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A Simple Lagrangian PDF Model for Wall-Bounded
Turbulent Flows
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Department of Mechanical Engineering, University of Seoul
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A simple Lagrangian pdf model is proposed with a new numerical algorithm for application
in wall-bounded turbulent flows. To investigate the performance of the Lagrangian model, we
minimize model’s dependence on empirical constants by selecting the simplest model for
turbulent dissipation rate. The effect of viscosity is also included by adding a Brownian random
walk calculate the position of a particle. For the no-slip condition at the wall and correct near-
wall behavior of velocity, we develop a new boundary treatment for the particles that strike the
wall. By applying the model to a fully developed turbulent channel flow at low Reynolds
number, we investigate the model’s performance through comparison with direct numerical

simulation result.
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1. Introduction

Since van Dop et al. (1985) proposed a random
walk model for calculations of turbulent flows for
the first time, a few researchers has been inves-
tigating the feasibility of random walk models as
turbulence models. Specially, Pope and his co
-workers have developed, improved and applied
the random walk model, also known as the
Lagrangian probability density function(PDF)
model, to turbulent reactive flows (Pope, 1985;
Howarth & Pope, 1986, Pope & Chen, 1990;
Dreeben & Pope, 1997). Lagrangian models are
more comprehensive than the classical models
derived from the Reynolds averaging process, and
the models can treat the nonlinear reaction source
terms without approximation. Their application
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ranges broadly to from shear flows, jet flows to
channel flows. Although Lagrangian models are
continuously improved for better performance,
they have not been widely used in turbulence
model development or application studies.

From the viewpoint of turbulence model, La-
grangian models have a major advantage over
traditional one-point closure models such as the
k-& model or Reynolds Stress Transport Model.
Absence of the nonlinear advection terms in the
evolution equation of a Lagrangian particle elimi-
nates the uncertainty associated with a gradient
-diffusion modeling of the higher-order correla-
tion terms constantly appearing in the equations
for the lower-order correlation. Thus, the model
target in Lagrangian models is limited to the
pressure strain correlations. Also, a Lagrangian
PDF model can provide many Lagrangian statis-
tical turbulence data which cannot be easily
obtained from Eulerian turbulence models. Prob-
ability density functions and Lagrangian velocity
structure functions or higher-order correlations
are examples. These will give us some insight into
the flow structures in question.
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From the numerical point of view, a Lagran-
gian model is superior to other models adopting
the Eulerian approach. A Lagrangian model does
not require a physical grid system to obtain the
Eulerian data; thus numerical difficulties associat-
ed with typical temporal integration of an evolu-
tion equation in the grid system such as the
restriction on the time step due to the CFL condi-
tion do not occur. Also, the computational bur-
den increasing with the Reynolds number is less
severe than typical numerical scheme adopting the
Eulerian approach for the same reason.
of the Lagrangian
approach is that a Lagrangian model not only

One important merit

calculates the flow variables such as velocity, but
also provides information about particle disper-
sion because the model directly computes particle
trajectories. So it is a good methodology to com-
pute diffusion as well as a turbulence model.
Therefore, the Lagrangian approach is ideal for
pollutant dispersion studies.

Recently, the effect of viscosity has been incor-
porated into the Lagrangian model by Dreeben &
Pope (1998). Their idea is similar to that of
Chorin(1975) and derives a numerical scheme for
the random vortex method. From the characteris-
tics of the viscous diffusion, they added Brownian
motion to the calculation of trajectory of a parti-
cle. For the no-slip condition at the wall, they
proposed a particle collision model. With a
modification of the model utilizing an anisotropic
representation of the Reynolds stress model of
Durbin(1993), they simulated a turbulent channel
flow. Their derivation, however, is based on the
Langevin model derived from Kolmogorov’s sca-
ling assumption of the Lagrangian velocity struc-
ture function in the inertial range for homogene-
ous turbulence. Because of scale disparity between
the inertial range and viscous dissipation range,
justification of the addition of the Brownian walk
model to the turbulence model derived from the
inertial range scaling should be carefully
examined. Minier & Pozorski(1997) derived the
same pdf model using principles from statistical
physics, but their model is consistent with Kol-
mogorov’s hypothesis for the inertial range. Con-
sequences of the Lagrangian model including the

viscous effect in the viscous time and length scales
need to be investigated.

