무심천 왜매치 *Abbottina springeri*의 개체군 생태

손 열목
서천대학교 과학교육과

Population Ecology of *Abbottina springeri* (Cyprinidae) in the Musimichon stream, Korea

Yeong-Mok Son
Department of Science Education, Seowon University, Chongju, Korea

Population ecology of *Abbottina springeri* has been investigated from March to November, 1995 at Musimichon stream of Kadok-my on, Chongwon-gun, Chungchongbuk-do. The favorite habitat was a sluggish area with muddy bottom, but larger individuals more than 60 mm in total length were also collected at rapids of low velocity. Judging from the total length frequency in this population on June, total length 30 ~ 50 mm group is one year old, 50 ~ 65 mm group is two years old, and longer than 65 mm is regarded over three years old. Sexual dimorphism was revealed conspicuously in genital papilla, nuptial tuber ies and nuptial pigmentation in the males at spawning season.

Peak season of spawning was June when the water temperature reaches 20 ~ 25°C and they start spawning at the age of two. The sex ratio of female to male was 1 : 0.93.

The mean of egg number and egg size in ovary were 652 and 0.43 ± 0.06 mm respectively. According to the contents of stomach, this species feeds mainly on botton algae at all ages and some aquatic insects in adult.

Key words: *Abbottina springeri*, Population ecology, Musimichon stream

서 론

*Abbottina*속 어류는여류(Cyprinidae)의 모래무지아과(Gobioninae)에 속하는 소형의 일차무역으로서 중국 동북부, 한국, 일본 등에 분포하고 있으며 3종이 보고되어 있다(Banarescu and Nalbant, 1973). 우리 나라에는 *Abbottina ribularis*와 *A. springeri*의 2종이 서해 및 남해로 유입되는 하천의 중하류수역에 분포하고 있으며 훈자는 한반도 고유종이다(최 동, 1990; 김, 1997).

— 186 —
제료 및 방법

본 연구의 현지조사지는 충청북도 청원군 가덕면의 무심천에서 1995년 3월부터 11월에 걸쳐 매월 1~2회 실시하였다(Fig. 1).

표본의 채집은 양쪽 10 mm × 10 mm의 푸망과 양쪽 5 mm × 5 mm의 측대를 사용하였으며 채집된 어류의 대부분은 현장에서 동정하고 전장 측정과 성장별 후 방류하였으며 일부는 자료분석을 위하여 10% 포르말린에 고정 후 실험실로 운반하였다. 어류의 분류는 Nelson (1984)의 분류체계에 따라하였다.

조사지소에서는 토양은도계로 기온과 수온을 측정하고 동서어류상과 상태통을 조사하였다. 연령과 성장도를 알아보기 위하여 1/20 mm vernier calipers로 전장을 측정하여 peterson method (Bagenal, 1978)에 의한 전장 분포도를 작성하였다.

성숙 개체를 대상으로 제2차 성 특징을 이용하여 성별을 구하였으며 제중과 생식소 무게 (남소 무게)는 0.01 g까지 측정하여 생식소 성숙도(gonadosomatic index (GSI) : gonad weight/body weight × 100)를 분석하였다. 제2차 성특징은 삼인실체환형정(Olympus SZH-ZB)으로 관찰하고 정형(Olympus PM-10AK)하였다. 생식소 성숙도가 13% 이상이 되는 8마리의 표본을 대상으로 포획수를 계수하고 난의 직경을 측정하였다. 성성조사는 독일 개체를 적출하여 해부미경과 광학미경으로 검정하였으며 전장통은 독(1order)의 수준에서 나머지 머리 생물은 속(genus)의 수준까지 분류하였다.

결과 및 고찰

1. 서식지 환경 및 동서어류상

조사지점은 무심천의 중류수역으로 주변에는 수초가 무성하며 하류의 계곡이 넓고 수심이 50 cm 내외가 되는 물이 정체된 소와 하류이 배와 자갈로 이루어져 고유종이 완만한 주변 영역수역이다. 표본은 주로 물이 정체된 소에서 채집되었으나 전장 60 mm 이상의 개체는 어류에서도 다수의 채집되었다. 수온은 5월 말인 18.4℃에서 8월 월말에 28.5℃까지 달라하였다 (Fig. 2).

