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THE DENSITY FOR JUMP PROCESSES IN
CANONICAL STOCHASTIC DIFFERENTIAL
EQUATION

JAE-PILL OH

ABSTRACT. The existence of density of process, which is given by
canonical stochastic differential equation, can be proved by the Pi-
card’s method([5]) also.

I. Introduction

In this paper, we study the existence of density of law of process given
by canonical stochastic differential equation(SDE). Since J.B.Bismut
studied the density for the jump-type process, R.Léandre, P.Malliavin
(c.f. [1]) and others studied it for various jump-type processes by par-
ticular methods. In this work, we use Picard’s method([5]) mainly to
study the existence of smooth density of process given by the canonical
SDE whose driving process is a jump-type Lévy process.

Let Lévy measure v satisfy (1) and (2);

(1). |§—J_r| < o0 as p — 0, where AT and A\~ are the largest and the
smallest eigenvalues of V'(p), respectively, where

Vi(p) = / zz*v(dz), pe€(0,1).
|z1<p
(2). For some « € (0,2), liminf, .o p~*v(p) > 0, where

oo = [ _lePudz)
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Consider a solution of canonical SDE of the form;
dé(z) =Y Val&(x)) 0 dZ°(1),
a=1

where Vi, Vs, - - -, Vi, are the smooth complete vector fields on R?, driven
by an R™-valued Lévy process {Z(t);t > 0} with Lévy measure v defined

by t t
Z(t) = bt + / / 2N, (ds, dz) —I—/ / 2Ny (ds, dz).
0 Jz<1 0 Jz|>1

Then, under some conditions, we can get a process {&(z);0 < r <t <

T
aa) = o+ [ Ve @+ Y [ Vil @)z
£ 3 clg-(@).8200), ()

0<r<t

where

c(x,z) = exp(z 2Vo)(x) —x — Z 2V, (x).
a=1 a=1
In general, the time parameters of processes are given by subscripts,
but in some special case(for example, Z(t)), they are given by normal
letters as in above equation ().
For vector fields V,,,a = 1,2,--- ,m of SDE(x), we put

E; = {Vi,Ve, -, Viu},

El+1 = [Ela(‘/h‘/%”' 7Vm)]7
where [, ] is the Lie bracket. Then we get the result; suppose that
Vect(U Ei(z)) = R,
then, under the Conditions (1) and (2), the law of & (z) of SDE(x) has
a Cp°-density for all 0 <t <T.
In Section II, we introduce the canonical SDE and the stochastic flow
as the solution of canonical SDE under some conditions. Furthermore,

we introduce the result which is given by Picard’s method. In section
III, we prove the result. To prove the result by Picard’s method, we
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need some calculations for vector fields to get the regularity for & (x) of
SDE(%) etc.

II. Canonical SDE and result

Let (Q,F,P) be a probability space where the filtration {F;t €
[0,00)} of the right continuous increasing family of sub-o-fields of F
is defined. Let {X;(z);t > 0} be an C-valued semi-martingale equipped
with the characteristic (o, 3, 1), and {K;,t > 0} be a positive predictable
process satisfying

T
/thAt<oo a.s. for any T >0,
0

for an integrable predictable increasing process A;.
Condition (A™9) (1). a(x,y,t) is a predictable continuous
valued process satisfying

~ym+1+§
Cb -

Ha(t>Hm+1+5 < K; as.,

2). B(z,t) is a predictable continuous C™*-valued process satisfying
b

18() Im+s < K¢ a.s.,

(3). The measure y; is supported by Cg”“”. Further, there exists a
Borel set U C C" ™7 such that for some constant C' > 0, ||v||;mi146 < C
for all v € U, and

V) < Koy [ ol amlde) < K.
U

Consider a canonical SDE of the form;

d&(x) = Val&(x) odz(t) (11 —1)
a=1
driven by a vector field-valued Lévy process

Xilw) = 3 Valw)Z°(0),

where Z(t) = (Z(t), Z3(t), -, Z™(t)) is an R™-valued Lévy process
and Vi, Va, - -, V,, are the smooth complete vector fields on R? given by
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the form;

d
: 0

Vo= v (1)—, a=1,2--,m.

