加味清熱解毒湯鉒 抗癌活性에 關한 研究（I）

金素，金東照，崔奉均，金聖勳＊

Abstract

Study on Antitumor Effect of Kamicheungyeolhaedogtang（KCHT）（I）

Gyu Kim，O．M．D．，Dong－Hee Kim，O．M．D．，Ph．D．，Bong－Gyoon Choi，O．M．D．，Ph．D．， Sung－Hoon Kim，O．M．D．，Ph．D．
Dept．of Oriental Medicine Pathology，
College of Oriental Medicine，Taejon University，Taejon，Korea．

To evaluate the antitumor activity and antimetastatic effects of Kamicheungyeolhaedog tang（KCHT），studies were done experimentally．

The results were obtained as follows：

1．KCHT extracts exhibited a significant cytotoxicity against A549，SK－MEL－2，SK－OV－3，and B16－BL6 cell lines．

2．KCHT extracts showed significant inhibitoty effect on DNA topoisomerase I
3．The T／C\％was 145.8% in KCHT treated group in S－180 bearing ICR mice．
4．KCHT extracts exhibited efficient affect adhesive effect of A549，B16－BL6 cell to complex extracellular matrix．
5．In vitro neovascularization assays，angiogenesis was insignificantly inhibited in KCHT treated group as compared with control group．

These results suggested that KCHT extracts might be usefully applied for prevention and treatement of cancer．

I．緒 論

다양한 生活買境 및 食生活의 變化로 癌의 發生率이 해마다 增加하고 있으나，이에 대한 적절한治療法은 알려져 있지 않다 ${ }^{1.22}$ ．現在 䑨患者 治療

[^0]에 使用되는 抗癌峦는 alkyl화剂，代謝拮抗物質 및抗生物質 둥이 이용되고 있는데，이들은 대부분生體内의 癌細胞뿐만 아니라 正常紐胞 및 다른 感染症에 對한 免疫을 弱하게 하는 副作用을 일으켜 ${ }^{3-6)}$ ，最近에는 免疫機能 調節과 더불어 癌細胞에만選擇的으로 作用攱는 天然抗癌制总 生藥缡로부터開發하려는 많은 研究가 進行되고 있다 ${ }^{78)}$ ．일례로

美國의 癌的究所 (NCI) 에서는 전세계적으로 植物資源을 수집하여 抗癌性 物質에 대한 방대한 探索을貝施학 있으며 ${ }^{91}$ ，國內에서도 穴吠은 植物生薬髙 를 檢索하고 抗癌成分의 분리 및 동정에 대한 研究가 이루어지고 있다 ${ }^{10-12)}$ ．

韓㙠學에서 癌은 宋代 《衛濟寶書》에 最初로言及牢 以来，《仁齊直指附遺方論〉 에서 現代의 总性腫疡과 가장 비숫하제 說明되었으나，그 以前부䄪《內經》䙘始한 여러 醫書에서 積聚，鼓脹，腸喡，石瘕，息賁，瘤病，伏梁，厥疝，瘕聚，癁瘕，痽瘟，
病證으로 認識되고 있다 ${ }^{131}$ 。

이에 對한 治療法으로 清熱解毒，化痰軟堅，利水消腫，活血化疹 處方玩 의한 攻邪法覀 健脾溢氣，滋養肝腎，養胃生津 處方에 의한 扶正法 哭 兩者 를 結合한 扶正祛邪法이 實施되고 있으며，이미 이에 對한 有意性있는 結果들이 報告된 바가 있다 14－18）

實驗的 研究王는 單味韓薬 및 韓方處方 哭 水鐡製剂总 대상으로 抗癌效果에 對한 硏究가 활발 히 이루어지고 있는데，이 중 他 樂에 비하여 清熱解毒類의 樂物의 抗腫疡效果가 優秀하다 報告된 바가 있다 ${ }^{19,20)}$ ，清熱解毒䔞物은 大部分 抗腫場 活性物質을 含有하고 있으며，단순히 癌細胞의 分裂 을 抑制할뿐만 아니라，直接 癌細胞를 殺傷시키기 도 하며，白花蛇舌草，牛枝蓮 둥 몇몇 樂物들은 生體의 免疫防緐機能趿 增强시켜 抗癌 活性을 發揮 하는 것이 立證되었다 ${ }^{21-23)}$ ．

이에 著者는 臨床에서 이미 肝癌 患者에 應用 되고 있는 加味清熱解毒湯 ${ }^{(5)}$ 의 抗腫㾮 效果邕 貝驗的으로 評價하고，이를 중심으로 새로운 抗癌處方을 開發할 목적으로，數種 癌細胞에 對한 細胞毒性，DNA topoisomerase I 活性 抑制效果，複合基質에 對站 附着沮止效果，in vitro neovascularization assay를 通한 血管形成抑制 效果 및 S－180에 對한 生命延長率 等을 測定하여有意性있는 結果를 언었기에 報告하는 바이다．

П．實 驗

1．材 料
1）動 物
動物은 婎性 4주령의 ICR（International Cancer Research，U．S．A）계 생쥐를 韓國化學研究所에서供給받아 貝驗當日까지 固形飼料（抗生劑 無添加，三養飼料 Co．）와 물을 充分히 供給郆巫 室溫 $22 \pm$ $2^{\circ} \mathrm{C}$ 를 계속 維持하면서， 2 週日間 實驗空 環境에適應시킨 後 S－180 癌細胞에 對站 生存比 測定實驗에 使用하였다．

2）樂 物

本 實驗冽 使用한 薬材는 大田大學校 附屬 韓方病院에서 購入하여 精選한 것을 使用하였으며，槐方의 內容과 한 貼 分量은 아래와 같다Prescription of Kamicheungyeol－haedogtang （ KCHT ）

韓 薬	生 櫟 名	用量（g）
柴 胡	Bupleuric Radix	10
考胡索	Corydalis Tuber	10
白芺楽	Paeoniae Radix	12
川草解	Dioscoreae tokoro Rhizoma	12
闍 金	Curcumae Rhizoma	12
枳 段	Ponciri Fructus	6
士．获苓	Smilacis Glabrae Rhizoma	15
丹 蒔	Salviae miltiorrhizae Radix	15
式枝連	Portulaca grandiflora Hook	20
緦 量		112

3）試楽 呅 機器
試楽은 RPMI 1640，fetal bovine serum（FBS）， dulbecco＇s phosphate buffered saline（D－PBS）， HBSS（Hank＇s balanced salt solution），glycerol， bromophenol blue，Tris base，boric acid， agarose，sodium dodecyl sulfate（SDS）， trypsin－EDTA，3－［4，5－dimethyl－thiazol－2－yl］－2， 5－diphenyl－tetrazoliumbromide （MTT）， sulforhodamine－B（SRB），penicillin－streptomycin， sodium hydro－xide，formaldehyde， lysophosphatidic acid，lipopolysaccharide（LPS）， trypan blue，phenol red，sodium azide 및 isopropanol 둥은 Sigma 製品，ethanol， HCl 은 Merck 製品，sodium bicarbonate는 Gibco 製品， acetic acid는 Glicial 製品，DNA topoisomerase
$\mathrm{I}, \mathrm{pBR} 322 \mathrm{DNA}$ 는 Takara 製品을 각각 使用하였 다．

