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Crack Detection, Localization and Estimation of the Depth in a
Turbo Rotor

Rai Wung Park*
Faculty of Mechatronics, Daebul University

The goal of this paper is to describe an advanced method of a crack detection: a new way to

localize position and to estimate depth of a crack on rotating shaft. As a first step, the shaft is

physically modelled with a finite element method and the dynamic mathematical model is

derived using the Hamilton principle; thus, the system is represented by various subsystems. The
equations of motion of the shaft with a crack are established by adapting the local stiffness

change through breathing and gaping from the crack to an undamaged shaft. This is the

reference system for the given system. Based on a model for transient behavior induced from
vibration measured at the bearings, a nonlinear state observer is designed to detect cracks on the
shaft. This is the elementary NL-observer (Beo). Using the observer, an Estimator (Observer
Bank) is established and arranged at the certain position on the shaft. When a crack position
is localized, the procedure for estimating of the depth is engaged.

Key Words : Dynamic Behavior, NL-Observer, Estimator, Crack Detection, Crack Position,

Crack Depth

1. Introduction

As the classical method of a crack detection,
there are some ways to find the split on the shaft.
For example, some of them analyse the vibration
peaks and acoustics and measure the oil tempera-
ture by the costdown and by the transition of the
resonance (Muehlenfeld, 1992). Experts on these
subject fail to find cracks very often and even the
crack information is misunderstood as an effect
from a damaged bearing. Except the analysis
method, there are some other methods: namely, to
compare the time signal between damaged stage
in the operation and undamaged stage in the
initial stage (Imam, 1987), to look for the sensi-
bility of eigenvalue (Natke, 1990) and to use
modal observer under model reduction. A similar
way to detect a crack is also given by Soeffker
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(1993). But as a physical model they have used
lumped-mass model, the results contain some
error by the model reduction and physical model-
ing. These methods do not offer clear relation-
ships between phenomena and change of the
stiffness which are necessary for a crack detection
on the shaft. There is not any method to localize
the crack position on the shaft. Therefore, in this
study a new method based on the theory of
disturbance rejection control (Mueller, 1990;
Mueller, 1993) is suggested for detecting crack
and estimating the position with respect to con-
stant crack depth. As an indicator for the exis-
tence of a crack, the nonlinear dynamic effects
appeared by the change of the stiffness coefficients
due to the rotation of the cracked shaft, are inves-
tigated. These effects related to the measurement
on the bearings are important to determine the
existence of the crack on the rotating shaft. But it
is very difficult to set up the clear relation
between crack and caused phenomena in the time
domain operation. This is the main task in the
area of the crack problem, too.

First of all, the basic state observer is estab-
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Fig. 1 Physical model of the rotor

lished in the way to modify the given system into
the extended system with a linear fictitious model
for the nonlinear system behavior. In this consid-
eration, the effects of the extended system are
interpreted as internal or external disturbance
which is unknown at the initial stage.

The unknown nonlinear effects are approximat-
ed by the additional time signals of an by elemen-
tary state observer. FEM model, does not need
calculate the relative compliance of the crack.
Normally the elementary stiffness matrix for an
undamaged rotor is given in the stage of the
construction and the stiffness corresponding to
the crack can be calculated (Waller, 1989; Link,
1989; Bathe, 1990).

As an example of the physical model, the shaft
is modelled into N (=7) finite sub-shafts (Park,
1998); each one is called a subsystem. At both
ends of the shaft there exist dynamics of the
bearings. They have the task of system control.
For the initial data needed in the operating sys-
tem, the displacements of the jounals are mea-
sured on the bearings at the left and right sides of
the shaft. It is assumed that the material prop-
erties are homogenous. The geometrical data and
other detailed information are given in the appen-
dix.

2. Equation of Motion

Assuming that there is only small deviation
from motion and no redundant coordinate

(Bremer, 1992; Bremer, 1988), the system includ-
ing three harmonic unbalances in the 3rd, 4th and
5th subsystems in the middle of the shaft. Then
the following equation can be accepted as linear
system.

