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Water-Entry Induced Cavity Pressure

Minhyung Lee*
School of Mechanical and Aerospace Engineering, Sejong University

The pressure in a water-entry induced cavity, is analyzed up to the closed cavity (bubble).
Water-entry is a highly transient phenomenon, and the evolution of the water-entry cavity must

be explained by considering the entry speed, shape of the solid body, atmosphere pressure, and

cavity pressure as the primary variables. This work is an extension of the cavity dynamics model
recently reported by Lee (1997a). To extend the model for a wide range of entry speeds the
cavity pressure is calculated from a one-dimensional quasi-steady flow model. The estimation

of the cavity pressure allows us to explain the experimentally observed surface closure phenom-

ena at low entry speeds. Predictions for the time of surface closure are compared with the

published experimental data.
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Nomenclature

Ao : Projected area of a solid

A(z), B(z) . Constants

a : Cavity radius

Cq : Velocity-dependent drag coeffi-
cient

D . Diameter

E; : Kinetic energy

g : Gravitational acceleration

m . Air mass

Ms : Solid mass

P. : Cavity pressure

t : Time

b (2) : Solid traveling time after entry

u : Internal energy

U : Moving velocity of a solid

v : Fluid radial velocity

w : Radial distance

z . Depth

B . Velocity decay constant

Ow : Fluid density

¢ : Source strength
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1. Introduction

The problem of a solid body entering a semi-
infinite free surface of water is a classical one and
many interesting phenomena are discussed in the
literature. Of particular interest are the physical
events that occur at various stages of the entry
that influence not only the solid motion but also
the nature of induced ballistic waves in water
(Lee, 1997b). Especially, the dynamics of the
water-entry induced cavity is one of the impor-
tant phenomena which has been studied extensive-
ly. This is due to the fact that the behavior of the
solid body (missile) is strongly governed by the
dynamics of the water-entry induced cavity. A
detailed review of the dynamics of water-entry
cavity for various speeds has been presented in a
recent paper (Lee, 1997a). The cavity dynamics is
discussed exclusively in the Philosophical Trans-
actions of the Royal Society (1997). Gaudet
(1998) proposed a simulated solution for the
entry of circular disks, which has also been stud-
ied by several researchers.

The formation and collapse of the water-entry
induced cavity depends on the physical properties
of the solid body, gas and fluid that establish the
forces that combine with gravity and inertia to
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determine transient entry phenomena (Waugh
and Stubstad, 1972). The dominant mechanism
governing the cavity formation is the kinetic
energy transfer from the body to the cavity. The
cavity wall continues to open until the pressure
difference between the surrounding fluid and
cavity forces the fluid to return to its undisturbed
location. The gravitational effects can be neglect-
ed at high-speed.

According to Birkhoff and Zarantonello
(1948) and Lee (1997a), there are five different
cavity dynamics regimes: very low-speed regime,
low-speed regime, transient regime, high-speed
regime, and very high-speed regime. For a very
low-speed entry (20< Fr<40), the air flow fill-
ing the induced cavity is so fast that the pressure
drop inside the cavity becomes small. Here, Fr=
U?/gD, g is the gravitational acceleration, [U; is
the entry speed and D is the characteristic length
(e. g., the diameter of a sphere). That is, the
cavity pressure can be assumed to be the atmo-
sphere pressure. The same is true for entry from a
vacuum. In these cases, the cavity closure occurs
at a location far from the free-surface (deep
closure). As the entry speed increases for roughly
Fr>150 (low-speed regime), the pressure drop in
the cavity becomes so significant, at least near the
cavity neck, that the closure occurs near the free-
surface (surface closure). Deep closure is preced-
ed by a surface closure. The surface closure is due
to the under-pressure caused by the air flow into
the cavity, referred to as the Bernoulli effect.
However, as the speed increases further (transient
regime through high-speed regime) the pressure
in the cavity becomes the vapor pressure and no
further decrease in cavity pressure is induced.
Then the closure occurs again at deep location
(Lee, 1997a). So, the cavity dynamics which
influences the behavior of a solid in the fluid
medium is strongly dependent on the cavity pres-
sure.