機器는 CO 2 incubator（Vision scientific Co．， Model VS－9108 MS），clean bench（Vision scientific Co．，KMC－14001），centrifuge（Beckman Co．，GS－6R），inverted microscope（Nikon Co．， Japan），bright microscope（UFX－DX，Nikon）， linear accelerator（Varian Co，U．S．A．）， ELISA－reader（Emax，U．S．A），FACScan（Becton dickinson，U．S．A），rotary vacuum evaporator （Büchi 461），autoclave（Hirayama，Japan）， micro－pipet（Gilson，U．S．A），autostill WG25 （Japan），titer plate shaker（Labline Inst．，U．S．A）， culture flask（Falcon 3024），multiwell plate （96－well，Falcon），conical tube，disposable pipet （5ml， 10 ml ， $25 \mathrm{~m} \ell$, Falcon），camera（ 601 S ，Nikon） 및 syringe filter（ $0.22,045 \mu \mathrm{~m}$, Falcon）등을 使用하 였다．

2．方 法
A．抗癌性 探索
1）試料의 製造
L記站 加味清熱解毒湯의 2拍 分量（ 224 g ）을 各各 $3,000 \mathrm{~m} \ell$ round flask에 蒸溜水 $2,000 \mathrm{~m} \ell$ 와 함께 넣은 다음 冷却器를 附着시킥 2時間 동안 加熱 하여 濾過한 濾液을 rotary vaccum evaporator（Büchi 461）에서 減萠 濃縮하였고，이 round flask 를 $-84^{\circ} \mathrm{C}$ deep freezer（Sanyo，Japan） 에서 24시간 동안 放置하고 freeze dryer（Eyela， Japan）로 12 시간을 凍結 喯燥하여 30 g 의 汾末을 얻어，檢液으로 製造하여 使用하였다．動物 實驗時 에는 生理食監术에 溶解시켜 使用하였으며，細胞毒珄 實驗時에는 RPMI 1640 free medium에 溶解 시켜 syringe filter（ $0.22,0.45 \mu \mathrm{~m}$ ，Falcon）로 濾過 하여 使用하였다．

2）細胞 培養

In vitro 細胞毒性 測定에는 A549（ATCC CCL185）肺癌株，SK－OV－3（ATCC HTB 77）卵巢癌株 및 B16－BL6 melanoma（ATCC CRC 6322），SK－MEL－2（ATCC HTB 77）黑色腫을，in vivo 抗㿋 實驗에는 S－180（ATCC TIB 66）腹水

癌株量 使用하였는데 이들의 培養液은 모두 L－glutamine이 포함된 RPMI 1640 培地에 $56^{\circ} \mathrm{C}$水槽에서 30 分間 加溫하여 不活性化시킨 fetal bovine serum（FBS）을 10% 包含하고 1% 抗生齍 （penicillin－G 10 만units／streptomycin 100 mg ）와 NaHCO 32 g 을 添加하여 製造하였다．

3）A549，SK－OV－3，SK－MEL－2，B16－BL6 癌株에 對한 細胞毒性 測定

Solid tumor에 대한 細胞毒性은 1989年에 美國 의 國之立癌砤究所에서 薬物의 in vitro 抗癌活性度 롤 測定하기 위하여 開發된 sulforhodamine－B （SRB）assay 法 ${ }^{24.25)}$ 을 使用하였다．䊽代川인 이들細胞들을 實驗에 使用하기 위하여 trypsin－EDTA 욱액으로 附着面으로부터 分離시키고，96－well flat－bottom microplate（Falcon）에 well당 絒胞數 가 2×104 개가 되도록 분주하였다．

분주된 細胞들은 CO 2 incubator내에서 24時間培養하여 바닥 면에 附着시킨 후，medium에 濃度別 $(0.25, ~ 0.5, ~ 1 \mathrm{mg} / \mathrm{m} \mathrm{\ell})$ 로 稀釋된 試料溶液들을 細胞 가 들어있는 well에 各各 $20 \mu \mathrm{l}$ 씩 넣어주고 다시 48時間 동안 培養하였다．

試料는 加하기 前에 $0.22 \mu \mathrm{~m}$ filter로 濾過하여 實驗의 無菌狀態를 維持하였다．薬物과 함께 48時間培養이 끝난 後，各 well의 medium을 除去하고， 10% trichloroacetic $\operatorname{acid}(T C A)$ 를 well담 $100 \mu l$ 씨加하여 $4^{\circ} \mathrm{C}$ 에서 1 時間 동안 放置하여 細胞들을 plate의 바닥 면에 固定시켰다．

細胞의［⿴囗十⿱⿱十口⿴囗十心定이 끝난 후 plate를 물로 5～6회 洗淮하여 남아 있는 TCA 용액을 完全히 除去하고室溫에서 남은 물기가 없도록 乾燥시켰다．完全히草燥된 plate는 well당 $250 \mu \ell$ 의 1% acetic acid 溶液에 $0.4 \% \mathrm{SRB}$ 를 녹인 染色 溶液을 加하여 30 分間 紐胞를 染色하고 다시 1% acetic acid 溶液으 로 5～6回 洗湺하여 細胞에 結合하지 않은 SRB를除去하였다．

染色된 cell plate들은 다시 室溫에서 乾燥시킨 후，control의 O．D．（optical density）값이 520 nm 에서 $0.8-1.0 \mathrm{~A}$（吸光度）값이 되도록 一定量의 10 mM Tris로 染色液을 잘 녹여 낸 다음 520 nm 에서 $0.8 \sim 1.0 \mathrm{~A}$（吸光度）값을 구하여 ED50값을 얻

었다．癌 細胞들에 대한 薬物의 效果를 䚵價하기 위하여 細胞數의 測定은 薬物을 加할때의 細胞數 (Tz) 와 樂物이 들어 있지 않은 medium을 가하여 48時間동안 培養했을 때의 細胞數（C）및 各 濃度 의 薬物과 함代 48時間 培養敨을 때의 細胞數（T） 등을 測定하였다（Scheme 1）．

다음의 數式에 의해 抗癌活性 程度를 測定하였 다．즉， $\mathrm{T} Z \geqq \mathrm{~T}$ 인 境遇에는 $(\mathrm{T}-\mathrm{Tz}) /(\mathrm{C}-\mathrm{Tz}) \times 100$ 의 數式으로 計算하였고， $\mathrm{T} z<\mathrm{T}$ 인 境遇에는 $(\mathrm{T}-\mathrm{T} z) / \mathrm{T} z \times 100$ 의 數式으로 計算하였으며，이렇 게 計算된 값들로부터 lotus program의 data regression 機能을 利用하여 樂物의 癌細胞 成長 을 50% 抑制하는 濃度인 50% effective dose（ED50）값을 計算하여 各 皤物의 細胞毒性 程度를 比較하였다．ED50값은 對照群의 50% 水準으 로 癌細胞의 成長을 抑制攱는 試料의 濃度 $(\mu \mathrm{g} / \mathrm{ml})$ 로 주어지며，美國立癌硏究所인 NCI（National Cancer Institute，U．S．A）manual의 方法 ${ }^{26)}$ 에 따라 서 決定하였다．試驗群의 各 濃度에 대한 成長率 $\mathrm{Y}(\%)$ 는 다음과 같이 計算하였다．
$\mathrm{Y}(\%)=[(\mathrm{T}-\mathrm{CO}) /(\mathrm{C}-\mathrm{CO})] \times 100$
이때， $\mathbf{T}=$ 試驗群의 48時間 培養後 平均 細胞數（cells／ ml ）
$\mathrm{C}=$ 對照群氧 48時間 培養後 平均 細胞數（cells／ml）
$\mathrm{C} 0=$ 培養 始作時 平均 細胞數（cells／me）
各各 濃度의 $\mathrm{Y}(\%)$ 값과 Logl0 dose 를 圑式化하 고 다음과 같은 式에 의하여 회귀선을 구했다．이 때 各各의 濃度에 대하여 計算한 $\mathrm{Y}(\%)$ 값이 모두 50% 보다 작으면 再實殓을 實施하였다．

$$
N \cdot \Sigma(X i \cdot Y i)-\left(\sum X i\right) \cdot(\Sigma Y i)
$$

$A=$ intercept $=\frac{\sum Y i}{N}-B \frac{\sum X i}{N}$

이 때， $\mathrm{N}=$ number of points selected
［ \leq number of dose level $\&>2$ ］
$\mathrm{Xi}=\log$ dose i
$\mathrm{Yi}=$ growth ratio calculated dose I