In this paper, our purpose is two-fold: First, we
investigate feasibility as a turbulence model of the
Lagrangian model with the viscous effect in
calculating highly anisotropic flows. We develop
a numerical algorithm that computes the veloc-
ities and positions of particles using the simple
Langevin model with the viscous effect included.
Importance of the wall boundary treatment to
satisfy the no-slip condition in the Lagrangian
approach is carefully investigated since the
boundary condition sensitively influences not
only near-wall turbulence but also the flow field
far from the wall. Some proposed new boundary
treatments in the log-law region so that they can
avoid resolving problem in the viscous sublayer
(Dreeben & Pope, 1997; Minier & Pozorski,
1999). These treatments, however, introduce un-
certainty into the model, thus causes the model to
be more unreliable. Second, since a Lagrangian
method can provide Lagrangian turbulence data,
the effect of viscosity in the Lagrangian structure
function or correlations is discussed. In particu-
lar, the performance of the model in the viscous
time scale and probability density functions are
examined in detail.

This paper is organized as follows: The govern-
ing equations for the Lagrangian velocity and
position of a particle is described in Sec. 2. The
numerical schemes for time integration and aver-
aging are introduced in Sec. 3. Section 4 explains
the model test results for a turbulent channel flow.
Section 5 concludes our study. Appendices
include detailed explanations of the integration
scheme and kernel regression.

2. Governing Equations

There are two derivations of the evolution
equation of the Lagrangian velocity-one using
the Langevin equation with Kolmogorov’s
hypothesis by Pope(1994) and the other using a
principle from statistical physics by Minier &
Pozorski(1997). In this paper we follow Pope’s
derivation although the original idea dates back
to van Dop et al. (1985). For high Reynolds
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number homogeneous flows, from Kolmogorov’s
hypothesis the Lagrangian velocity structure func-
tion D,(7) defined by

Di(r)=<(U(t+1)-U#))*> (1

can be scaled in the inertial range as(Monin &
Yaglom 1975)

Di(r)=Coer when r>r, )

where the bracket denotes averaging over samples
and U(¢), Cy € are Lagrangian velocity, Kol-
mogorov’s constant and mean dissipation rate,
respectively. 7, is the Kolmogorov time scale, (y/
€)'2. Equation. (2) indicates that the Lagrangian
velocity increment can be modeled as a Gaussian
random variable with mean zero and variance
proportional to 7. A stochastic differential equa-
tion with such properties is the well-known
Langevin equation:

24"
Ty

where W(¢) is a Wiener process such that JW(¢)
is a Gaussian random variable with zero mean
and variance g¢. This equation describes a Mar-
kov process, thus [J(¢+dt) is determined in-
dependently of how [/(¢) was determined. 7}
and g% are the Lagrangian integral time scale and
variance of [J, respectively. The Langevin equa-
tion yields the structure function:

2%
Tt 4)

a=-YBa+Yoaw) @

D)=

when 7/ 7;« 1. Comparison of Egs. (2) and (4)
yields:

1 Cee 3 €
TL-_Z—Z(:’T_TCOk) (5)

where % is the turbulent kinetic energy and an
isotropic relation between 4 and £ was used.
With this expression for 7}, the Langevin equa-
tion (Eq. (3)) can be written as:

dU()=—FCrE U dt+{TreaW (1) (6)

Now, we consider extension of the Langevin,
equation for application to inhomogeneous flows
at finite Reynolds numbers. We make three modi-
fications to Eq. (6). First, consider the case with

a mean Eulerian velocity component. Then the
fluid particle velocity relaxes to the Eulerian
mean. Second, the coefficient of the drift term is
modified such that the process correctly represents
a dissipating system since Eq. (6) describes a
stationary, Gaussian, Markov process known as
the Ornstein Uhlenbeck (OU) process. With these
two modifications, Eq. (6) for each component
can be rewritten as:

dU(t)= —<%+%Co>%( Ui(t)
—<wu:>)dt+/Coe dWi(t) @)

where < g;> is the Eulerian mean velocity and
W:(t) are three independent Wiener processes
with zero mean and covariance

< dW:dW;>=dtd;. (8)
The coefficient 1/2 in the drift term represents the
viscous dissipation effect and correctly causes the
turbulent kinetic energy to be dissipated at the
rate ¢. Equation (7) can be thought of as the
governing equation for the Lagrangian velocity
increment for an infinite Reynolds number flow
with dissipation in the absence of a mean pressure
gradient.

