Dynamic Mixed Mode Crack Propagation Behavior of Structural Bonded Joints

  • Lee, Ouk-Sub (School of Mechanical, Aerospace and Automation Engineering, InHa University) ;
  • Park, Jae-Chul (School of Mechanical, Aerospace and Automation Engineering, InHa University) ;
  • Kim, Gyu-Hyun (School of Mechanical, Aerospace and Automation Engineering, InHa University)
  • 발행 : 2000.07.01

초록

The stress field around the dynamically propagating interface crack tip under a remote mixed mode loading condition has been studied with the aid of dynamic photoelastic method. The variation of stress field around the dynamic interface crack tip is photographed by using the Cranz-Shardin type camera having $10^6$ fps rate. The dynamically propagating crack velocities and the shapes of isochromatic fringe loops are characterized for varying mixed load conditions in double cantilever beam (DCB) specimens. The dynamic interface crack tip complex stress intensity factors, $K_1\;and\;K_2$, determined by a hybrid-experimental method are found to increase as the load mixture ratio of y/x (vertical/horizontal) values. Furthermore, it is found that the dynamically propagating interface crack velocities are highly dependent upon the varying mixed mode loading conditions and that the velocities are significantly small compared to those under the mode I impact loading conditions obtained by Shukla (Singh & Shukla, 1996a, b) and Rosakis (Rosakis et al., 1998) in the USA.

키워드

참고문헌

  1. Anderson, G. P., et al., 1977, Analysis and Testing of Adhesive Bond, Academic Press, New York
  2. Barber, J. R. and Comniou, M., 1983, J. Appl. Mech., Vol. 50, pp. 770-776
  3. Comninou, M., 1977, J. Appl. Mech., E44, pp. 631-636
  4. Comninou, M., 1990, 'An Overview of Interface Cracks,' Engineering Fracture Mechanics, Vol. 37, pp. 197-208 https://doi.org/10.1016/0013-7944(90)90343-F
  5. Dally, J. W. and Riley, W. F., 1991, Experimental Stress Analysis, McGraw Hill, pp. 424-506
  6. Deng, X., 1992, 'Complete Complex Series Expansions of Near-Tip Fields for Steadily Growing Interface Cracks in Dissimilar Isotropic Materials,' Engineering Fracture Mechanics, Vol. 42, No. 2, pp. 237-242 https://doi.org/10.1016/0013-7944(92)90214-Y
  7. Deng, X., 1993, 'Genaral Crack-Tip Fields for Stationary and Steadily Growing Interface Cracks in Anisotropic Bimaterials,' Journal of Applied Mechanics, Vol. 60, pp. 183-189
  8. Durelli, A. J. and Dally, j. W., 1975, 'Stress concentration factors under dynamic loading conditions,' Jounal of Mechanical Engineering Science, Vol. 16. No. 1, pp. 69-92
  9. Emery, A. F, et al., 1969, Experimental Mechanics, pp. 558-564 https://doi.org/10.1007/BF02316658
  10. Gao, H., 1991, J. Appl. Mech., vol. 58, pp. 931-168
  11. Gdoutos, E. E., 1985, 'Photoelasticity study of crack problems,' Photoelasticity in Engineering Practice, Elseviser, London, pp. 181-204
  12. Gdoutos, E. E., et al, 1982, Engineering Fracture Mechanics, pp. 177 -187
  13. Gurtman, G. A. et al., 1965, Experimental Mechanics, Vol. 5, pp. 97-104 https://doi.org/10.1007/BF02323946
  14. Kobayashi, A. S. and Mall, S., 1978, 'Dynamic Fracture Toughness of Homalite-100,' Experimental Mechanics, Vol. 18, No. 1, pp. 11-18 https://doi.org/10.1007/BF02326552
  15. Kokini, K., 1988, ASME Trans., J. of Appl. Mech., Vol. 55, pp. 767-772
  16. Kokini, K., et al., 1989, Experimental Mechanics, pp. 373-381
  17. Lee, O. S. and Kim, D. Y., 1999, 'Crack-Arrest Phenomenon of an Aluminum Alloy,' Mechanics Research Communications, Vol. 26, No. 5, pp. 575-581 https://doi.org/10.1016/S0093-6413(99)00064-6
  18. Lu, H. and Chiang, F. P., 1993, J. Appl. Mech., Vol. 60, pp. 93-100
  19. Martin-Morgan et al., 1983, J. Appl. Mech., Vol. 50, pp. 29-36
  20. Mohammad, M. and Loren, Z., 1995, 'Photoelastic Determination of Mixed Mode Stress Intensity Factors for Sharp Reentrant Corners,' Engineering Fracture Mechanics, Vol. 52, No. 4, pp. 639-645 https://doi.org/10.1016/0013-7944(95)00041-S
  21. Naik, R. A. et al., 1992, NASA Report
  22. Prendergast, P. J. 1996, J. Bio. Engine, Vol. 118, pp. 579-585
  23. Ramulu, M, 1982, A Ph. D. Dissertation Submitted to the University of Washington, 'Dynamic Crack Curving and Branching.'
  24. Rice., J. R. and Sih, G. C., 1965, 'Plane Problems of Cracks in a Dissimilar Media,' ASME J. Appl. Mech., Vol. 32, pp. 418-423
  25. Rosakis, A. J., Samudrala, O., Singh, R. P. and Shukla, A., 1998, 'Intersonic Crack Propagation in Bimaterial System,' Journal of Mechanics and Physics of Soilds, Vol. 46, pp. 1789-1813 https://doi.org/10.1016/S0022-5096(98)00036-2
  26. Sanford, R. J., 1980, 'Application of the Least Square Method to the Photoelastic Analysis,' Experimental Mechanics, Vol. 20, pp. 192-197 https://doi.org/10.1007/BF02327598
  27. Singh, R. P. and Shukla, A, 1996a, 'Subsonic and Transonic Crack Growth along a Bimaterial Interface,' International Journal of Fracture, Vol. 63, pp. 293-310
  28. Singh, R. P. and Shukla, A., 1996b, 'Characterization of Isochromatics Fringe Patterns for a Dynamic Propagating Interface Crack,' International Journal Fracture, Vol. 76, pp. 293-310
  29. Tsuji, M. et al., 1979, J., Therm. Str., 2, 215-232
  30. Wang, W. et al., 1998, 'Effect of Elastic Mismatch in Intersonic Crack Propagation Along a Bimaterial Interface,' Engineering Fracture Mechanics, Vol. 61, pp. 471-485 https://doi.org/10.1016/S0013-7944(98)00089-7
  31. Williams, M. L., 1959, 'The Stresses around a Fault or Cracks in Dissimilar Media,' Bulletin of Seismological Society of America, Vol. 49, No.2, pp. 199-204
  32. Xu, X. P. and Needleman, A., 1996, 'Numerical Simulations of Dynamic Crack Growth along an Interface,' International Journal of Fracture, Vol. 74, pp. 289-324 https://doi.org/10.1007/BF00035845
  33. Yang, W., Suo, Z and Shih, C. F., 1991, 'Mechanics of Dynamic Debonding,' Proceedings of Royal Society of London, Series A, Vol. 433, pp. 679-697
  34. Zhang, P. et al., 1989, Eng. Frac. Mech., Vol. 24, pp. 589-599 https://doi.org/10.1016/0013-7944(86)90232-8