여기서 구한 기울기와 절편을 이용하여 회거선 $Y=A+B X$ 를 얻었으며 이 회거선의 기울기와 절편으로부터 ED 50 값을 계산하였다．

$$
\begin{aligned}
& 50=A+B(\log 10 E D 50) \\
& \log 10 E D 50=(50-A) / B \\
& E D 50=10^{\log _{10} E D_{50}} \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

NCI manual에 따르면 細胞毒性 評價는 植物抽出物인 경우 $20 \mu \mathrm{~g} / \mathrm{m} \ell$ 이하，合成物인 경우 $4 \mu \mathrm{~g} /$ $\mathrm{m} \ell$ 以下일 境遇 抗癌 作用이 있닥 規定 ${ }^{26627}$ 하고 있다．

Scheme 1．The experimental scheme for cytotoxicity of SBSK on A549 cells

4）DNA topoisomerase I assay 方法 ${ }^{28,}$
實驗에 使用된 DNA topoisomerase I 는 calf thymus에서，pBR 322 DNA는 E．coli C 600에서 유래된 것으로 topoisomeras I 저해 IC50값을 결 정하기 위해 relaxation assay를 實施하였다．Topo I活性의 測定은 Liu와 Miller의 方法 ${ }^{29}$ 에 따랐다． 즉， $50 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mathrm{mM}$ dithiothreitol， 5 mM spermidine， 0.01% bovine serum album， $0.5 \mu \mathrm{~g}$ pBR 322 DNA 와 酵素（1 unit）만 加하여 總 反應液을 $20 \mu \ell$ 가 되게 한 것을 對照群으로，酵素와 試料를 加하여 總 反應液을 $20 \mu \mathrm{l}$ 되게 한 것을 試驗

群으로 하여 이들을 $37^{\circ} \mathrm{C}$ 에서 30 分間 培萋하였다．反㣹은 2% SDS（sodium dodesyl sulfate），20\％ glycerol 딫 0.05% bromophenol blue를 包含하는塎液 $5 \mu \mathrm{P}$ 를 添加하여 反應을 終結시ㅋㅣㅗㅗ，이를 TBE running buffer（ 50 mM Tris base， 50 mM boric acid， 2.5 mM EDTA）로 平衡된 1% agarose gel에 전기영동을 한 後 agarose gel을 $0.5 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$ 의 ethidium bromide 溶液에서 1 時間동안 染色，紫外線 下에서 寫厧을 찍은 다음 scanner를 使用하여活性 밴드를 測定했다．이때 topo I 의 ］unit는 $37^{\circ} \mathrm{C}$ 에서 30 分間 反應시킬 때 supercoiled pBR 322 DNA를 100% relaxation을 觸媒하는 酵素의量울 意味한다．

5）A549，B16－BL6 癌株线 附着 沮止 作用 測定 30．31）

A549，B16－BL6 細胞를 cell culture dish에 monolayer로 자라도록 細胞 濃度롤 調節하면서 키웠다．癌細胞는 $2 \% \mathrm{FBS}$ 로 調節한 培地에 懸濁 시켜 96 well plate의 각 well에 $100 \mu \mathrm{l}$ 씩 가한（ 5 $\times 104$ cells／well）．후 $0.25,0.5,1 \mathrm{mg} / \mathrm{ml}$ 濃度의 試料 를 녹인 培地 $100 \mu \ell$ 를 加하고 $5 \% \mathrm{CO} 2,37^{\circ} \mathrm{C}$ 에 서 培養하였다．31時間 後 培養液을 除去시키고 96 well plate의 바닥을 $2 \% \mathrm{FBS}$ 로 洗湺한 다음 24 時間 培掏시킨 후 SRB法 ${ }^{24.25)}$ 에 의하여 바닥에 붙어 있는 細胞數를 觀察하였다．

6）In vitro neovascularization assay ${ }^{32}$
人間의 胎盤에서 臍帶靜脈 內皮 細胞에서 （HUVEC）에서 起源한 血管新生 內皮細胞인 ECV 304 細胞의 血管을 形成시키기 위해서 Schnaper等의 方法에 準하여 basement membrane인 matrigel을 이용하여 新血管 形成을 誘導한다．Ice bath 1：에서 96 －well plate에 matrigel을 $50 \mu \ell$ 씩 넣 어준다．matrigel이 gel과 같은 상태로 되도록 3 $7^{\circ} \mathrm{C}$ 에서 30 분에서 한시간 사이의 時間동안 incubation한다．그동안 ECV 304 細胞 數를 세어 서 well담 2×104 cells이 되도록 한다．數를 센 ECV 304 細胞를 matrigel이 덮인 96well plate예 넣고，ECV 304 細胞에 對한 細胞毒性 楥查를 한 $\mathrm{KCHT} 0.25 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$ 를 곧바로 處理하고，血管形成 活性物質인 PMA（phorbol 12－myristate 13－acetate）

8ng을 處理한 ECV 304 細胞总 陽性 對照群으로 하여 時間別로 matrigel위에서 ECV 304 細胞의新血管이 形成되는 模様올 電子屏微鏡을 使用하여血管形成 有無总 判讀하였다．
7）S－180 癌細胞에 對한 生存比 測定
ICR 마우스의 腹腔內에 7日間 培養된 sarcoma 180 稞胞를 腹水와 함께 취하여 滅菌된 冷生理食鹽水를 加해 $400 \times \mathrm{g}$ 로 2分間 遠心 分離하여 細胞
生理食鹽水에 浮遊시켜 다시 遠心分離하여 E澄液 을 除去한 後 혼재된 赤血球邕 溶血시키고 sarcoma 180 細胞만을 取하였다．同一한 方法으로 3화 洗淮한 後 hemacytometer로 세어 $107 \mathrm{cells} / \mathrm{m} \ell$ 의 濃度가 되도록 細胞 浮游液을 만들고 이 洊游液을 0.1 ml 씩 腹腔內에 移植하였다．移植 後 24 時間부터 各 群을 8 마리로 配定하였다．試料는 生理食覽水로 溶解시羽 保存溶液（ $12 \mathrm{mg} / 20 \mathrm{~g} /$ day ）을 만 든 후 $4^{\circ} \mathrm{C}$ 에 保存하였으 며 0.2 ml 씩 經口로 1 避日 간 連績 投與하였으며 對照群에는 闰量의 生理食鹽水液을 投與하였다．生存比（T／C\％）는 美國立 癌硏究所 protocol에 言及된 式 ${ }^{33)}$ 에 따라 計算하였 다．

