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(An Algorithm for Iluminating a Convex Polygon with Two
Equal Floodlights)
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Abstract let G be an n-vertex convex polygon whose vertices are in general position. We
consider an illumination problem of locating two floodlights on the boundary of G, which luminates
G and whose larger angle is as small as possible. We present an O(r’) time algorithm under the

extended real-RAM model.

1. Introduction

let G be a convex polygon of = vertices in
general positions, meaning no four or more vertices of
G are co-circular. A floodlight is a light source
illuminating the area within a cone with an angle. In
this paper, we consider a floodlight illumination
problem which is to illuminate G by two floodlights
on the boundary of ¢ so that the maximum of their
angles is minimized (see Figure 1).

Estivill-Castro and Urrutia [1] presented an o(»%
—-time algorithm to locate two floodlights on the
boundary of G so that the sum of their angles is
minimized. Floodlight illumination problems are
motivated by a practical restriction that illumination
cannot

devices, e.g., light sources and guards,
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illuminate or search in all directions, simultaneously.
Previous results related to floodlight illumination

problems are well summarized in [2].
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Fig. 1 Two-floodlight problem

In this paper, we consider a 2-floodlight illumi-
nation problem of locating two floodlights on the
boundary of G so that the larger angle is minimized.
We present an 0(»%) -time algorithm for the problem,
which is the same time bound as that of an algorithm
[1] minimizing the sum of angles. However, we do
not know if our algorithm is optimal. As guessed in
1], we also suspect that our O(»%-time bound is
optimal. The model of computation used throughout
this paper is the extended real RAM (for details refer
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to [3]).

2. The Algorithm

Before describing the algorithm for the problem,
we need to give some terminology and definitions. A
floodlight F of angle « is a light source that
illuminates a region within a cone of angle «. A pair
of floodlights F, and F, is said to be an illumination
pair of G if each of F, and F, has its apex on the
boundary of G and the union of regions illuminated
by them covers G. If F, and F, are an illumination
pair such that the maximum of their angles is
minimized, we call them an optimal illumination pair.
As done in [1], we consider two kinds of illumination
pairs: an opposite and a dividing illumination pair.
We say F, and F, to be opposite if the intersection
of the illuminated regions is a quadrilateral whose
vertices are on the boundary of G; see Figure 2(a).
We say F, and F, to be dividing if the interior of
two regions illuminated by them are disjoint as
shown in Figure 2(b). Then we can easily observe
that an optimal illumination pair must be -either
opposite or dividing. Moreover, the following fact

holds; its proof is very similar to that of [1].

B

(b)

Fig. 2 (a) Opposite illumination pair (b) Dividing

illumination pair

Lemma 1: let F, and F, be an optimal

illumination pair of G. Then the apexes of F, and F,

must be located at vertices of 6.

From Lemma 1, we know that if an optimal
illumination pair of ¢ is dividing, then the optimal
dividing pair can be trivially computed in O(»% time
because the number of possible vertex pairs of G is
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0(»%. Thus, in the remainder of this section, we shall
explain how to find an optimal opposite illumination
pair. Let us now reduce the number of pairs of
vertices of G that can be apexes of an optimal
We' call
candidate pairs of G. Estivill-Castro and Urrutia [1]

opposite illumination pair. such pairs
showed the number of the candidate pairs is O(#);
though they considered the problem of minimizing the
sum of the angles of two floodlights, we can apply

the result here without changes.

Lemma 2: [1] The number of candidate pairs of ¢

is O(» and the pairs can be found in O(») time.

By Lemma 2, we have only O(») candidates for an
optimal opposite illumination pair. Given a candidate
pair, we shall show how to solve in linear time a
minimax problem with the restriction that two
floodlights are at the vertices of the pair.

Let (»,9 be a candidate pair of . Suppose that
two floodlights F, and F, are an illumination pair
and their apexes are at » and ¢, respectively.
Without loss of generality, assume that p is to the
left of ¢. Then the pair divides the boundary of G
into two chains: an upper chain GY and a lower chain
G". Consider the subchain of GV that are commonly
illuminated by F, and #£,. The subchain can be
assumed to consist of a sinlge point, x; otherwise the
larger angle of F, and F, can be further reduced.
Similarly, the commonly-illuminated boundary of G*
consists of a single point, y (see Figure 2(a)).

Now, we will find two points, x=GY and yeG*,
such that max(2xpy, Zxgy) 1s minimized. We shall
denote such points by x* and »'. If zxpy> Zxgv, we
can slide x on GY or y on G* to the right toward ¢
until the angles are equal. Similarly, if zxpy< 2xgy, we
can slide x on GY or y on G* to the left toward »
until the angles are equal. Thus max(Zxpy, Zxgy) is
if That

Zx'py" = 2x"qy’. Let us define A(p, @)= 2x'py’'= 2x"¢y".

minimized only two are equal is,

As it will be proved below, two points x* and y"can
be found in linear time by the technique of computing
row minima in a totally monotone matrix [4]. Since
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there are O(n) candidate pairs by Lemma 2, we can
find an optimal illumination pair in 0(#% time.

Let M denote an n;xn; (#<n) matrix whose
entries are real numbers. The matrix # is totally
monotone if MG, D+ MG, D<M RH+MG, ) for any
1<i¢j<m and 1<k<I<wm, If each entry in M can be
evaluated in f(n,,n,) time, then a minimum entry in
each row of M can be computed in time O(nyf(n,, ny)) .
Note that the matrix is defined implicitly -- an entry
is evaluated only when needed.