Mg (t) + (Dag+ Gg) ¢ (t) + Keg (¢)
=fu(t) +fe(t) + Ls(7) nlg(t), t) (1)
Here, the index g denotes the whole system.
Equation (1) is able to be discretized into N(=
7) sub-finite systems and its equation of motion
with crack at a subsystem j is described by

ie:l’ o N (2)
|y,

]k(le) —[(le 1) 2 +1](i.5 Loy N) (3)
i= e o a1 ©
i et m—] )

With 7, 7., 1 and j the vector in explicit form and
the equation of motion can be given as follows:

e+ D(D (=1, = F4+1) = Qlie=1)(G+2) (6)
N jatie)tn—1

2 [ MeGicior(t) + (Det Ge) Gingiey (1)

ie=1 jr=Jjr(ic)

+ Ke@niio (1) 1= [fu(£) ] (ie) (ie=3.45)
+ [fa (8) ] (Ze) Giemr,my+ Ls (5, de)
[7(aey(t)s ) Jtie=1,m) (7

where, the index e represents the elementary sub-
system. The elementary notations in the equations
denote as follows:

® g(t), ¢(1),
velocity vector, and acceleration of the system

® M., K. .mass matrix, stiffness matrix of
undamaged section

® Dye, Ge=— GI . matrix of the damping and
gyroscopic matrix

® g.(1), ge(t), Ge(t) : displacement vector,
velocity vector, and acceleration of the elementary
subsystems. g.(¢) €EN”, n(=8) and nn(=32) are
degrees of freedom of considered elementary sub-
system and total system. The g,.(¢) consists of g,
(1) = (21 Y15 Bz> Byss Trs Yr» Ozrs Oyr), the indices
1 and r denote the left and right nodes and z,, y.,
Gxr» Oy, are the coordinates at the subsystem

® 1,(1), fe(#), n(q(t), t) : vector of unbal-
ance, gravitation input vector, and vector of the
nonlinearities caused by unexpected influence
(crack)

g (¢) : displacement vector,
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® )., K,:mass matrix, stiffness matrix of
undamaged secton

® Dioy Go=—GPL LS, . matrix of the
damping, gyroscopic effects, and distribution
vector with regard to the crack at subshaft num-
ber 7,

All system matrices are constant in terms of
time t (Bremer, 1988; Bremer, 1992) and the
distribution matrix (Park and Mueller, 1997;
Park and Cho, 1998) is given in the following
way:

i.th position T
——

000 -+, 1000 , ---, 000
000 ,---, 0100 , ---, 000

——
1e.th position
(2XN)

Ls (i) = 8)

From now on, the index j will be left out with
respect to the whole dynamic system. It is nor-
mally convenient for further operation to write
the equation above via state space notation with
x(t)=[q)7, ¢ (#)T] including the nonlinear-
ities of the motion created by a crack.

z (8) =Ax(t) +Bu(t) + Ne=r (2 (£)) (9)

The equation of the measurement is given by

y=Cx(t) (10)

where, A is (N, X N,) dimensional system matrix
which is responsible for the system dynamic with
N,=2nn, u(t) denotes »-dimensional vector of
the excitation inputs due to gravitation and unbal-
ances and C presents (m.X N,)-dimensional
measurement matrix. W is the (N, X N,) dimen-
sional matrix and s(f) presents the plant vector
of noise. w, denotes the white measurement
noise. x(t) is N,-dimensional state vector, and y
(t) is m.-dimensional vector of measurements,
respectively. Here, the vector » (x (¢)) character-
izes the 7 ,-dimensional vector of nonlinear func-
tions due to the crack. N; is the input matrix of
the nonlinearties and the order of Ny is of (Nz X
ny). It is assumed that the matrices A, B, C, Nx,
and the vector u(t), y(t) are already known.
Where the weighting matrix Q corresponding to
the plant and R, regarding to the measurement
should be suitably chosen by the trial and errors.