III．實 驗 成 績

A．In vitro
1．A549 癌株에 對한 細胞毒性
A549 癌株에 對한 細胞毒性은 $0.25,0.5,1 \mathrm{mg} / \mathrm{ml}$濃度에서 細胞成長率이 各各 $96.40 \pm 1.86,80.04 \pm$ $1.56,41.01 \pm 2.53 \%$ 로 $1 \mathrm{mg} / \mathrm{m} \ell$ 濃度에서 50% 以上細胞成長을 抑制하였다（Table I，Fig．1）
Table I．Cytotoxic Effect of KCHT on A549 Cells

Concentration $(\mathrm{mg} / \mathrm{ml})$	Percent of control
$0($ Control $)$	100 ± 2.32
0.25	96.4 ± 1.86
0.5	80.04 ± 1.56
1	41.01 ± 2.53

30% 이상 細胞毒性올 나타낸 浱度
Control ：Non－treated group
$0.25: 0.25 \mathrm{mg} / \mathrm{ml}$ KCHT treated group
$0.5: 0.5 \mathrm{mg} / \mathrm{ml}$ KCHT treated group
$1: 1 \mathrm{mg} / \mathrm{m}$ KCHT treated group

Fig．1．Cytotoxic effect of KCHT on A549 cells． O（control）：Non－treated group

0.25	$: 0.25 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group
0.5	$: 0.5 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group
1	$: 1 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group

2．SK－OV－3 癌株에 對한 細胞毒性
SK－OV－3 癌株에 對한 細胞毒性은 $0.25, ~ 0.5,1$ $\mathrm{mg} / \mathrm{ml}$ 濃度에서 成長率이 各各 $91.5 \pm 3.48,68.4 \pm$ $1.26,46.5 \pm 2.18 \%$ 로 浀度依存的으로 抑制하였으며， 특히 $1 \mathrm{mg} / \mathrm{ml}$ 濃度에서 50% 以上 癌組胞 成辰올抑制하였다（Table I，Fig．2）。

Table II．Cytotoxic Effect of KCHT on SK－OV－3 Cells

Concentration $(\mathrm{mg} / \mathrm{m} \ell)$	Percent of control
Control	100 ± 3.40
0.25	91.5 ± 3.48
0.5	68.4 ± 1.26
1	46.5 ± 2.18

$: 30 \%$ 이상 細胞毒性을 나타낸 渡度	
Control	$:$ Non－treated group
0.25	$: 0.25 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ KCHT treated group
0.5	$: 0.5 \mathrm{mg} / \mathrm{ml}$ KCHT treated group
1	$: 1 \mathrm{mg} / \mathrm{m} \mathrm{\ell} \mathrm{KCHT}$ treated group

Fig．2．Cytotoxic effect of KCHT on SK－OV－3 cells． O（control）：Non－treated group

0.25	$: 0.25 \mathrm{mg} / \mathrm{m} \mathrm{\ell} \mathrm{KCHT}$ treated group
0.5	$: 0.5 \mathrm{mg} / \mathrm{m} \mathrm{\ell} \mathrm{KCHT}$ treated group
1	$: 1 \mathrm{mg} / \mathrm{ml}$ KCHT treated group

3．SK－MEL－2 癌株에 對한 細胞毒性
SK－MEL－2 癌株에 對한 細胞毒性은 $0.25 \mathrm{mg} / \mathrm{ml}$ ， $0.5 \mathrm{mg} / \mathrm{m} \ell, 1 \mathrm{mg} / \mathrm{ml}$ 濃度에서 細胞成長率이 各各 87.2 $\pm 2.76,75.4 \pm 1.84,46.2 \pm 2.35 \%$ 로 $1 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ 以上의濃度에서 對照群에 比하여 50% 以上 癌細胞 成長 을 抑制하였다（Table III，Fig．3）．
Table III．Cytotoxic Effect of KCHT on SK－MEL－2 Cells

Concentration $(\mathrm{mg} / \mathrm{m} \ell)$	Percent of control
$0($ Control $)$	100 ± 2.59
0.25	87.2 ± 2.76
0.5	75.4 ± 1.84
1	46.2 ± 2.35
	$: 30 \%$ 이상
Control 絇毒性을 나타낸 浱度	
0.25	$: 0.25 \mathrm{mg} / \mathrm{ml}$ KCHT treated group
0.5	$: 0.5 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group
1	$: 1 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group

Fig．3．Cytotoxic effect of KCHT on SK－MEL． 2 ．g．4．Cytotoxic effect of KCHT on B16－BL6 cells． cells． 0 （control）：Non－treated group
$0.25 \quad: 0.25 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group
$0.5: 0.5 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ KCHT treated group
$1: 1 \mathrm{mg} / \mathrm{ml}$ KCHT treated group
O（control）：Non－treated group
$0.25: 0.25 \mathrm{mg} / \mathrm{m} \ell \mathrm{KCHT}$ treated group
$0.5: 0.5 \mathrm{mg} / \mathrm{ml}$ KCHT treated group
$1: 1 \mathrm{mg} / \mathrm{m} \mathrm{\ell} \mathrm{KCHT}$ treated group

4．B16－BL6 癌株에 對한 細胞毒性

B16－BL6 嵒株에 對한 細胞毒性은 $0.25,0.5,1$ $\mathrm{mg} / \mathrm{ml}$ 濃度에서 細胞成辰摔이 各各 84.6 ± 2.84 ， $60.8 \pm 5.67,38.5 \pm 2.89 \%$ 로 對照群에 比하여 $0.5 \mathrm{mg} /$ $m \ell$ 以上의 濃度에서 40% 以上 癌細胞 成長堇 抑制하였다（Table IV，Fig．4）．

Table N．Cytotoxic Effect of KCHT on B16－BL6 Cells

Concentration（mg／me）	Percent of control
0 （Control）	100 ± 2.63
0.25	84.6 ± 2.84
0.5	60.8 ± 5.67
1	38.5 ± 2.89
： 30% 이상 細胞毒性을 나타낸 漸度	
Control ：Non－treated group	
$0.25: 0.25 \mathrm{mg} / \mathrm{ml} \mathrm{K}$	treated group
$0.5: 0.5 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ KC	reated group
$1: 1 \mathrm{mg} / \mathrm{ml} \mathrm{KCH}$	eated group

5．DNA topoisomerase I 에 미치는 效果
$50 \mathrm{mM} \mathrm{MgCl} 2,0.5 \mathrm{mM}$ dithiothreitol， 5 mM Spermidine， 0.01% Bovine serum album， $0.5 \mu \mathrm{~g}$ pBR 322 DNA와 梄素（1unit）만 加하여 總 成應液 을 $20 \mu \ell$ 가 되게 한 것을 比較群으로，醋素绀 試料 를 加하여 總反應液을 $20 \mu \mathrm{C}$ 되게 한 것을 試驗群 으로 하여 活性을 测定했다．전기영동을 實施하여寫㲊 撮影한 結果 figure 5에서 보는 바와 같이 DNA만을 處理한 實驗群은 대부분 supercoiled form으로 나타났고，DNA에 topo－I을 처리한 對照群은 모두 relaxed form으로 轉換되었다．

이에 비해 賽驗群은 $250,500 \mu \mathrm{~g} / \mathrm{ml}$ 漊度에서 濃度低存的으로 topo－I의 活泩을 强하게 抑制站였다 （Fig．5）．

Fig．5．Effect of KCHT on the DNA topoisomerase I from calf thymus

Lane 1：DNA（ $0.5 \mu \mathrm{~g}$ ）only
Lane 2 ：DNA＋DNA topoisomerase I（1 unit）
Lane 3.4 ：DNA＋DNA topoisomerase I（1 unit）＋ 250 and $500 \mu \mathrm{~g} / \mathrm{ml}$ of KCHT