In this paper, the dynamics of the water-entry
cavity based on an energy balance model is first
described. In order to apply the model to an entry
from atmospheric pressure, a quasi-steady flow
model for predicting the pressure inside the cavity
is developed in Section 3. Then, the predicted

time of surface closure is compared to experimen-
tal data in section 4. The final section summarizes
this study and suggests directions for further
research.

2. Cavity Dynamics Theory

We are interested in calculating the highly
transient evolution of the flow due to a solid body
impulsively accelerated at =0 to an initial veloc-
ity U; moving into a semi-fluid medium. For
consistency, the same symbols and notations to
denote various quantities in the original article
(Lee, 1997a) will also be used here. The geometry
of the problem is sketched in Fig. 1. Since the
solid body is decelerated by drag, the dynamics of
a moving solid is governed by the kinetic energy
loss (Lundstrom, 1971),
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where the properties are the mass of the solid s,
moving axis z, time ¢, solid moving velocity [,
fluid density p,, projected area of the solid A,,
and velocity-dependent drag coefficient Cy. The
rate of change of kinetic energy with respect to
depth can then be expressed as,

o — — o2 = U @

where £,=0.5 m,U* and g=p(U) =LsAeCa

is a velocity decay constant (Charters, 1945).
Now, the influence of solid body motion on the
cavity formation is estimated here. The fluid is
assumed to be irrotational everywhere such that
the solid body can be approximated as a moving
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Fig. 1 Cavity evolution model
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source. The local fluid radial velocity is then
related to source strength ¢ (&, #) and radial
distance g as,

v=2¢(& t)/w 3)

In order to determine the source strength, it is
assumed that the kinetic energy loss of a solid
body is transformed into the kinetic energy and
potential energy of the fluid section (Birkhoff and
Zarantonello, 1957). The energy balance equa-
tion based on the previous argument can be
expressed as,
dE,

dz |e
where, P, is the pressure in the cavity. The two
terms on the right hand side of Eq. (4) represent
kinetic and potential energies, respectively. By
defining P,=(P,—P;) and introducing two
terms,

dz=41puNG*+ 7 (Po— Pe) 4)

—p|dE
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the source strength is obtained as,
§=i—;_— JA(R) —d* (6)

where, ¢ is the cavity radius as a function of
depth. Another boundary condition applied is the
kinematic boundary condition at the cavity wall.
1
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Finally, from Egs. (6), (7) an equation of cavity
dynamics is obtained,

a%:iBJA(z)Z—aZ )

Integration of Eq. (8) allows us to determine the
history of the cavity radius as a function of depth
and time. As shown in the equations, the pressure
inside the cavity is one of the important parame-
ters governing the dynamics of the cavity.

3. Water-Entry Cavity Pressure

For entry in vacuum or at very low atmo-
spheric pressure, the cavity pressure also remains

splash

deep ___—¥

closure

closed cavity
(bubble)

Fig. 2 Deep closure at very reduced atmosphere
pressure

at constant vacuum pressure. In this case, Eq. (8)
can be integrated with the solid arrival time £, (z)
(Eq. (1)) at each depth,

a(z2)=VA()*—[A(z2) —B(t—1t,(2))]? (9

Equation (9) states that, at each depth, the
cavity continues to expand until the pressure
difference between the surrounding fluid and
cavity interior balances the induced inertia effects.
Then it starts to collapse and leads to a cavity
closure. The cavity wall velocity along the depth
can be determined by differentiating Eq. (9) with
respect to time. Using this equation, the time of
cavity collapse is estimated. Since each depth has
a different collapse time, the time and location of
deep closure is equal to the minimum value. Some

results for this case are described in the previous
work (Lee, 1997a), and the deep closure process
is displayed in Fig. 2.