The third modification to include the effects of

a mean pressure gradient and viscosity requires a
lengthy derivation. In order to include the viscous
effect, we consider a fluid particle motion X;(¢#).
Since the viscous diffusion can be modeled by
Brownian motion, the equation for a particle’s
displacement can be written as:

dX:=Udt+2v dW; )
where p is viscosity and W; is a Wiener process
independent from Eq. (8). On the other hand,
Lagrangian velocity increment J{J can be expres-
sed in terms of Eulerian velocity z,(x;, ¢) using
the Taylor expansion. Up to the second-order
terms,

_ Ous _% L 32u,-
AUr=55 dt +5, dXit g 3o

dX;dXx

(10)
where x; denotes the Eulerian coordinates. Sub-
stituting Eq. (9) into Eq. (10), neglecting the
higher order terms than ¢, and using the Navier-
Stokes equation yield,

(1 oP Pu Ous
dl]i_( o0 0x: +2v 0%,;0%; )dt+‘/273xj aw;
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(1)
where JW; is the increment of the same Wiener
process as in the Eq. (9). This equation describes
an evolution equation for the Lagrangian velocity
increment for laminar flow. For turbulent flows,
decomposition of the Eulerian variables into
mean and disturbances modifies Eq. (11) as:

U= (1 a<P> +2y F<u> )dt

0%: 0%,;0%;
o< u:>
+ 2= 5%, dw;
1 9p Fu;
+< oom T2 6x,-6x,->dt
+ 2%y, (12)

where p and y; denote disturbances of pressure
and velocities. Disturbance parts, in the third and
fourth line of the equation, which represent fluc-
tuations in pressure and viscous dissipation,
require a turbulence model and can be replaced
by the right-hand side of Eq. (7) yielding,

dUi= (l o0<P> _|_2b62<u,->>dt

o 0x: 0x;0%
3< Ui >
+ 2y o ——5=dW;
_(%_+Tco>—;{ Ui— < wu:>)dt
+ Coe dW[ (13)

where W, is a Wiener process independent from
W.. This completes modifications to the Langevin
equation.

Usually, solving the stochastic differential
equation Eq. (13) for velocity and Eq. (9) for
particle displacements for a great number of ran-
domly distributed particles constitutes a Lagran-
gian pdf modeling since it is equivalent to solving
an evolution equation for the Lagrangian joint
pdf known as the Fokker-Planck equation. Inter-
ested reader should refer to Pope (1985) or
Gardiner (1997).

In order to solve Egs. (9, 13) numerically,
information on dissipation rate, e(x;#), is
required. Pope & Chen (1990) derived a stochas-
tic differential equation for turbulent frequency o
(xi» t)(=e(xit)/k(x:t)) using the log-normal
property of the probability density function of
epsilon for homogeneous turbulence. In the pres-

ent study, we did not adopt this model because
the model’s several empirical model constants
increase the model’s uncertainty and do not com-
plete near-wall modification is not complete.
Instead, we use a simple model for the dissipation
rate derived from a dimensional argument for
homogeneous flows,

k8/2
elxs, )= CrT (14)

where / is a length scale proportional to the
mixing length and C; is a model constant that can
be estimated from the near-wall equilibrium con-
dition. For application to near-wall flows, a Van
Driest type mixing length model is selected,

1=ty 1—exp( —44:)) (15)

where x, y, u. and A are the von Karman con-
stant, distance from the wall, wall-shear velocity
and a model constant. Their values are C,=2.5,
C,=0.09, x=0.41, and A=26. This completes
derivation of the simplest stochastic differential
equation model for wall-bounded turbulent
flows.