6．A549 癌柱의 附着沮止 效果

A549 細胞에 대한 附着沮止 䔈騟에서는 0．25， $0.5,1 \mathrm{mg} / \mathrm{ml}$ 의 濃度에서 $97.2 \pm 2.83,75.2 \pm 3.85,49.1$ ± 1.12 로 $1 \mathrm{mg} / \mathrm{ml}$ 의 濃度에서 50% 이상 細胞附着을组止하였다（Table V，Fig．6）．
Table V．Inhibitory Effect of KCHT on Cell Adhesive of A549 Cells to Complex Extracellular Matrix

Concentration $(\mathrm{mg} / \mathrm{ml})$	Percent of control
$0($ Control $)$	100 ± 1.59
0.25	97.2 ± 2.83
0.5	75.2 ± 3.85
1	49.1 ± 1.12

：30\％以上細胞附着沮止效果를 나타낸 濃度
0（control）：Non－treated group

0.25	$: 0.25 \mathrm{mg} / \mathrm{m} \mathrm{\ell} \mathrm{KCHT}$ treated group
0.5	$: 0.5 \mathrm{mg} / \mathrm{m} \mathrm{\ell} \mathrm{KCHT}$ treated group
1	$: 1 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group

7．B16－BL6 癌杜의 附存试佔：效果
B16－BL6 細胞에 대한 附着沮 IL 惯驗에서는 $0.25,0.5,1 \mathrm{mg} / \mathrm{ml}$ 의 濃度에서 $90.1 \pm 1.82 .55 .9 \pm$ $1.96,38.5 \pm 2.68 \%$ 로 $0.5 \mathrm{mg} / \mathrm{ml}$ 의 以上의 濃度에 서 40% 이상 細胞附着을 沮止하였다（Table VI，Fig． 6）．
Table VI．Inhibitory Effect of KCHT on Cell Adhesive of A549 Cells to Complex Extracellular Matrix

Concentration $(\mathrm{mg} / \mathrm{ml})$	Percent of control
$0($ Control $)$	100 ± 4.14
0.25	90.1 ± 1.82
0.5	55.9 ± 1.96
1	38.5 ± 2.68

\30\％以 1．細胞附着组止效果总 나타낸 儂度	
0 c	Non－treated group
0.35	$0.55 \mathrm{mg} / \mathrm{m} \mathrm{\ell} \mathrm{KCHT}$ created group
0.5	$0.5 \mathrm{mg} / \mathrm{m} \mathrm{\ell} \mathrm{KCHT}$ treated group
1	$1 \mathrm{mg} / \mathrm{ml}$ KCHT treated

Fig．7．Inhibitory effect of KCHT on cell adhesive of A549 cells to complex extracellular matrix．

O（control）：Non－treated group
$0.25: 0.25 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group
$0.5 \quad: 0.5 \mathrm{mg} / \mathrm{ml} \mathrm{KCHT}$ treated group
$1: 1 \mathrm{mg} / \mathrm{ml}$ KCHT treated group

8．ECV 304 細胞에 의한 lumen 形成 抑制效果 ECV 304 內皮細胞数 新生血管 形成에서 對照群에서는 matrigel위에서 ECV 304 內皮細胞가
plating 後 1－2時間에 matrigel 위에 附着하고 3－5時間에 cell clustering이 形㳀되고，7－10時間에 cell cord를 形成하여 血管을 形成할 준비를 하며 12－18時間에는 內腔을 갖는 毛細血管이 形成되었 으나， $\mathrm{KCHT} 250 \mu \mathrm{~g} / \mathrm{m} \ell$ 을 가한 實驗群에서는 Fig． 8에서와 같이 lumen 形成에는 영항을 미치지 않 았다

Control

KCHT treated group
Fig． 8 Photography of in vitro neovascularization by ECV 304 in control and KCHT treated group．

B．In vivo
1．S－180이 移植된 생쥐의 生存比에 미치는 效果

加味抵當湯을 S－180이 移植된 생쥐에 10 日간
癌으로 인한 體重 增加는 對照群에서는 㾇株 移植後 12 日에 급격히 增加하여 17 日에 모두 죽었다．

平均 生仔田數에서 對照群의 MST는 13．71日， KCHT 投與群은 20.0 日로 나타나， $\mathrm{T} / \mathrm{C} \%$ 는 145.8% 로 나타넜다（Table VII）．

Table VI．Effect of KCHT on MST and T／C \％in ICR Mice Bearing Sarcoma 180.

Group	No．of animals	M S T （day）	T／C（\％）＊
Control	7	13.71	100
KCHT	7	20.0	145.8
T／C $(\%)^{*}:$	MST of sample		$\times 100(\%)$

IV．考 察

癌은 循瓄期系 疾患과 더불어 多發하는 成人病 의 하나로，다른 疾患에 비해 死亡率이 높아 現代醫學이 當面한 가장 큰 課題중의 하나이다 ${ }^{122}$ ． 1971년 12월 미국 닉슨 대통령이＂암과의 전쟁＂을 선포하고 수 천만 달러를 투자한 이래로 지나 25 년간의 전쟁에도 불구하고 癌의 發生率과 死亡率 은 지속적으로 增加하고 있다 ${ }^{34)}$ ．더욱이 췌장，간， 위，식도암의 5 년 比較 生存率은 10% 以上減少郆 였으며，현재 1 年에 50 萬名 이상의 사람들이 癌으 로 죽고 있다 ${ }^{35)}$ ．
癌이란 生體組織의 一部神 自律的으로 非正常的 이면서도 烦임없이 過剩成長하는 惡性新生物로，周圍 組織으로 浸透하여 隣接組織 및 藏器의 機能 을 障碍할 뿐 아니라 過多한 增殖에 竝行한 岳管增殖의 缺如只 壞死나 潰疡을 인으킨다．癌細胞는破壞力知 강하고 脱落傾向이 높아 일정한 크기로增大하면 淋巴管이나 血管을 통하여 身體 여러 곳 으로 옮겨가 轉移病果를 만들고 癌細胞가 多發性 으로 分散하여 增殖하게된다 ${ }^{36-38)}$ ．

계속적인 癌 細胞의 增殖은 細胞內 蛋白質이나核酸의 合成을 旺盛하게하머，toxohormone， malignolipin 等 非正常的인 毒性物質을 分泌竍고，癌의 抗原을 비突한 發癌因子 等이 몸 안에 쌓이 게 하여 貧血巫 癌性 惡液質（cancerous cachexia） 을 招來하여 결국 생명을 잃게 한다 ${ }^{38,39)}$ ．

癌의 發生은 학실히 규명되어 있지 않으나 人體 의 抗病能力이 低下된 상태에서 慢性刺戟，物理的刺戟，化學物質，老化，免疫變調，호르몬，遺傳的

素因 및 發癌性 바이러스 등으로 因하여 發生한다 고 보고있다 ${ }^{38,39)}$ ．

癌의 治療에 있어서 西嫛學的으로는 現在 手術，放射線治療，免疫療法 및 化學療法 等 많은 治療法이 있지만，選擇性의 缺如로 인해 癌細胞 뿐만 아니라 正常細胞에도 影響을 주어 多樣한 副作用 을 招來하는 短點이 있으며，薬物에 대한 耐性이增加되고 있는 賽情이기 때문에 새로운 方式의 抗癌劑 開發이 요구되고 있다 ${ }^{3-5,40,41)}$ ．따라서 免疫機能을 높여주고 癌組胞에만 選擇的으로 作肋하는
 가 이루어지고 있으며 韓醟學등 代替醫學의 癌治療法에 대하여 關心이 增大되고 있는 實瑇이다