For entry from an atmospheric pressure at low-
speed, however, the analysis becomes consider-
ably more complicated since it is necessary to
calculate the pressure inside the cavity. The pres-
sure may vary with depth and time. To the
author’s best knowledge, nothing regarding pres-
sure gradients along depth direction is discussed
in the literature. Therefore, the pressure is
assumed to be a function of time. The pressure-
time history is then estimated by the quasi-steady
flow method proposed by Abelson (1969).

Consider a cavity as an expanding container
into which air flows. The proposed one-dimen-
sional cavity container model is shown in Fig. 3.
This model will be applied to both open and
closed cavity phases. The open cavity phase is
described first. At each time, the cavity volume is
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t t
Fig. 3 Cavity container analogy model

V, and the inside pressure is P. We apply the first
law of thermodynamics for the system.

Amho= Wi_s+ (mauz— miu) (10)

where /, is the stagnation enthalpy and y is the
internal energy. Assuming a quasi-steady expan-
sion process (Wi_,=p(V>— V})) and the ideal
gas relation (PV=mRT), we get a cavity pres-
sure as a function of volume, air mass flow, and
pressure at previous time.

dm aaz+[1/z—1/]+ i

2 y—1

Ve-Vi, Vo
7 Ty
where ¢, is the speed of sound in air and y is
equal to 1.4. Am (ms—my) is the air mass flow
into the cavity during the time interval 4¢, and
can be expressed as,

dm= g, aAdt (12)

where the barred quantities represent values aver-
age over the time interval, and A refers to the

=P [ ] (11)

cross-sectional area of the cavity aperture. One
~dimensional flow approximation has been made
here, although the entrance is not one-dimen-
sional. If the steady-flow energy equation for an
adiabatic process is applied to two points on a
stream line, one point outside and far away from
the container entrance and the other just at the
entrance, the velocity is given by,

o LT w

where P, is the undisturbed pressure. By
substituting the isentropic relation and Eq. (13)
into Eq. (12), we obtain,

P+ Py

Adm= pa,,ao( > Adt

2 T, R+Bf%
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Now, it is necessary to obtain cavity volume as

a function of time by integrating the cavity radius

along z-direction. Using Eq. (10), the cavity
volume is given by,
2b
v=r["ata 0% (15)

Equations (11), (14), (15) should be simulta-
neously solved for P,, 4m, and T, for the time
interval 4¢, with Eq. (9). The total time range of
interest is divided into many intervals A¢,, the
equations are solved for each 4¢; with P, and V;
of the ;% interval, which becomes P, and V; of
the 7+1% interval. In this way, a quasi-steady
solution for the inside cavity pressure as a func-
tion of time is obtained for an unsteady process.
Initially, the cavity pressure is taken to be P,.

At a later stage, as previously mentioned, the
cavity collapses and becomes a closed cavity
(bubble). Even for this stage, the cavity can be
described with a simplification of the current
method. In this case there is no longer air flow
into the cavity (4m=0), so Eq. (11) becomes,

[V %]
[T %]H

P= (16)

For the cavity pressure and volume, this equation
need be solved with Eq. (15). Note that an
adiabatic process has been assumed in the above
analysis because heat transfer to the cavity should
be negligible. In Eq. (16), the mass of air inside
the cavity should remain constant. That mass is
conserved until another cavity closure which
separates the bubble into two parts. Hence, the
current analysis is valid until another cavity clo-
sure is initiated. A further analysis is difficult, if
possible at all, to estimate the amount of air
remaining in each bubble.

Figure 4 shows the cavity pressure and volume
for the entry of a 7.63 cm diameter, 140° conical-
nosed projectile at velocity of 45 m/s. Initially,
the cavity pressure decreases due to the air flow
(Bernoulli effects) and then increases slightly
after surface closure since there is no air flow after
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Fig. 4 Cavity pressure-cavity volume for the entry
of a 7.64 cm diameter, 140° conical-nosed
projectile at velocity of 45 m/s

the closure. Compared to the experimental data
obtained by Abelson (1970), the minimum pres-
sure occurs at a slightly later time. The cavity
volume shows the other trend. Once the cavity
closure occurs at the entrance and there is no
further air flow, the volume increases due to the
momentum imparted to the cavity wall. After the
minimum pressure (at maximum volume), the
pressure starts to increase and the volume
decreases. Eventually, cavities which show pres-
sure oscillations dissipate through a pinching
process. Some correlations for these processes are
obtained by Wolfe (1988).