조사 수역에서 채집된 어류는 4과 13종이었다(Table 1). 이들 중 우점종은 Squalidus gracilis majiame (25.1%)였으며 다음은 Abbottina springeri (17.0%), Zoaco platypus (15.2%), Carassius auratus (11.6%)의 순으로.
Table 1. A list, individual number and relative abundance of cohabiting fishes of *Abbottina springeri* at the Mushimchon stream, Korea September 9, 1995

<table>
<thead>
<tr>
<th>Species</th>
<th>Individual number</th>
<th>Relative abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyprinidae (hồng어)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carassius auratus (hồng어)</td>
<td>27</td>
<td>11.6</td>
</tr>
<tr>
<td>Acheilognathus lanceolatus</td>
<td>2</td>
<td>0.9</td>
</tr>
<tr>
<td>Pseudorasbora parva (찰붕어)</td>
<td>8</td>
<td>3.6</td>
</tr>
<tr>
<td>Gnathopogon strigatus (충문개)</td>
<td>3</td>
<td>1.3</td>
</tr>
<tr>
<td>Squalidus gracilis majimae (긴문개)</td>
<td>56</td>
<td>25.1</td>
</tr>
<tr>
<td>Pseudogobio esocinus (모래투지)</td>
<td>11</td>
<td>4.9</td>
</tr>
<tr>
<td>Abbottina springeri (해매치)</td>
<td>38</td>
<td>17.0</td>
</tr>
<tr>
<td>Microphysogobio yaluensis (돌짜지)</td>
<td>19</td>
<td>8.5</td>
</tr>
<tr>
<td>Zacco platypus (피타미)</td>
<td>34</td>
<td>15.2</td>
</tr>
<tr>
<td>Cobitidae (기름종개과)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikoskimia koreensis (찰종개)</td>
<td>4</td>
<td>1.8</td>
</tr>
<tr>
<td>Misgurnus mizolepis (이구라지)</td>
<td>5</td>
<td>2.2</td>
</tr>
<tr>
<td>Odontobutidae (동사사과)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontobutis interrupta (열목동사사)</td>
<td>12</td>
<td>5.4</td>
</tr>
<tr>
<td>Gobiidae (방어어과)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinogobius brunneus (밀어)</td>
<td>4</td>
<td>1.8</td>
</tr>
</tbody>
</table>

* Endemic species

풍부하였다. 한국특산어류는 *S. gracilis majimae*, *A. springeri*, *Microphysogobio yaluensis*, *Ikoskimia koreensis* 및 *Odontobutis interrupta*의 5종으로 전체의 39.0%에 해당되었다.

2. 전장 조성 및 연령

산란시기가 짧고 성장이 빠른 어류의 연령을 추정하는 데는 전장변도법에 의한 petersen method (Bagneal, 1978)가 많이 이용된다. 월별로 전장조성을 비교한 결과는 Fig. 3에 나타낸 바와 같다. 그림에서 산란기 직후인 5월을 기준으로 삼아 보면 첫번째 peak인 30 ~ 50mm 군은 만 1년 생, 50 ~ 65mm 군은 만 2년생, 65mm 이상의 군은 만 3년생으로 추정되었다. 5월 7일의 1년생은 성장함에 따라 peak가 점차 오른쪽으로 이동하여 11월에는 55 ~ 65mm로 성장하였으며 5 ~ 8월 시기에 성장속도가 빠른 것으로 나타났다. 8월과 9월에 채집된 20 ~ 30mm의 개체들은 당년생이며 11월이 되면 30 ~ 50mm 크기로 성장한 것으로 나타났다. 6월 23일 이후에 65mm 이상 개체의 출현빈도가 감소된 것은 3년생 산란 이후에 많은 개체가 사망한 결과로 추정된다.

3. 이차 성장

이차 성장은 추성 (nuptial tubercles), 생식공돌기 (genital papilla) 및 혼란색 (nuptial pigmentation)에서 발견되며 전체 55mm 이상의 개체 (만 2년생 이상)에서 산란기인 5 ~ 6월에 가장 두정하게 나타났다 (Fig. 4).

추성은 양어와 어류의 수컷에 존재한다. 이차 성장의 하나이다. 본 종의 수컷의 경우 1mm 정도의 크기로 긴 날카롭게 뾰족한 추성은 짧은 아래 부위와 전통부에는 모서리가 나타나고 전세개골과 간세개골의 아래 부위와 세조골에는 보통 일정할 나타나며 몸단부, 안 상부 및 안후부에도 산재한다. 또한 가슴지느러미 제 1기조의 전연부에는 40개 내외의 추성이 1 ~ 3열로 거쳐
상으로 분포하고 제2기조에도 일렬로 나타나며 이 두 기조는 앞쪽의 그것에 비해서 짧아져 있다(Fig. 4-A, B).