韓醫學에서 癌이라는 用語는 宋代에 《衛濎寶書〉 와 《仁齊直指附遺力論》 에서 腹部癌斗 乳房癌에 대한 病證을 시사하는 內容이 최초로 언급되 었으나，韓醫書에는 積聚，咕脹，腸覃，石瘕，息賁，
膈，乳噮，石疽，및 石擁 등이 현대의 癌과 類似 한 많은 病症들이 기재되어 있다 ${ }^{(3-14)}$

韓醫學에서 癌의 治療는 健脾益氣，養血滋陰，養陰生津，補腎溫陽，健脾益腎등의 扶正培本法과 淸熱解毒，活血化瘀，化痰消瘀，理氣消腫등의 䣓邪法 및 이 두가지 방법을 配合한 扶正社邪法으로 區分 되며 ${ }^{13-19)}$ ，扶正祛邪法을 中心으로 初期에는 攻法爲主，中期에는 攻補兼法，末期에는 先補後攻法으로臨床에서 活用되고 있다 ${ }^{201}$ 。

또한 最近에는 韓醫學界에서도 單味韓薬 및 韓方處方，水鍼製劑芑 대상으로 抗癌效果에 對한 實驗的 研究가 활발히 이루어지고 있는데，이 중 清熱解毒類의 薬物의 抗腫瘍 治療效果가 優秀하다 보고되고 있다．

美國 $\mathrm{NCI}($ National Cancer Institute）에서는 抗癌剂를 開發하기 위한 스크리닝에서 L1210 癌柱를 사용하였는데 ${ }^{41,42)}$ ，이 때 IC 50 이 植物抽出物에서 $20 \mu \mathrm{~g} / \mathrm{ml}$ 以下，合成物이나 單利 compound에서는 $2.4-4.0 \mu \mathrm{~g} / \mathrm{m} \mathrm{\ell}$ 以下일 때 抗癌钊로 개발될 可能性이 있다고 規定 ${ }^{43)}$ 하고 있다．

韓樂材에 대한 細胞毒性 探索에서 閔 ${ }^{44}$ 은 L1210㿋柱에 대하여 白花蛇舌草，羌活，馬兒鈴，香蒂，㫿

麥子，連勉，榶子，旋覆花，苦梀皮，薄荷，虎杖根，三：棱，玄苶 等이 $10 \mu \mathrm{~g} / \mathrm{m} \ell$ 以下 以濃度에서 有效立 細胞毒性을 보여，清熱解毒 薬物이 他 樂材에 비하 여 細胞毒性에 있어 效果的임을 示唆하였다．이와 더불어 最近의 研究 結果에서도 清熱解毒樂物이大部分 抗腫瘍 活性物質을 含有하고 있으며，단순 히 癌細胞의 分裂을 抑制할뿐만 아니라，直接 癌細胞를 殺偒시키기도 하며，몇몇 薬物들은 生體의免疫防禦機能을 增强시켜 抗癌 活性 作用을 만들 어내는 것이 立證되기도 하였다．

또한 臨床에서도 清熱解毒樂은 癌을 發展시키 고，病情을 악화시키는 요소 중의 하나인 炎症과感染을 豫防 治療하여，患者的 病情과 辨證에 근 거해서 多用되고 있다 ${ }^{1920)}$

본 實驗의 試料인 加味清熱解毒湯은 《癌症治驗錄〉 ${ }^{15)}$ 에 記載된 處方으로 柴胡，玄胡索，白并樂，
成되어 臨床에서 肝癌患者에게 投與하여 有意性있 는 結果가 報告된 바가 있다．

加味清熱解毒湯 構成薬物의 效能을 살巩보면，柴胡는 味䓀 微寒하여 肝經에 入하여 和解退熱，疏肝解鬱，升擧陽氣，舒肝和胃，淸泄相火하고，玄胡索은 肝脾經에 入하여 活血散瘀，理氣止痛하며，白芺藥은 苦酸味로 肝脾經에 入하여 養血采肝，綏中上痛，斂陰收汗학，川草薢는 肝胃膀胱經에 入하
兟，利噟退黃하고，枳豰은 肺脾大腸經에 入하여 破氣行应消積하며，土茯苓은 肝胃經에 入하여 除㵖解毒，通利關節部고，丹落은 活血祛瘀，凉血消虙，除煩安神하며，少枝蓮은 清熱解毒，利尿消腫한다 ${ }^{45)}$

構成薬物의 抗癌效果量 보면 鬱金은 肝癌，胰腫瘤 等에，丹䒾은 畽塊邕 同伴한 各種 剥血性 癌症 에 使用되고 있으며，手枝蓮은 肺癌，直腸癌，胃癌，食道癌，宮頚癌，肝癌，口腔癌，乳腺癌，蟣毛膜上皮癌，消化器癌 等의 各種揰瘍에 應用되며 ${ }^{46-48)}$ ，柴胡 는 抗癌活性올 나타내는 saikosaponin a，d，f 등 이 定量分析되었다 ${ }^{49)}$ ．

이에 本 寅驗에서는 이러한 本草學的 效能斗 臨床的 報告를 바탕으로，加味清熱解毒湯을 試料로抗癌 및 抗轉移 效果를 實驗的으로 評價하고자 하

였다．먼저 抗癌性 평가는 數種 癌細胞에 對한 細胞毒性，DNA topoisomerase I 活性 抑制效果， S－180에 對한 生命延長率 等을 測定하였다．

科胞毒性 澌定으로 과거에는 MTT assay가 널 리 이용되었으나 product인 formazan의 仆溶性과細胞외에도 이온 및 pH 등의 다른 요인에 의하여 영향을 받을 수 있다는 短點이 있어，최든에는 MTT asaay 대신 細胞內의 蛋白質 含量을 測定함 으로써 抗滆物質의 活性을 測定하는 万法인 sulforhodamin－B（SRB）assay 가 開發되었다．蛋白質의 量은 通體 科胞内의 物質呈推定하는데 널리 이용되고 있으며 쁙히 SRB assay는 細胞嫩와 비 례학工ᅩ 水溶性 의 㤢質 및 환경에 의한 영향을 덜 받는다는 장점으로 MTT assay 보다 광범위하게 이용되고 있다 ${ }^{24,51}$ ．

SRB assay를 이융한 本 責驗에서는 모든 實驗癌柱에서 $\mathrm{KCHT} 1 \mathrm{mg} / \mathrm{ml}$ 이상의 濃度에서 50% 以 E 癌細胞 成長 抑制效果를 나타내었다（Table I－ N．Fig．1－4）．

다음으로 最近에 細胞毒性을 測定站는 J法中 하나로 姫究되어지고 있는 DNA topoisomerase I assay를 실시하여 SRB assay 結果와 비표하 여 보았다．DNA topoisomerase는 세포내 DNA의 supercoiling state를 調節하는 酵素로서 DNA에서 일어나는 複製，轉寫，再組合에 지대한 影響을 미 치고，이러한 過程들이 進行되는 段階에서 發生하 는 DNA의 topological problem을 解決해 줌으로 써 梱胞内 여러 DNA의 기중에 必須的이다 ${ }^{50-533}$ ． 본 실험에서는 figure 5에서 나타난 바와 같이 DNA만을 처리한 實驗群은 대부분 supercoiled form으로 나타났고，DNA에 topo－I을 처리한 對照群은 모두 relaxed form으로 轉換되었으나， KCHT 投與群에서는 濃度依存的으로 topo－I의 活性을 抑制하여 SRB assay 결과와 일치합을 나타 내었다．