; ve, () o @ m
We assume that v/ (x) are C*°-functions with bounded derivatives of all
orders > 1. By the solution of canonical SDE (II-1), under the Condition
(A9 we can define an R%valued stochastic flows of diffeomorphisms
{&1(x);0 < s <r <t <T} adapted to F; = 0(Z(s); s < t) satisfying ;

Eaa(z) = x+z / V& () 0 dZ°(r)

=HZ/ - (€un(2)) 0 dZ°(r +Z/ (Ear (2))dZ5 (1)

0<s<r<t
where
c(x,z) = exp(z 2 V) () —x — Z 2V, (x
a=1 a=1

Let Q C Q be the set of all integer-valued measures on Ry x R™. For
each u = (t,2) € [0,7] x R™, we define a transformation ;" on Q by

euVo(A) = e, Ny(A) + La(u),
e Np(A) = Npy(AN{u}).
For a functional F' defined on €2, we define also an operator D by
D,F=Fog!l - F.

If 7= (uyg,ug, -+ ,ux), they are defined by

+

+
6’7'

_ + +
_€u1 O"‘OE

u ug’

oe
and

D, =D, - D,,.
In the case k = 0, we use the convention E;Cw =w, and Dyl" = F'.

Suppose that Np is the product of the Lebesgue measure on R, and
that a Lévy measure v on R™. Then random variables on {2 are func-
tionals of the Lévy process {Z(t);t > 0} with Lévy measure v defined
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by

¢ ¢
Z(t) =bt+ / / 2N, (ds, dz) +/ / zNp(ds, dz), (11 —3)
0 J|z|<1 0 Jlz|>1

where b and z are the elements of R™, and the compensator Np(ds, dz)
of Poisson random measure N, is of the form;

N,(ds,dz) = v(dz)ds.

To get the existence of a smooth density, we need some sufficient condi-
tions which are applied to the case of SDE (II-7).

Condition (B). Lévy measure v satisfies;
(1). \i—f] < o0 as p — 0, where AT and A\~ are the largest and the
smallest eigenvalues of V'(p), respectively, where

Vi(p) = / zz*v(dz), pe€(0,1).
lz|<p
(2). For some « € (0,2), liminf, .o p~*v(p) > 0, where

v(p) = / _IePuaa)

Now, we introduce a Proposition for a random variable F, which is in
[5];

ProprosiTiON II-1. Suppose that the Lévy measure v satisfies the
Condition (B). Let t > 0, and let F' be an R%valued functional of Lévy
process satisfying the following (1) and (2);

(1), for any p and k,

|D-F|
k )
Hj:l EA

(2), there exists a matrix-valued process ¥, such that for |z| < 1,p >

Jess sup{ = (1,21, s (e z))s 2] < LY, < 00, (I1—4)

1

)

HDT,zF - ‘IJTZHP < Cp|z|q, (I] - 5)

for some q > 1, and
t
H(det/ W, Wkdr) 7|, < oo. (11 —6)
0

Then F' has an Cy°-density.
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For the SDE (II-1), we consider a Lévy process Z(t) = (Z'(t), Z*(¢),
, Z™(t)) of the type (II-3) whose component forms are following;

t+
Za(t) = bat—l—/ / ZQI{|Z‘§1}Np(d8,dZ)
R™\{0}

t+
+/ / Loy Np(ds, dz), o =1,2,--+,m.
0 R™\{0}

Then, under the (3) of Condition (A™*%) for Lévy measure v of (II-
3), we can get a stochastic flow of diffeomorphims of the form; for all
0<s<r<t<T,

gst - x"f‘Z/ bV, fsr dT+Z/ 557’ dZd( )

0<s<r<t
where
c(z,2) = exp(D_ 2*Vo)(2) —x — Z 22V ()
a=1 a=1

In particular, if s = 0 is fixed, then we get a process by setting; &y () :=
&(z), and we know also that SDE (II-1) has a unique solution {&;(x); 0 <
t < T} satistying (II-7).