생식공돌기는 수컷의 경우 몸에 붙어있는 빈놀의 노출별로 보아 비슷한 정도의 크기이고 동근관이나 앞쪽의 그것은 비슷한 정도의 크기로 장타원형을 이루고 있어서 쉽게 구분되었다(Fig. 4-C). 채색의 경우 산란기가 되면 수컷은 앞쪽에 비해 몸 전체가 진한 빈갈색으로 변하게 되며 특히 복측 부위의 비늘 후연부에 흰갈색 색조로 분포하여 색소가 나타나지 않는 앞쪽과 잘 비교되었다(Fig. 4-C).

Table 2. Sex ratio of Abbottina springeri collected in the Mushimchon stream, Korea from March to August, 1995

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
<th>Sex ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar.</td>
<td>25</td>
<td>23</td>
<td>1:0.92</td>
</tr>
<tr>
<td>Apr.</td>
<td>22</td>
<td>19</td>
<td>1:0.86</td>
</tr>
<tr>
<td>May</td>
<td>52</td>
<td>42</td>
<td>1:0.81</td>
</tr>
<tr>
<td>Jun.</td>
<td>17</td>
<td>14</td>
<td>1:0.83</td>
</tr>
<tr>
<td>Jul.</td>
<td>16</td>
<td>22</td>
<td>1:1.31</td>
</tr>
<tr>
<td>Aug.</td>
<td>11</td>
<td>13</td>
<td>1:1.18</td>
</tr>
<tr>
<td>Total</td>
<td>143</td>
<td>133</td>
<td>1:0.93</td>
</tr>
</tbody>
</table>

4. 생 비

만 2년생 이상의 개체 중 외형상 성구별이 분명한 276개체를 대상으로 일렬로 조사한 결과 암컷이 143개 체, 수컷이 133개체로 구별되어 성비는 1:0.93으로 나타났다(Table 2). 산란시기가 7월과 8월에는 암컷의 출현 비율이 다소 높았는데, 이는 산란 후 암컷의 사 망률이 높은 결과로 보이지만 성전환은 없는 것으로 판단되었다.

5. 생식소 성숙

산란시기를 알아보기 위하여 매일 채집된 표본을 대 상으로 생식소 성숙도를 조사한 결과는 Fig. 5에 나타낸 바와 같다. 수온이 10℃에 도달되는 3월 중순부터 생식 소 성숙의 경후가 두려워지기 시작하여(GSI 5% 내외) 4 월 중순에는 GSI 값이 10% 내외가 되며 5월 초순에 접 어들면 대부분의 개체가 10~25%의 높은 생식소 성숙 도를 보였다. 6월 초순의 경우는 대부분의 개체가 15~ 25%의 높은 생식소 성숙도를 나타내었으나 일부 개체 에서는 1~2% 정도의 낮은 값을 보였으며 7월 이후에 는 5%를 넘는 개체는 거의 없었다. 따라서 생식소 성숙 도가 가장 높은 시기는 5월과 6월이며 산란성기는 수온 이 20~25℃에 달하는 6월로 추정되었다.

또한 전장 50 mm 데의 개체에서는 생식소 성숙도가 15% 정도로 나타나고 60 mm 이상의 개체에서는 20% 내 외로 높게 나타나는 경향으로 보아 산란은 만 2년 생부 터 시작되며 3년 생에서 가장 원활한 것으로 추정되었 다.

한편 전장 54 mm 이상이고 낭소성숙도가 13% 이상 이 되는 8개체의 표본에 대해서 포란수를 계수하고, 각 개체당 50개씩의 난의 직경을 측정한 결과는 Table 3에 나타낸 것과 같다. 포란수는 620~694개의 범위로 평균 652개로 나타났으며 개체가 큰수록 포란수도 많아지는 경향은 있으나 현저한 차이는 없었다. 또한 난의 직경은
Fig. 5. Monthly change of GSI in females of *Abbottina springeri* at study station from March and October, 1995.

<table>
<thead>
<tr>
<th>Table 3. The number of egg, egg size and GSI of Abbottina springeri in the Mushimchon stream, Korea in June, 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length (mm)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>65.3</td>
</tr>
<tr>
<td>67.2</td>
</tr>
<tr>
<td>67.5</td>
</tr>
<tr>
<td>65.1</td>
</tr>
<tr>
<td>54.0</td>
</tr>
<tr>
<td>54.5</td>
</tr>
<tr>
<td>54.3</td>
</tr>
<tr>
<td>53.8</td>
</tr>
<tr>
<td>Mean</td>
</tr>
</tbody>
</table>

0.42~0.48 mm의 범위이고 평균 0.43 mm로 나타났다.