4. Time of Surface Closure

The two major forces leading to surface closure
are those due to the under-pressure caused by the
flow of air into the cavity behind the entry body,
referred to as the Bernoulli effect, and surface
tension. The air rushing into the cavity causes a
local under-pressure, frequently estimated by 1/2
0aU?, where p, is the air density. However,
Abelson (1970) measured that the cavity pressure
drop is an order of magnitude greater than this
assumption. This under-pressure causes the neck
to contract until a complete surface closure
occurs.

The time of surface closure is obtained using
the present model with the assumption that the
pressure drop at least in the splash neck is equal
to 1/25n poU?, where # is a constant determined
from experimental data. Figure 5 displays the

Time of Surface Closure (ms)
]
T

Entry Speed (mv/s)

Fig. 5 The time of surface closure versus entry

speed. The atmosphere pressure is 0.25 atm.
the solid circle data from Gilbarg et al.,
(1948)

time of surface closure for the entry of l-inch
sphere from reduced atmosphere pressure. The
experimental data (Gilbarg and Abelson, 1948)
are also displayed. Unfortunately, no comparison
is made for a high-speed entry because no data
are available. If the model presented here is
adequate, then the time of surface closure for
different entry cases can be represented by the
same parameters. The correlated value of # here
is 300. For this value of %, the cavity pressure
becomes vacuum at the entry speed of 51 m/s.
Even though the entry speed is larger than this
value, there is no further decrease in the cavity
pressure. Thurs, the time of surface closure starts
to increase for entry speeds larger than 51 m/s.
This is due to the fact that as the entry speed
increases, a momentum deposition from the mov-
ing body into the cavity increases while the pres-
sure drop remains one atmosphere pressure.
Actually, in this case, a deep closure occurs prior
to the surface closure.

Figure 6 shows the time of surface closure ( 7%)
for sphere entries from reduced atmospheric pres-
sures. The experimental data for low-speed entry
(Gilbarg and Anderson, 1948) are also displayed.
For different atmospheric pressures, the model
predictions compare well with the experimental
results.

A possible scaling for the time of surface clo-
sure is investigated using the current model, and
and the results are compared with the previous
analysis. The time of surface closure is given by
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Fig. 6 Time of surface closure versus entry speed, 1.

27 cm sphere at reduced atmosphere pressure

Lee (1997a),
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If the pressure drop at the cavity neck is constant
and determined by the Bernoulli effects, we can
then obtain the following result by substituting
decay constant 3. This is the same result given by
Birkhoff and Issacs (1951).

_pa_%-_£= constant (18)

5. Conclusions

The dynamics of water-entry induced cavity
and cavity pressure are studied analytically, and
predictions are compared to the available experi-
mental data. The understanding of the cavity
dynamics is important because it plays a key role
for the behavior of the water-entry body. The
following conclusions can be drawn.

For the case of a low-speed entry, a surface
closure is observed prior to a deep closure. As the
entry speed increases further, the surface closure is
preceded by the deep closure. We can explain this
trend by two factors-the momentum transfer and
Bernoulli effects. At low entry speeds the momen-
tum transfer from the moving body into the cavity
is small, however the pressure drop near the free
surface is significant. As the entry speed increases,
the pressure drop at the free surface stagnates
while the momentum deposition does not. The
analytical predictions for the time of surface
closure compare well with the experimental data

reported in the literature. Although the cavity
pressure is predicted for the period from the entry
to the closed cavity (bubble), more detailed
analyes are required. The scaling for the time of
surface closure was found from the present model
and compared with previous analyses.
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