Fig. 2 Elementary observer (Beo)

Now it remains to reconstruct the unknown non-
linear vector #g(x(#), #) which mentions the
disturbance force caused by a crack. The basic
idea is to get the signals from #g(x(¢)) approx-
imated by the linear fictitious model (Mueller,
1993)

ne(x(t), t) = Hv(t) (11)
o (t)=Vu(t) (12)
dim v(t)=s (13)

The model describes the time behavior of the
nonlinearities due to the appearance of the crack
approximately as follows:

ne(z(t), ) =ue(Z())=Ho(t) (14)

where 7 (¢) follows from Eq. (18). The matrices
H and V must be chosen according to the techni-
cal background considered in terms of oscillator
model or integrator model (Mueller, 1990; Muel-
ler, 1993). To obtain the signals #(Z (¢)) the
elementary observer (Beo) should be designed.

At first, the given system of Eq. (9) must be
extended with the fictitious model Egs. (11) and
(12) into extended model

[i(t)]:[A NRH] [I‘”}u[é]ﬁ(r)

v (1) 0 VvV llo(®
Ee(t) Ae Ie(t)
(15)
xz (1)
y()=[C:0]| - (16)
T v (1)

where NpH couples the fictitious model of Egs.



Crack Detection, Localization and Estimation of the Depth in a Turbo Rotor 725

(11), (12) to the whole system. To enable the
successful estimate, the number of the measure-
ments must be at least equal or greater than the
(me=ny). When the
above requirements are satisfied, the elementary

modelled nonlinearities

observer in terms of an identity observer can be
designed as follows:

[:é(t)]:[A—LIC NRH] [x(t)}

v (t) —L,C V 1lv@®)
Fo(t) Ao xov(t)
I L. 17
R T
e .
[C:0] z (1)
gt)y=—u—o| - (18)
¢ v (t)

where matrices [, and [, are the gain matrix of
the observer and white noise vector related to the
state measurements, respectively. Equation (17)
means that the observer consists of a simulated
model with a correction feedback of the estima-
tion error between real and simulated measure-
ments. The matrix A, has (N,+ ny X No+#s) -
dimensions and represents the dynamic behavior
of the elementary observer. The asymptotic stabil-
ity of the elementary observer can be guaranteed
by a suitable design of the gain matrices [, and
L, which are possible under the conditions of
detectability or observabilty of the extended sys-
tem of Egs. (15), (16). For estimation under the
asymptotic stability, the eigenvalue of the
observer (A4,) must be settled on the left side of
the eigenvalue of the given system(A,) to make
the dynamic of the observer faster than the
dynamic of the system. The model for the crack
behaviors can be designed using integrator model
(Park and Mueller, 1997; Park and Cho, 1998)
based on the choosen crack model (Bremer, 1992)
as follows:

w1
-
nEL, 20y X 01 (1) (1)

R 2 200 X 02 (E) (22)

The observer gain matrices /., and [, can be
calculated by pole assignment or by the Riccati
equation (Mueller, 1990; Mueller, 1993) as fol-
lows:

A+P+P AT—P C'Rz'C P+Q=0 (23)
LI

- |=P C™Rx (24)
Lv

The weighting matrix Q and R, are suitably
chosen by the trial and errors.

3. Design of an Estimator for
the Localization

In the above section we studied how to design
the elementary observer (Beo) for the detection at
a given local position: a certain place on the shaft
is initially given as the position. In the real run-
ning operation there is not any information about
the position of the crack, so the elementary
observer must survey not only the assigned local
position, but also any other place on the shaft; it
must give the signals whether a crack exists or
not. Once it is known, it is possible to detect the
crack on the shaft. When a crack appears at any
subsystem in running time, it must be detected as
well. But in many cases it has been shown that it
is hard to estimate the position of the crack at all
subsystems on the shaft with one Beo: it depends
on the number of the subsystem and the number
of Beo. For the estimation of a crack position we
designed a method based on Estimator. The main
idea is to feel the related crack forces from a
certain local position to the arranged elementary
observer.