To get that the Jacobian matrix of exp()_ _ 2*V,)(x) is invertible, we
introduce a Proposition;

PRrROPOSITION II-2. A matrix linear differential equation of the form;
d X, = A)X
dt t — ty
Xg = 1 (11 —38)
has a solution X; and det(X,;) # 0.

LEMMA II-1. the Jacobian matrix of exp()_, 2*V,)(z) is invertible
a.s.

Proof. 1f we put

oi(, 2) = exp(t Z 2V (),

[0}



The density for jump processes in canonical stochastic differential equation 7

then we get

d, 0 0 . d
E(%%(%Z)) = %<E¢t(x’z))

where a(zi ¢l (x, 2) is an d x d-matrix. Therefore, if we think equation;
d
EDxSOt(xvz) = A(t)Dopi(z, 2),
DIQO()(I‘,Z) = Ia ([[ - 9)

where A(t) is an d X d-matrix, we know that the differential equation
(I1-9) is a matrix linear differential equation. Thus, from the Proposition
I1-2, we see that D,é(x, z) is invertible a.s. O

On the other hand, for the flow {&;:(x);0 < s <r <t} of equation

(II-7), we can get the Jacobian matrix V&, (z) at = as following (c.f.
(6-30) and (10-16) of [1], and [2]);

Ve(z) = I+Z/ WOV V(Esp(2))VE, o (z)dr
+ Z VV (§sr—(2))VEsr—(2)dZg (1)
a=1Y9%
+ Y Velbar(2),AZ)VE, (x),  (IT—10)
0<s<r<t
where
Ve(z,z) =V exp(z 2Vo)(x) — 1 — Z 2VVq(2)
a=1 a=1
Now, for vector fields V,,aa=1,2,---,m, we put
El = {‘/17‘/27"'7‘/7%}7
El+1 = [Eb(‘/l?‘/%”' 7Vm)]a

where [, ] is the Lie bracket. Then we get the result.
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THEOREM. Suppose that
Vect(U2,Ei(z)) = R (11 —11)
Then, under the (3) of Condition (A™*?) for Lévy measure v of (II-3)

and Condition (B), the law of & (x) in (II-7) has an C;°-density for all
0<t<LT.

ITI. Proof of the theorem

Put U, := V&, (£)V(E), where V(z) is the matrix in the vector
V = (W, Vo, V) of vector fields such that

vi(z) vi(x) - vf(x) 0/0x!
vy(r) vi(z) oo vg(2) 0/0x
V= )
U (@) g (x) e (@) 9/0x*
and
V - v o 0 0

(x)<8x17 ax27'.. 78:1:(1)

= (V) V@), Vi) (O 0

The proof of the theorem can be got by followings;

ProposITION I1I-1. Assumption (II-11) implies (I1I-6);
¢
H(det/ W, Wkdr) 7|, < oo,

i.e., as a Wiener functional, the random variable F' of Proposition II-1
is non-degenerate in the sense of Malliavin.

To get the proof of this Proposition, we need some Lemmas.
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LEMMA III-1. (c.f.[3]) We get that V&(x) is invertible, and get

(Veuu(@) " =T~ Z / Ve (2) BV Va (e () dr

+Z / (Vo () Valbor(2))dZ5 (1)
+ > (Ve (2) 'V (o (2), AZ(r), (II1=1)

0<s<r<t

where

Ve l(z,2) = (V exp(z V) ()t =T+ Z 2*VV,(z).

a=1 a=1

Proof. Since & () satisfies SDE (II-7), its Jacobian matrix V&, (x)
satisfies (II-8), and Vc~!(z, 2) is defined by Lemma II-1. We consider
the linear SDE for unknown matrix-valued process X ;

t m t
s Gt = I— Z Xs,erVVOz(fs,r)dr =+ Z Xs,rfvva<€s,r7)dzg<7a)

a=1"79$ a=1"79$
+ Y X Ve (Gan AZ(r)).
0<s<r<t

It has an unique solution X;. Further, we can show directly that the
product X;,V¢&;, satisfies

di(Xs: Vi) = diXsp - VEsi(v) + Xsp - diVEs(x) = 0.