3. Numerical Algorithm

3.1 Integration scheme
Equations (9) (13) can be generally written into
the following form:

df(xia t):a(xia t)fdt+g(x13 t)dt
+h(xis t, AW (16)

where the term with an explicit dependence on f
is separately shown as in the first term on the
right-hand side. A major difference from typical
evolution equations is that it has a term, whose
magnitude is proportional to /df. Thus, the
equation has two levels of dependence on the time
step. Integration of the last term is performed
using Ito’s formulation. Stratonovich’s formula-
tion is more difficult to apply due to its semi-
implicit nature. For difference between the two
formulations, see Gardiner(1997). Equation (16)
is numerically solved using a low-storage 3rd-
order Runge-Kutta scheme with an exact treat-
ment of the first term. The exact treatment of the
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first term is inevitable since g can assume an
unbounded value near the solid wall boundary.
Detailed expression of the integration scheme can
be found in Appendix A.

3.2 Kernel regression

Integrations of Egs. (9, 13) does not require a
physical grid system since it solves for evolution
of each particle independently. The coefficients of
the evolution equation, however, include informa-
tion on Eulerian variables such as velocity, pres-
sure, and dissipation rate. Therefore, we need to
extract the Eulerian information from distributed
particle information. For such a purpose, we
adopt a kernel regression (Hardle 1990). As a
fitting function, we select a polynomial:

f(y—yj)=éock(y—yj)" (17)

where y, y; and K are the space variable, particle
location, and order of approximation, respective-
ly. This fitting function not only computes regres-
sion of the approximated function but also pro-
vides derivatives up to K-th order. However,
application of this kernel regression for every
particle requires a significant amount of computa-
tion time. Thus, collocation points are selected
and the Eulerian means are computed at these
points. Then interpolation is carried out to com-
pute the mean value at the particle location.
Details are found in Appendix B.

3.3 Boundary conditions
No-slip boundary condition at solid walls
should be satisfied in the evolution of Lagrangian
particle velocity when viscous effect is considered.
Enforcement of the no-slip condition can be
made by modifying the velocities of the particles
that strike the wall. With y denoting the wall
-normal coordinate, new position of a particle
strikes the wall is given as:
yview=|y""| i y*<O (18)
where y"*! is u+1st time step position of a
particle computed from Eq. (9). Even when y”*!
>0, a particle can have a path with y<0 during
the period A¢ since near the wall particle trajec-
tory is well approximated by Brownian motion

due to viscosity. Such probability is easily
obtained (Dreeben & Pope 1998, Karatzas &
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Y

Fig. 1 Near-wall particle velocities for three bound-
ary treatments: (a) type A(Eq. 20); (b) type B
(Eq. 21); (c) type C (Eq. 22). All quantities
are nondimensionalized 4, and %
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Shreve 1991):

I”!I” 1
prob.(v(t)<0] t"<t<t"“)=exp<” M]; )
(19)

In either case, the velocity of the particle is
modified to enforce the no-slip condition. Three
treatments are considered:

A) Ur'=0 (20)
B) Ur'=yue® 22| @1
0) Ui"+1:ynew_—__'—a<az;?> i

e e I (22)

where type A prescribes zero velocity for a parti-
cle that strikes the wall and types B and C make
use of the first-order and second-order Taylor
expansion at the wall, respectively. These three
treatments are tested in a turbulent channel flow
and the near-wall particle velocities are demon-
strated in Fig. 1. Throughout the paper, all of the
quantities in figures are nondimensionalized by
the wall-shear velocity . and the channel half
gap 4. As expected, type A underestimates the
particle velocity near the wall and in the rest of
the channel. Specially, a large discrepancy
between the particle velocity and the Eulerian
mean velocity is observed in the region very close
to the wall when compared to types B and C.

Fig. 2 Near~wall behavior of the turbulent kinetic
energy for three boundary treatments

Note the particle velocities along a line element
near the wall due to each type of boundary treat-
ment. The near-wall behavior of turbulent kinetic
energy, a measure of variance of the particle
velocity, is shown in Fig. 2. Types B and C cause
the variance to decay faster than type A with the
distance from the wall going to zero although the
limiting slope does not reach 2. From this test, we
find that type C produces the best result. Also,
convergence performance of the mean velocity
calculation using type C boundary treatment is
the best among three. Therefore, we adopt type C
boundary treatment in all of our computations.