Figure 3 shows the structure of the Estimator
(Observer Bank). The number of elementary
observers depends on the number of the subsys-
tems modeled. Every elementary observer which
is distinguished from the distribution matrix s,
has the same input (excitation) u(t) and the feed-
back of the measurements, and is set up at a
suitable place on the given system. For the suit-
able arrangement of the Beo, the distribution
matrix on the analogy of Eq. (8) is applied. To
estimate the local place of the crack, there are two
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steps. First of all, the Beo must be observable to
certain local in the meaning of the asymptotical
stability in the system. The requirement has been
satisfied by the criteria from Hautus (Mueller,
1990).

ﬂ[Nn‘A — Nz (LS(:‘)) H

Rank 0 AL,—V  |=dim(x.(t))
C. 0
+dim(v(t)) =N+ ns(=s) (25)

This means that the Beo must estimate the crack
at any location, where Beo is situated on the given
system.

The unknown crack position is to be found by
the Beo arranged in a certain local place with the
related crack forces resulting from the crack. To
guarantee this, the condition of Eq. (25) must be
fulfilled. In this work three Beos are arranged at
the 2nd, 4th subsystems and the 6th like this:

LS(z) (Z.:2) = 1, Otherwise LS(z) (i) :0
Lswy (i=15) =1, otherwise Lsy, (7) =0
Lsw (7=30) =1, otherwise s (i) =0.

The equation of the estimator with the 1st Beo
A at the 2nd subsystem, the 2nd Beo C at the 6th
subsystem and the 3rd Beo B 4th at subsystem are
described by

u) art ':‘>! me;mm_ ()

PO = §O (k0. hx) ),
Rt = 5,0 (30, A()) )s

0 = 540 (50 Hix)
Fig. 3 Estimator (Observer Bank)

[f(t)]z:[A—LuC N, (Ls(2)) H]

zi(f) —L,C 12
KA
[§EE;]4:[A—_LIZT&C Nu(LsI(/4)) H] 26)
ol v
{?(t)] :[A~Ln,c Ny (Ls(6)) H]
()l L —L,C v
Sl (o ol

4. Examples

The Estimator consists of three Beo. The first
Beo A is situated at the 2nd subsystem, the 2nd
Beo B is at the 6th subsystem and the 3rd Beo C
is placed at the 4th subsystem. The criterion to
detect a crack is the magnitude of the crack forces.
In order to localize a crack position, it is neces-
sary to choose the maximal magnitude of the
crack force from all Beo by the comparison
among the forces turn out. In the case, the
estimator shows none of the crack force; there is
not any crack in this system considered. If any
one of the Beo gives the signal of a force, the
system has a crack in a corresponding position.
As the 1st example, the given crack is at the 1st of
the node in the system considered. Figure 4 shows
that the estimator recognizes the appearance of a

Beo. A; Ri. 1, Subsys. Beo. B; Ri. 1.
0035 0.05
T, g,
g g
005+ 0051
0 0.1 02 03 0 o1 02 03
time (3] (a) e [s] (b)
Q0S| ]
z
008
0 0.1 02 03
time [1] (¢)

Fig. 4 Beo A, B, C: Crack in the Ist
Subsystem, £, 1y=0.135, £5=0.03[s], Y
coordinate: crack force in N, X coordinate:
time in sec.
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Beo. A;RU. 3. Subivs Beo. B; Ri. 3. Subsys.
005} 005 : : 1
P O’Jm ﬂ £ east VOO L O s
z )
005 ; : 1 008+
0 0.1 02 03 0 o1 02 03
time {1] (a) tme [s] ()

Beo. C; RL 3. Subsys.
005 :
c o U

005 : i 4

0 0.1 02 03
time [s] (a}

Fig. 5 Beo, A, B, C: Crack in the 3rd
Subsystem, £ ;) =0.15, #5=0.03[s], Y coor-
dinate: crack force in N, X coordinate: time

in sec.
M.A,'RL!:M.

