법에 관하여. 국립보건원

보, 20:377-385. 1983.
27. Davis JK, Cassell GH. Murine respiratory mycoplasmosis in LEW and F344 rats: Strain differences in lesion severity. Vet Pathol, 19:280-293. 1982.
28. Parker JC, Reynolds RK. Natural history of Sendai virus infection in mice. Am J Epidemiol, 88:112-125. 1968.
29. Parker JC. Discussion of indigenous murine virus infections and epidemiology of an LCM epizootic. In Hellman A, Oxman MN, Pollack R. ed. Biohazards in
biological research. Cold Spring, Habor Lab, pp. 6569. 1973.
30. Parker JC, Whiteman MK, Richter CB. Susceptibility of inbred and outbred mouse strains to Sendai virus and prevalence of infection in laboratory rodents. Infect Immun, 19:123-130. 1978.
31. Homberger FR, Thomann PE. Transmission of murine viruses and mycoplasma in laboratory mouse colonies with respect to housing conditions. Lab Anim, 28:113120. 1994.

[^0]: Note : (W); weak, (M); moderate, (S); severe, NC; non-cortisone treated group, C; cortisone treated group.

 * Arabic number indicates number of animals observed histopathological findings.

[^1]: Note : (W); weak, (M); moderate, (S); severe, NC; non-cortisone treated group, C; cortisone treated group.
 *Arabic number indicates number of animals observed histopathological findings.

[^2]: * Note : Low positive 0.590, High positive 1.043.