4. Test Results

The numerical algorithm explained in the pre-
vious section is tested in simulations of a fully
developed turbulent channel flow subject to a
constant pressure gradient. The Reynolds number
based on the wall shear velocity ., the channel
half gap %, and viscosity is 100. The reason we
choose this flow as our test case is that the flow is
marginally turbulent, thus the effect of viscosity is
maximized and the walls play important roles in
determining flow characteristics. Therefore, we
can test how the Lagrangian model, derived from
Kolmogorov scaling for high Reynolds number
isotropic turbulence, performs in an anisotropic
low Reynolds number flow. Also, there is direct
numerical simulation (DNS) result for this case.
Thus, performance test can be made through
comparison. Initially, we distribute 32,000 parti-
cles randomly throughout the channel and let
these particle evolve according to Egs. (9, 13). 65
nonuniform grids are selected in the wall-normal
direction using the cosine function in order to
capture steep variations of the Eulerian mean
values of velocity and turbulence quantities. This
facilitates comparison with the DNS results.

4.1 Global performances

In this section, we investigate the current
model’s global performance such as distributions
of the mean velocity, turbulence intensity, etc.
Figures 3(a) and 3(b) show mean streamwise
velocities(compared with DNS results) (Kim et
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Fig. 3 (a) Mean Eulerian velocity and (b) Lagran-

gian particle velocities in a fully developed
channel flow

al. 1987, Lee et al. 1997) and Lagrangian particle
velocities, respectively. A typical distribution of
mean velocity in the channel is simulated by the
model, but the model underestimates the mean
velocity throughout the channel. Turbulence
intensities are displayed in Fig. 4. Near-wall
anisotropy is not reflected in our model. Thus, the
model does not distinguish between wall normal
and spanwise velocities, resulting in identical
distributions of the root-mean-squared velocity.
The model overestimates the wall-normal and
spanwise rms quantities, while underestimating
the streamwise rms velocity, which is another

y

Fig. 4 Distribution of turbulence intensity DNS
results are shown also for comparison
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Fig. 5 The Reynolds shear stress and total stress
with DNS results

symptom associated with the model’s inability to
capture a strong anisotropy.

The Reynolds shear stress distribution is shown
in Fig. 5 along with the total stress which is the
sum of the Reynolds shear stress and viscous
stress. The total stress is a good indicator of the
model’s performance. Considering that our model
is the simplest Lagrangian model with a mini-
mum number of empirical constants, the model
performs well. Specially, the near-wall behavior
of the Reynolds stress is well captured although
the model predicts a little higher maximum value.
It is interesting to note that while < 2?> and <
v?> are overpredicted and underpredicted,
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Fig. 6 Turbulent dissipation rate and production

respectively, < 'y’ > is relatively well predicted.
Finally, turbulent energy production, P(=-<
u'v'>d<d4;¢>), and dissipation rate are demon-
strated in Fig. 6. Our model for ¢ (Egs. (14),
(15)) does not guarantee a nonvanishing value of
€ near the wall if £ behaves correctly, kocy?,
since [ocy? near the wall, where y is distance
from the wall. However, the result shows a finite
value of ¢ near the wall, suggesting that % scales
with y#3, which is confirmed numerically (see
Fig. 2). This serves as an example that a model
combined with finite property sets the near-wall
behavior of one of model element. Although the
model produces relatively reasonable value at the
wall, the near-wall(0< y* < 10) behavior shows a
large discrepancy compared to the DNS result.
Since the Reynolds stress is relatively well predict-
ed, the agreement in turbulent energy production
between our model and DNS result is excellent.

42 Local performances

In this section, we examine the model’s perfor-
mance in terms of short time behavior. Specially,
we focus on the viscous time scale performance.
We investigate the Lagrangian velocity structure
function, velocity correlation coefficient, disper-
sion and probability density function which can
be predicted with are of accuracy. Although the
channel flow is highly anisotropic, local behavior
should not deviate much from isotropic character-

<(Ut+e)y-U() >

Fig. 7 The Lagrangian velocity structure function
for three initial wall-normal locations in the
channel

istics. The Lagrangian velocity structure function
(defined by Eq. (1)) from three different initial
particle locations, y=0.0(channel center), 0.5, 0.
75, is shown in Fig. 7. As shown in Fig. 7, the
short time behavior follows the scaling relation
derived from Kolmogorov’s assumption for the
inertial range. According to Kolmogorov’s sca-
ling argument for viscous time scale, however, the
velocity structure function should be (Monin &
Yaglom 1975),