[T]S +
I IS Ve BN ) O

o e N L O
z
005 -

[] 0‘.1 0.2 03 ) 0.1 0.2 0.3

e [s] () time (s] ()

0 (X 02 03
timoe [6] (<)

Fig. 6 Beo, A, B, C: Crack in the 4th
Subsystem, f(;=0.15, #5=003[s], Y
coordinate: crack force in N, X coordinate:
time 1n sec.
crack at the time 0.135. By the comparison of the
forces, the elementary observer Beo A sees the
lagest crack force. It means that the crack is closer
or near to the Ist of the node (Beo A) than to the
6th of the node(Beo B) and the 4th of the node
(Beo C). Although the Beo B is hardly to know
the existence of a crack, the detection and locali-
zation of the crack is succesful.
As the 2nd example, the given crack is situated
at the 3rd of the node in the system considered.
In Fig. 5 the elementary observer Beo A and
Beo C see the same magnitude of the crack forces.
It denotes that the signals have been turned out
between Beo A and Beo C. The estimator esti-
mates the crack position between the 2nd node
and the 4th node in the system. It is the 3rd node.
As the 3rd example, the given crack is at the 4th

03 4th Sul

103 mameot

depth {m}

+
L 3

(] s o [X]
time (5] thve [3]

Fig. 7 Crack depth in the 4th of the node with 25 db
ratio in measurement, f.;,=0.002m; ;=02
[s], x coordinate: time in [s], y coodinate
depth in [m]

of the node in the system considered.

Figure 6 illustrates the lagest magnitude of the
crack force by the elementary observer Beo C. It
tells that the crack is placed at the 4th node. Like
the 1st and the 2nd examples, the estimator gives
the information where a crack appeared. In this
way the Estimator estimates the existence of a
crack by the crack force and localize its position
according to the magnitude of a crack forces.
These forces related from certain position of a
crack to Beo A, Beo B and Beo C are interpreted
as mechanical forces due to the breathing and
gaping from Gasch model (Gasch, 1976). The
numerical value of the p, concerned with the
weighting matrix Q is in the appendex. The factor
o, of the weighting matrix R, is 0.975 and diag
Ry is 1. The matrices Q and R, are chosen by
the trial and errors. The external signal exists in
case of the opened crack. On analogy of the
system model, the minimal and maximal values
depend on the depth. If only the crack is situated
at the position where the Beo is located. Other-
wise the position of the crack plays a part in the
values of the forces regarding to the excited inputs
as well. However, the crack forces are a clear
indicator for the appearance of a crack in operat-
ing time. The other results which are ouitted this
paper, show that Beo B arranged at the right
bearing, can not estimate the crack in the 1st of
the node in the system. In the simulation the given
depth is 2 mm and the time of appearance of the
crack is 0.2 sec.

As an estimation of depth, the displacement of
the vertical direction is taken. The depth given is
2mm at the 4th of the node.

Plots of Fig. 7 show the crack depth and the
moment at the middle position as an example.
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The result shows that the displacement is almost
not corresponding to given depth. The maximal
magnitude of the depth estimated is of 3mm. But
this is an approximate way to estimate crack
depth. This is a remained task to be researched in
the future.

5. Summary and Conclusions

Using the FEM, the mathematical model of the
rotating sHaft including a crack has been present-
ed. Based on the mathematical model, the elemen-
tary observer and an estimator have been devel-
oped. With this estimator, the task of the crack
detection &nd localization have been made. The
above methods give a clear relation between the
damaged shaft by a crack and the caused phenom-
ena in vibtration by means of the measurement at
both bearings. Theoretical results have been
given. The forces in the results are the internal
forces which have been reconstructed as distur-
bance forces created by the crack.