In vivo 실험으로는 $\mathrm{S}-180$ 이 移植된 생줘를 이 용하여 生存比를 測定하였는데，對照群의 MST는 13.71 日，KCHT의 MST는 20．0日로 145.8 의 生仔比（ $\mathrm{T}: \mathrm{C} \%$ ）롤 나타내어 NCI 가 設定한 再實驗 可能

T／C\％인 140% 를 上廻하는 結果가 나타났다 （Table XII）．

다음으로 癌細胞가 \rightarrow 次的으로 다른 部位에 轉變되어 癌의 症狀을 惡化시킵으로써 死亡에까지 이르게 한다는 점에서 重要하게 認識되고 있는 轉移에 對한 實驗으로，in vitro에서는 复复合基質에서 A549，B16－BL6 癌株에 對한 附着 沮止作用을評價하였다．KCHT $1,0.5 \mathrm{mg} / \mathrm{ml}$ 濃度에서 A 549 ， B16－BL6 癌柱 50% 以上 附着을 沮止하여，이 벽 … 細胞毒性에서 나타난 結果와 類似하였다（Table V，VI，Fig．6，7）．

마지막으로 抗轉移 實驗으로 掊의 成長，请透 띷 轉移에 重要한 䝘階로 알려진 血管形成에 대한㧕制作川을 測定하였다．血管形成（angiogenesis）은新生血管（new blood vessel）이 生成되는 概本的인通程으로 생리적으로 태반의 형성，embryonic membrane의 형성，生殖，傷處回復叔 再生 등의跃態에 있어서 必需的이나，統制되지 않는 血管新生은 關節炎，梧氺病性 網膜症，血筸腫，硬波腫斗 판은 疾病을 惹起하기도 한다 ${ }^{53-581}$ 。

昰性腫場은 자신의 成長을 위해 지소亍적으로 새 로운 모세혈간의 战辰을 자극해야 하며，腫盷에 다다른 新血管은 腫瘍細胞가 血液 속에 들어가서 떠 곳으로 轉移하는 通路가 되므도 腫摥의 成長가轉移 또한 血管新生에 依存한다 ${ }^{\text {5 }}$ 。 따라서 血管形戌의 過程을 抑制하면 癌을 治療할 수 있으리라는次을 豫想할 수 있어 癌治療를 위한 하나의 意味 있는 手段으로써 등장한 以來로 많은 研究가 이루 어지고 있다．본 실험에서는 angiogenesis 억제효 과를 관찰하는 방법으로 ECV 304 cell을 이용한 rnatrigel coated plate에서 생기는 lumen formation 억제효과를 살펴보았는데，figure 8에서 와 같이 對照群에서와 같이 lumen이 形成되어， I血筲形成 抑制作用을 나타내지 않았다．

以上의 結果를 棕合하여 보면，數種 癌細胞에對站 細胞毒性，DNA topoisomerase I 活性 抑制攽果，复合基質冽 對站 附着沮止效果 및 S－180에對한 生存率 等에서 有意性있는 結果가 나타나，本 試料의 抗癌活性이 認定되며，더욱 效果的인抗癌 處方에 대한 探索을 위해，向 啳 本 試料를

基本方으로 多樣한 樂物의 組合을 通한 研究가 持䋹되어야 할 것으로 思料된다．

V．結 論

加味清熱解毒湯의 抗腫䀛 效果를 紏明하고자 數種 癌細胞에 對한 細胞毒性，DNA topoisomerase I 活性 抑制效果，複合基質에 對站 附着沮止效果， in vitro neovascularization assay 를 通한 血管形成抑制 效果，S－180에 對站 生命延長率 等을 測定 하여 다음과 같은 結論을 얻었다．

1．數種 癌珠에 對한 細胞毒性에서는 A549， SK－OV－3，SK－MEL－2，B16－BL6 모든 癌珠에서 는 $1 \mathrm{mg} / \mathrm{m} \ell$ 以上의 濃度에서 50% 以上，細胞毒性을 나타내었다．

2．DNA topoisomerase I assay에서는 濃度 依存的으로 酵素活性을 抑制하였다．

3． $\mathrm{S}-180$ 을 이욤한 抗癌 動物實驗에서 $\mathrm{T} / \mathrm{C} \%$ 는 145.8% 의 生命延長效果를 나타내었다．

4．A549，B16－BL6 癌株咞 對한 附着 沮止作用 에서는 對照群에 비하여 $0.5 \mathrm{mg} / \mathrm{m} \mathrm{\ell}$ 以上 의 濃度에서 50% 以上附着을 沮止하였다．

5．neovascularization assay에서는 對照群에 比 해 lumen 形成을 遮斷하지 못하였다．

以上의 結果를 보아 加味清熱解毒湯은 向 後 臨床에서 癌의 轉移豫防 및 治療에 活用可能할 것으 로 思料된다．

參考文䴢

1．Doll．R．and R．Peto ：The causes of cancer quantitative estimates of avoidablw risks of cancer in the united states today．J．Natl． Cancer Inst．66．1192－1305， 1981

2．통계청 ：Annual report on the cause of death stastistics（Based on vital registration）， Seoul，yoohansa， 1997

3．전국의과대학교수 ：오늘의 진단 및 치료，서 울，한우리，pp．85－95， 1999.

4．金秀其：補中益氣湯 및 少陰人補中嫃氣湯이 S－180에 對한 抗腫疡 效果와 cyclophospharnide에 의한 副作用에 미치는 影響，大田大學校 碩 1 學位論文， 1993 。

5．金東菲 外：抗癌劑终 放射線㙩法：의 副作用에對站 韓方薬物療法，大田大學校 韓醫學做究所 論文集 3卷，pp．34－39， 1993.

6．趙克勝 外：黃苠多糖質이 人體周圍穴 單核細胞의 腫瘍壞死因子 産生을 增强시키는데 對한 研究，한글판 中西慗結合雜誌，No．5，pp．1－4， 1993.

7．Park，Y．S．and J．W．Kim ：Screening and isolation of antitumor agents from medicinal plants（ I ），Kor．J．pharmacogn．23，264－267． 1992.

8．Jurry，M．C ：Natural products as a source of potential cancer chemotherapeutic and chemopreventive agents．J．Nat．Prod．53，23－41 1990.

9．Ally，M．C．and D．A．Scudiero ：Screening for natural plants，Cancer Res．48，5891－5897． 1988.

10．崔政和：當歸飲子加䖨酥讣 皮庙癌細胞의 細胞毒性에 미치는 影響，大韓外官學會誌，Vol．9 No．1，pp．1－15， 1996.

11．秄甲鎬 外：柴胡，茵蔯的 肝癌細胞에 對한抗癌活性 및 抗癌别外禹 相乘效果，大韓韓㙠師協會誌， 16 （2），pp．414－432， 1995.

12．趙漢震：桃紅四物湯加减方㐿 抗㿋 및 抗轉移 效果에 關立 研究，大田大學校大學院， 1998.

13．楊維傑 主編：癌症腫瘤醫論醫華精選，樂茥文化事業公司，pp．1－4， 1989.

14．陳炳旗：扶正法在腫瘤治療中的臨床運用，浙江中㗨學院學報，17（4），pp．20－21， 1993.

15．牛瓀子外：癌症治验録，北京，中醫古籍出版社，p．147，pp．1－15， 1994.