We order the edges in ¢Y and in G* from 5 to 4,
and view each chain as a sequence of edges,
GY=(dy.dy,.d,) and G'=(ej,es,e,). Note that

n+n=n and assume that »;<#,. Let us define

B(d;, €)= min seq, yeo, max{ £ xpy, £xqy).

B(d;,¢;) is the minimum when the floodlights are at
» and ¢, and x and y are restricted on 4; and e;,
respectively. We define an #;x#, matrix M whose
entry M(i,7) represents B(d,e;), 1<i<#x and 1<j<un,.

Clearly,

Alp, @)= min ; ; B(d,, ¢;) = min , ; M(3, }).

If M is totally monotone, then we can compute a
minimum in each row of # in (aA(») time, where
An) is the evaluation time of a matrix entry. Taking
the minimum among these minima, say M(s, 5, we
have x'ed,, y'ce, and A(p.9)=Ms.8. The two
lemmas below show that # is totally monotone and

Any=0(1), respectively.

Fig. 3 An illustration of the proof of Lemma 3

Lemma 3: The matrix M is totally monotone.

Proof: It show that
B(d;, e))+ Bld;, e,) < Bld;, ee) + Bdj, e)) for any 1<i{j<n,

suffices to

and 1sk<i<n,. Let %%, and y°, denote two points on
edges 4, and e, respectively, that give B(d,,e,). We

have two cases as shown in Figure 3.

Case 11 zxupyy) 2x%ayy and 225py5< £a5ay’

See TFigure 3(a). Since <x%upy'sd 2x%av%, *% and
v should be located at the right end-points of 4,
and e, respectively. Similarly, z% and % should be
located at the left end-points of 4; and e,
respectively. We define some angles as shown in
Figure 3(a). Then, B(d,es)=<xupyu=a+6,+6, and
B(dj,e/)= 2 x5ay5 =8+ +3;. Now, consider B(d;, e:)
and B(d,e). Clearly, B(d; e;)<max(a+8,,8+8), and
B(d;, er)<max(a+ 8;, 8+ 5;).

Case 1.1: a+6,<8+4,.
If a+6,<p+4,, then B(d,e) <+, So,
B(di, e;) + B(d;, ex)
< B+ 8+ B+ 8,
Cat i+ O+ B+ 8,4 8,
=B(d;, e;)+ B(d; ;).
The second equality comes from <x%gy’=
BLat b+ 6, = <xyupy’y. Otherwise (ie., if e+ 6> +5,),

then B(de;)+B(d; e,) <f+8+a+ 6, <Bd,e)+Bld,e).

Case 1.2: a+6,28+4,.

This can be handled in a symmetric way.

Case 2! Zx'ypy'u<Zx%a¥s.

Since L bV < £x4q T, we must  have
2x5pyy < £xayy. If we move either of x% and y% in
the right direction (toward ¢), then Zi'gy strictly
increases. Thus, x% and »% that give B(d;,e) should
be located at the left end-points of «; and e,
respectively. Define some angles as shown in Figure
3(b). Then Bldie)=<xue’s=8 and Bd,e)=
Bt8+8,. from the case
it holds that

B(d,e,)<B+6, and B(d,e;) <8+ 4;. Hence, B(d,e)+

Since e+ 6,+6,<8

assumption that zxjh < Zx%eyh,

B(dj, e,) S 6+ 81+ 8+8 =B(di, e,) + Bld;, e).
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Case 3: zxipyy= 225005,

This is a symmetric case of Case 2. [}

Lemma 4: Let 4eGY and ¢;=¢* and let x;=q;
and y;€e; be two points that give B(d,e;). Then we

can compute x%, ¥y, and B(d,e) in O(1) time.

Proof: Let d,=(u,,%,) and e;=(»,,v,). Assume that
u, 1s closer to p than u,, and o, is closer to » than
vy, If
B(d,, e;) = Luzpv,,

Zuipny ) <uyquy  and  Zwuypwy ¥ Lupqu,, then
3=, and yy=wv,. If Zupv<
Zuquvy and  Zuppvy < Luzqu,, then B(die) = 2ujqu,
xy=u, and y%= »;. Now consider the remaining case

where Zwupo,zuiqv, and  Zuypv, < uyqus.

In this case, we shoud have zxypyy= <x%ey’. If
we regard points on d; as vectors, then a point x on
d; can be expressed as x=m+(uy— w)s for some
real parameter 0<s<1. Similarly, a point 3 on e; is
$="01+Co,— vt for some real parameter 0<:<I.
Then, for a value s, it is easy to find a value ¢ so
that <xpy= zxqy. Actually, ¢ can be expressed as a
function of s, i.e., t=H(s). Since <xpy= <xqy is less

than =, minimizing <£xpy is equivalent to maximizing

cos(<xpy). Note that cos(zapy) = —E—2%_  which

Woxlt- 1) oyl
is a rational expression of two polynomials with a
constant degree on the parameter s. Its maximum
and the value of s at which the maximum occurs can
be obtained in (1) time on the extended real RAM
model. []

Combining Lemma 3 and Lemma 4, we have the

following result.

Theorem 1: For a convex polygon of » vertices in
general positions, an optimal illumination pair can be

found in &(»% time.

3. Concluding Remarks

We have given an 0O(»%) time algorithm to locate
two floodlights on the boundary of a convex polygon

419

tle

SES

fr

&3

N

so that the larger angle is minimized. We have
considered convex polygons whose vertices are in
general positions. Thus, an immediate open question
is to develop an algorithm fot arbitrary convex
polygons. Another open gestion is to reduce the time
bound or to give a lower bound. It would be also
interesting to consider illuminating convex polygons
with three floodlights or more.
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