From thie given examples, it has been theoreti-
cally shown that the cracks on the shaft can be
detected. The Estimator is able to estimate the
location of a crack. The method considered can
be applied to the similar area with the nonlinear
dynamic effect from a crack problem by the suit-
able design of an Estimator. The suggested
methods are very significant not only for the
further theoretical research and developments but
also for the transfer in the experiments.

For the estimation of depth it is needed to
establish the relationship between crack force and
the corresponding displacement. This is a
remained task to be researched furthermore.
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Appendix

Using the abbreviation ji=;—j,+1, ji=;—j,
+1, the sum of the matrices, with accordance to
Egs. (2) and (3), can be described as follows.

. N [Ge=1) F+] jatn—1 o
Moan@=2[" 5" (3 Melii. i)
= =1 Lj=7

+M8iz‘mexdime) (Al)
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. N [Ge=D) F+1 jatn—1 L
Kigyiimin (1e) = Z‘.1 D 2 K.(i, jj)

te= L,j=jx

=1

+I{(0dimexdz'me) (AZ)

r(e—1) 41 jatn—1

Covmd=2 s (3 G, i)

e= 1,[':1‘

=1
0
+ G(dimex dime)

rGe=1) F+1 jatn—1

D(g)(j..j.)(ie)=§=ll_ st (2 Deliis jj)

(A3)

=l 0i=7n
+ Dlsimex dimey (A4)
The matrices used in Eq. (9) are follows
0 : Linny
A=
—(Mg)7'Ke ¢ — (Mg) " (Dag + Ge)

(64 % 64)
(AS5)
The index i denotes the number of the subsystem.
The vector of the order of the excitation and the
matrix of nonlinearites,

0
a(t)y=| - (A6)
M;l fg (64x1)

0

Ng (LS(i)) = (A7)
_Mg_lLS(z‘) (64x1)

is of (64x1).
where the vector of the excitation consists of
graviation and harmonic unbalance, is presented

by

fe=F(g ivi=t,~ M+ fwi=345

f: =71 (g:30=0

sfwo=Ff@=Ff =

fgi19=Ff g 22=F (g 200=—mg,
The order of the £, is of (32X 1) and £, is of (32
x1).

(A8)

wn=Ffaw=F =
— enS*Mexy stn(Rt+4)
Ffaw=Ffwm=/F o=
enS2*mexycos (2t + B)
where angle of the phase: =0, length of the
subsystem of rotor ¢/ =2, Diameter of the sub-
system of rotor makes ed =0.25. 'I;he mass of
elemental subsystem: m=7x e/ o=z The den-
sity is of p=7860 ﬁ%— excentricity: e,=0.0001,
mass of the excentrigtty: Myery=3 m respectively.
The modulus E j; is of 2.0X 10°N/mm? The
stiffness of bearing: Kpeging =15 X 10° N/ mm?.
The measurement matrix of order(4 X 64),
Cli=ti=1,-6=0, except Coxn= Cex2= Ceax29)
= Coxsy= 1. The number of the nonlinearities
ny are of 1 and the number of the measurements
m. makes 4. The elementar matrices K,, M, and
D, which depend on the geometry, are given in
(Waller and schmidt, 1989; Link, 1989; Barthe,
1990) . The weighting matrix Q,,(;=1, -+, 66, j=
1, -, 66) and Qqg(7=1, -, 66, j=1, --+, 66) is of:

(A9)

Q, j) =6+ 105 j=j=1, -, 16
QG j)=5-10% j=;=17, -, 32
Q(, j) =15+ 105, j=;=33, ---, 45
Q(, j)=2.5- 105, {=;=46, ---, 64
Q(, j) =5+ 107 j=;=65, ---, 66.

(A10)