Di(r)=ae¥y~V2r2 when <Lz, (23)

where ¢ is a universal constant. Such a quadratic
behavior in the viscous dissipation range (z,=0.
03~0.1 for 3 locations shown in Fig. 7) is not
observed in our results. Although we include
viscous effects by adding a random Gaussian
walk to a particle’s position calculation, such a
modification does not guarantee a correct scaling
property of velocity in the viscous dissipation
range. This result can be understood by examin-
ing the governing equation for the Lagrangian
velocity increment(Eq. (13)). Even with the vis-
cous terms, the model represents a Markov proc-
ess. As gt — 0, the acceleration due to the last
term, /Coe dW, becomes unbounded since gW oc
Jdt . This Markovian property prevents a smooth
variation of velocity, thus the inertial range sca-
ling holds down to the viscous dissipation range
and a correct scaling for the viscous dissipation
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Fig. 8 The Lagrangian velocity correlation coeffi-
cient distribution for three initial wall-
normal locations

range is not captured. For an exact treatment in
the viscous range, a model for the acceleration
increment might be necessary, which is believed
to guarantee a smooth variation of velocity (see
Sawford 1991).

The effect of viscosity is also examined in the
Lagrangian velocity correlation. The correlation
coefficient defined as:

_<U@Ut+o)>
- <U)»?

(24)

is shown in Fig. 8 for three different initial loca-
tions. As in the structure function, the viscous
effect is not captured in the correlation coefficient.
The slope of the correlation coefficient at 7=0
does not vanish; instead, it has slope of -1/7;
which was defined in Eq. (5). This slope relation
is derived from inertial range scaling. The local
values of £ and ¢ at =0 are used in the calcula-
tion of 73 in Fig. 8. Results at y=0.5, 0.75 show
a little deviation which is due to the steep varia-
tion of % or ¢ near the wall. This again confirms
that the Lagrangian velocity follows inertial
range scaling even in the viscous dissipation
range. This seems to be a limitation of the present
model in simulating viscous effects.

The viscous effect is well represented in a
particle’s dispersion in the wall-normal direction.
Mean-squared dispersion in the wall-normal
direction for three different initial locations is

<(Y(t+1)-Y(1))*>

10° 10" 10" 10’ 10'

Fig. 9 Mean squared wall-normal dispersion for
three initial wall-normal locations
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Fig. 10 Probability density functions for the

streamwise and wall-normal velocity fluc-
tuations at three wall-normal locations

shown in Fig. 9. For comparison, the scaling
relations for viscous dissipation range, inertial
range and long-time limit for isotropic turbulence
are shown together. Those are,

<(Y(t+1)-Y()*>
=2ur when <1, (25)
=< %>t when 7,< < T (26)
=2<9?>T.r when Ti<r @27

where Eq. (25) is due to Brownian motion and
Eqgs. (25, 27) are Taylor’s formula for isotropic
turbulence (Taylor 1921). Since particles strike
the wall during the course, long-time limits are
not observed and plateau distributions are obser-
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ved instead. Commonly, the scaling relation for
viscous range is well captured. For inertial range,
however, they are mildly represented due to the
presence of the walls.

Probability density functions of velocity fluctu-
ation are investigated at three locations in Fig. 10.
The pdf of the streamwise velocity fluctuation
slightly deviates from normal distribution which
has a zero mean and the same variance. Specially,
the tail part of the pdf shows an asymmetric
distribution. It has a negative skewness and simi-
lar behavior was observed in a recent turbulent b.
I. experiment (Tsuji & Nakamura 1999). The pdf
of the wall-normal component, however, is very
close to normal distribution. The pdf of the
spanwise component shows the same normal
distribution(figure not shown).

5. Conclusion

We developed a numerical algorithm to solve
the simple Langevin equation for Lagrangian
velocity increment that was derived from Kol-
mogorov’s scaling relation. Viscous effects were
also incorporated into the model by adding Brow-
nian random walk model to particles position
calculation. For imposition of no-slip condition
at the wall, we tested several treatments for the
velocity of particles which strike the wall and
found that the second-order Taylor expansion is
necessary to produce a near-wall particle velocity
which is consistent with near-wall mean velocity.