16．梁與才：健脾補氣常用藥防治癌症研究綜述，中智楽信息 3，pp．17－19， 1988.

17．儲水穓：惡性畽瘤中醫調理四法，上海中醫藥雜志，第7期，pp．33－34， 1992.

18．孟琳升 外：中醫治癌大成，北京，북경과학기 술출판사，pp．111－112，122－143，232－233， 1995.

19．防 ：在：中毉腫瘤學，北京，北京科學怆版垪， pp．1－10． 1983.

20．郎偉望 ：抗癌中樂一千方，北京，中國㞺藥技術埧版形，pp．5－17， 1994.

21．余桂清 ：柇代扣醫腫瘤案論選粹，北京，北宗仙版㠶，pp．3－2， 1988.
 pp．1－10，1986．

23．趙健虹 ：䓞一純教授治療晚期惡性腫瘤的經驗，阱陌䣽學，第14期，pp．451－453， 1993.

24．Rubinstein，L．V．，Paull，K．D．，Shoemaker， R．H．，Simmon，R．M．，Skehan，P．and Boyd，M．R． ：Correlation of screening data generated with a tetrazolium assay（MTT）versus a protein assay （SRB）against a broad panel of human tumor cell lines，Proceedings of the American Association for Cancer Research，30，p．2418， 1989.

25．Skehan，P．，Storeng，R．，Scudiero，D．， Monk，A．，Mc Mahon，J．D．，Vistica，J．，Warren， T．，Kenney，S．and Boyd，M．R．；New colormetric cytotoxicity assay for anticancer－drug screening．J．Natl．Cancer Inst．， 82（13），pp．1107－1112， 1990.

26．National Cancer Institute，Cell Culture Screen，KB，Protocol 1600，Cancer Chemother． Res．．（part 3），3，p．17， 1972.

27．Spjut，R．W．and Perdue，R．E．：Plant folklore，a tool for predicting sources of antitumor activity，Cancer Treat．Rep．，60，p． 979 ， 1966.

28．K．Drlica and R．J．Franco ；Inhibitors of DNA Topoisomerases，Biochemistry．，27（7）， pp．2253－2259， 1988.

29．Liu，L．F．：In DNA topology and its biological effects（Cozzarelli，N．R．and Wang，J．

C．eds．）pp．371－389，Cold Spring Harbor Laboratory Press， 1990.

30．Mary K．Chelberg，Effie C．Tsilibary， Alan R．Hauser，James B．McCarthy ；Type IV collagen－mediated melanoma cell adhesion and migration ：Involvement of multiple．distant domanes of the collagen molecule．Cancer Reserch，49，4796－4802， 1989.

31．Lin Yan et，al．：Inhibition of cell attachment by selite，Cancer reserch 52 ， 5803－5807， 1992.

32．김웅국외 6인：新血管形戊 기작 研究䓃 위 한 生體外 모델 시스템 확립：ECV304 內皮細胞株를 利用한 新血管形成 모델 및 열기성 섬유아세 포 成長因子约 生産，1997년 기초의학 학술대회．

33．Hellmann，K．and Carter，S．K． Fundamentals of cancer chemotherapy， McGraw－Hill Book Company，New York，pp． 132 －140， 1987.
34．American Cancer Society ：Cancer facts \＆ figures ；3005－3008 1996.

35 Moss，R ．W ：The Cancer Syndrom，New York，Paragon House 1989.

36．송계용 외 ：核心病理學，서울，高麗醫學， pp．151－160， 1998.

37．서울대학교의과대학 ：종양학，서울，서울대 학교출판부，p．137，pp．1－3，214－215，225－234， 1989.

38．大韓病理學會 ：病理學，서울，高文社， рр．225－271．632－638，703－710，742－759，816－827， 936－941，1015－1021，1061－1070， 1990.

39．李文鎬 ：內科學 卷下，博愛出版社， pp．2246－2250，2466－2475， 1976.

40．Idestrom K．，Petrini B．，Blomgren H．， Wasserman J．，Wallgren A．，Baral E．：Changes of the peripheral lymphocyte population following radiation therapy to extended and limited fields．Int J Radiant Oncol Biol Phys 5： 1761， 1979.

41．Suffness，M．and Douros，J．：Current status of the NCI plant and animal product program，J．Nat．Prod．，45（1），1－14（1982）．

42．Kinoshita，G．，Nakamura，F．and Maruyama，T．：Immu nological studies on polysacchride from crude drugs，Shoyakugaku Zasshi，40，325－332（1986）．

43．Spjut，R．W．and Perdue，R．E．：Plant folklore，a tool for predicting sources of antitumor activity，Cancer Treat．Rep．，60，p．979， 1966.

44．김성훈，박경식，유시용 ：생약복합제제 길경 탕 및 가미길경탕의 항암효과（제1보），生薬學會誌， 27권1호，pp．37－41， 1996.

45．全國韓醫科大學 本草學教授 共著：本草學，永林社，pp．223－224，302－306，431－433，201－202， 385－386，414－415，417－420， 1991.

46．王 冰 ：抗癌中䊾方選，人民軍醫出版社， pp．1－2，p．73， 1990.

47．李 岩 ：腫瘤臨床備要，人民衛生出版社， pp．356－366， 1980.

48．김수철 ：抗癌本草，서울，圖書出版 바람과 물결，p． $221,254,315,425,474,1988$.

49．한기광：柴胡의 有效物質 分離 및 抗癌活性 에 關한 研究，대전대학교 한의과대학 박사학위논 문， 1999 ．

50．Champoux，J．J．：In DNA Topology and its Biological Effects（Cozzarelli，N．R．and Wang，J．C．eds．）Cold Spring Harbor Laboratory Press，pp．217－242， 1990.

51．Y．H．Hsiang，and L．F．Liu ； Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin，Cancer Res．，48，pp．1722～ 1726， 1988.

52．D．K．Trask，and M．T．Muller ； Stabilization of type I topoisomerase－DNA covalent complexed by actinomycin D ，Proc． Natl．Acad．Sci．USA．，85，pp．1417～1421， 1988.

53．Higgins，N．P．，Ferro，A．M．and Olivera， B．M．：In DNA Topolgy and its Biological Effects（Cozzarelli，N．R．and Wang，J．C．eds．） pp．361－370，Cold Spring Harbor Laboratory Press， 1990.

54．Folkman，J．：Tumor angiogenesis ： Therapeutic implications，N Engl J Med．，285， pp．1182～1186， 1971.

55．Auerbach，R．，Kubai，L．，Knighton，D．， Forkman，J．：A simple procedure for the long term cultivation of chicken embrios，Devl Biol．， 41，pp．391－394， 1974.

56．Knighton，D．R．，Phillips，G．D．，and Fiegel，V．D．：Wound healing angiogenesis ： indirect stimulation by basic fibroblast growth factor．J．Trauma， 30 （Suppl．12）：S $134 \sim 144$, 1990.

57．Fidker，I．J．，Ellis，L．M．：The implication of angiogenesis for the biology and therapy of cancer metastasis．Cell，79，185～188， 1994.

58．Okawa，T．，Hiragun，A．，Yosida，Y．， Ashino－Fuse，H．，Tominaga，T．，and Iwagushi， T．：Angiogenic aqctivity of rat mammary carcinomas induced by 7，12－dimethylbenz ［ α ］anthracene and its inhibition by medroxyprogesteron acetate：possible involvement of antiangiogenic action of medroxyprogesteron acetate in its tumor growth inhibition．Cancer Lett．43，85～92， 1988.

[^0]: ＊大田大學校 韩陾科大學 病理學教室