본 연구의 대상으로 고정된 100 mm 내외로 성장하는 *Abbottina rivularis*의 경우는 포란수가 1,198~1,980개이고 난의 직경은 2~2.25 mm로 조사된 것과 비교한다면 (Banarescu and Nalbant, 1973) 포란수는 ½~⅔의 정도로 적고 난의 직경은 ¾ 정도로 현저히 작게 나타났다.

6. 소화관 내용물

본 종은 입이 머리의 아래쪽에 위치하고 활 모양으로 굽었으며 아래쪽 중앙에는 육질의 몰기가 있어 먹이에 있는 먹이를 섭취하기에 알맞다. 위를 적출하여 내용물을 조사한 결과는 Table 4에 나타내었다. Cyanophyta, Bacillariophyta, Chlorophyta, Flagellata 등의 조류와

<table>
<thead>
<tr>
<th>Table 4. Food composition of the stomach contents of Abbottina springeri collected in the Mushimchon stream, Korea</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td>Cyanophyta</td>
</tr>
<tr>
<td>Oscillatoria</td>
</tr>
<tr>
<td>Lyngbya</td>
</tr>
<tr>
<td>Microcystis</td>
</tr>
<tr>
<td>Bacillariophyta</td>
</tr>
<tr>
<td>Cymbella</td>
</tr>
<tr>
<td>Navicula</td>
</tr>
<tr>
<td>Nitzschia</td>
</tr>
<tr>
<td>Gomphonema</td>
</tr>
<tr>
<td>Surirella</td>
</tr>
<tr>
<td>Neidium</td>
</tr>
<tr>
<td>Chlorophyta</td>
</tr>
<tr>
<td>Closterium</td>
</tr>
<tr>
<td>Spirogyra</td>
</tr>
<tr>
<td>Scenedesmus</td>
</tr>
<tr>
<td>Closterium</td>
</tr>
<tr>
<td>Flagellata</td>
</tr>
<tr>
<td>Euglena</td>
</tr>
<tr>
<td>Volvox</td>
</tr>
<tr>
<td>Protozoa</td>
</tr>
<tr>
<td>Paramecium</td>
</tr>
<tr>
<td>Rotifera</td>
</tr>
<tr>
<td>Brachionus</td>
</tr>
<tr>
<td>Arthropoda</td>
</tr>
<tr>
<td>Cladocera</td>
</tr>
<tr>
<td>Ephemeroptera</td>
</tr>
<tr>
<td>Trichoptera</td>
</tr>
<tr>
<td>Diptera</td>
</tr>
</tbody>
</table>

+: rare, ++: common, +++: abundant, ++++: very abundant
Protozoa 및 Arthropoda를 섭취하고 있었다. 그 중 Bacillariophyta가 제일 많이 관찰되었고 Cyanophyta의 Lyngbyales과 Flagellata의 Volvox류도 풍부하게 출현하였다. Arthropoda류는 큰 개체에서 더 많이 발견되었으 며 Protozoa는 여름철에 많이 섭취되었으나 전반적으로 보아 계절에 따른 뚜렷한 먹이 생물의 변화는 없는 것으로 나타났다.

적요

충청북도 청원군 가덕면의 무심천 수역에 서식하는 Abbottina springeri를 대상으로 1995년 3월에서 11월에 걸쳐 생태학적 연구가 수행되었다. 물이 정체되고 하상이 빨과 모래로 이루어진 곳에 주로 서식하였으며 전장 60 mm 이상의 개체는 유속이 완만한 여울에서도 상당 수 체집되었다. 6월 개체군의 전장 분포를 보면 30~50 mm 군은 1년생, 50~65 mm 군은 2년생, 65 mm 이상의 군은 3년생으로 추정되었다. 이차 성질은 추청, 혼인색, 생식공절기에서 나타났으며 전장 55 mm 이상의 개체에서 5~6월에 가장 두드러졌다. 산란성기의 수온이 20~25℃가 되는 6월이였으며 산란은 1년생부터 시작되었다. 양컷과 수컷의 성비는 1:0.93이었으며 평균 포란수는 652개, 암의 적정수는 0.43±0.06 mm이었다. 소화관 내부생물은 조류가 가장 많은 비율을 차지하였으며 원생동물은 여름철에 많이 나타나고 전장 60 mm 이상의 큰 개체는 수서곤충도 섭식하고 있었다.

참고문헌

Received : June 5, 2000
Accepted : August 21, 2000