We have investigated the model’s performance
by applying it to a fully developed turbulent
channel flow at a low Reynolds number. A simple
near-wall model is adopted for the turbulent
dissipation rate. For a few selected empirical
constants, the model performs relatively well. The
mean velocity in the streamwise direction is un-
derpredicted. Anisotropic nature of turbulence
intensities near the wall was not correctly captur-
ed, while the Reynolds shear stress distribution
was well predicted. a finite value of the dissipa-
tion rate at the wall is captured, but the dissipa-
tion rate is underpredicted in the region very close
to the wall.

We have also examined the model’s perfor-

mance viscous time scale. Assumed scaling rela-
tions for inertial range were confirmed, but the
scaling relation for viscous dissipation range was
confirmed only in dispersion characteristics, and
not in velocity. Also, the predided asymmetric
distribution of pdf for the streamwise velocity
fluctuation near the wall compared very well with
an available experimental result.

Considering the simplicity of the model with a
minimum number of empirical constants, the
current Lagrangian model performs well. This
might be due to the model’s Lagrangian property;
it eliminates uncertainty associated with the clo-
sure problem in turbulence modeling. Overall,
however, performance of the model is not satisfac-
tory. The present model is not a complete model
in the sense that only the Lagrangian property is
used to its full extent, while the other part of the
model is simplified. We may be able to improve
the model for turbulent dissipation rate and veloc-
ity in order to include the effect of the near-wall
anisotropy. Another point should be made about
inclusion of viscous effects. The current incorpo-
ration of viscous. effects is incomplete since the
model cannot demonstrate correct viscous-time
scale properties. Much effort should be made to
develop a new model to overcome the limitations
of the current model.
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Appendix

A.1 Integration Scheme
Equation (16) is rewritten as follows:

df(t)=a(D)fdt + g(t)dt+ h(t, f)dW (28)

where dependence on the space coordinates is

. dropped for simplicity. The coefficient g(¢) of the

first term is proportional to ¢/k, and near the
wall this coefficient becomes unbounded since the
turbulent kinetic energy has a limiting value of
zero while the dissipation rate has a nonzero
value at the wall. An explicit integration of this
term can cause numerical instability. To avoid
this, an exact integration method is adopted. With
a low-storage 3rd-order Runge-Kutta scheme, an
integration scheme for each substep in one time
step reads,

fn+k/3=exp((ak_+_/9h)Atan+(h—1)/3)
[fn+(h-1)f3+akdtgrw(h—l)/s
+BkAtgn+(h—2)/3+hn+(h-1)/3A Wk/a] (29)

where » and k denote n-th time step and substep
varying from 1 to 3, respectively. Discretized
Wiener process is given as:

AWHE=N(0, (ax+ Br)4t) (30)

where N(A, B) denotes a random number
selected from a normal Gaussian distribution
with mean A and variance B. The coefficients
are, ;;=8/15, ;=5/12, ;s=3/4, /=0, Bo=-17/
60, B;=-5/12, respectively. Also, there is no
restriction on the time step.

A.2 Kernel Regression

Suppose that statistical data (y;, f;) with j=1,
..., J are given. A good approximate function f
(y) is sought such that the error associated with
the approximation is minimized. The error is
defined as:
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Error= ng,.(y—y,-xﬁ—ﬂy—y,))z (31)

where K(y) is a kernel function. In our study, we
chose the following kernel function:

Kh(;,):%(p{,) when |y/h| <1 (32)
=0  otherwise (33)

A polynomial fitting function is selected:

- K

FO)=2 e (34)
From this, derivatives of up to K-th order at the
point of kernel center, y=0, can be obtained,

‘:;;m =m!cm (35)

The coefficients ¢, are obtained by solving the
following matrix equation derived from the error
minimization condition:

Yic;=F; (36)
with 4, j=0, ---, K-1. Y and F; are given as:
J .
Yg=§lKh(y—y¢)(y—yz)’*’ 37
Fi= 3 Kly—y0fily =)’ (38)

K is chosen as 3 and the parameter j of the
kernel function is computed at every time step
such that the number of selected data are
maintained constant. Near the boundary, where
data are asymmetrically distributed, a physical
condition is imposed by adding ghost data with
appropriate function values at the boundary. For
example, velocity and turbulent kinetic energy

vanish there; therefore, added data have zero

function values.