Therefore, X;;VE&s+(xz) = I holds a.s.. Thus V&, (x) is invertible and
the inverse (V& (x))~! satisfies equation (III-1). O

LEMMA III-2. (c.f.[3]) For 0 < s <t <T and a given vector field
V', we get;

(V&u(w0)) ™V (&:(20)) = V (o) Z / VE) DV, Val (€ ds
3 [ (V) (T ep()) V. Villexp() (€ )dZEs)  (ITT—2)

-> Z (V&) H(Vexp(-)) V. Vil (exp (1)) (65— ) — [V, VAl (6-)}AZL,
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where exp(-) = exp(>_1"_ | AZ*V,).

Proof. In view of Ito’s formula for semi-martingale with jumps, we
have

Vie) = Vi) + Y [ IVEValeis

+ Zl /0 VV (- )Val€s-)dZg (s)

+ > [V(exp(- — V(&) = Y AZEVV (6 )Vil(&en)].

0<s<t k=1

Now, for the product of two semi-martingales X; = (V&)™! and Y; =
V (&), we have the formula

t t
XY, = XY+ / X, 0dY.(s) + / (0dX,(5))Y,
0 0

+/tXSde(s)+/thsYd(S—)+[Xd(t)vyd(t)]>

where

— il /Ot(vgs)lbavva(gs)ds
Yi(t) :fjl / V€V (e)ds
_ i / (Ve ) IV Vale,)dZ2(s) + > (Ve (Ter()e) !
iy i AZEVV (€ WVA(E )

/ YV (60 Vi€ )dZ3 (5)

+ ) [V(exp( — V(&) = Y AZEVV (£ )Vil(&)].

0<s<t k=1
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We have also

/X o dY,(s Z/ (V&) VV (&) Va(&s)ds
and

/0 odX. Z / (VE) 0TV, )V (€,)ds

Since [V,, V] =VVV, — VVV we have

/X o dY,(s /odX( )Y, = —i/ot(vﬁs)‘lb“[w Val(§s)ds

a=1

On the other hand, a direct computation yields

[ xeavits) + [ vatsyax + o, vato) (119
-3 / (Ve )V, V(6 )dZg ()

+ Z (V&) H{(Vexp(-)(€-)) "V (exp(-) (€s-)) = V(&)

— > CAZEVVil(&)}
Since,
Vo)) =~ 3 AZHTexn() 1 )

k=1
holds, we have

(Vexp()™"V(exp(-)(w )) - V(x)

m

:—ZAZkVeXp ZAZe LV, Vi (),
where 0 < 6 < 1, by the mean value theorem. Substitute the above to
(IT1I-3). Then we get (I1I-2). O
LEMMA I1I-3. (c.f.[3]) Let ! # 0 be a vector in R?. Suppose that
(V&)'V (&) =0, for tel0,7),
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where T is a stopping time such that 0 < 7 <T a.s. Then, for t € [0, )
a.s.,

FVE)TV, V(&) =0, k=1,2,---,m

Proof. We consider the semi-martingale Y; = (V&a,) 1V (Ear).
has a unique Meyer decomposition Y; = M; + A;, where M, is a lo-
cal martingale and A; is a predictable process of bounded variation.
If I*Y; = 0, then I*M; = 0 holds. Further let M.(t) and My(t) be
continuous and discontinuous local martingales, respectively, such that
M(t) = M.(t) + My(t). Then I*M, = 0 implies [*M.(t) = 0 and
[*M,y(t) = 0. Consequently, we have by Lemma III-2, if s < 7

D (Ve T (Vexp() V. Villexp()(€))2F =0, ae. v,

where exp(-) = exp(>_""_ | AZ*(0)V,,). Define mxd matrix by [V, V](z) =
([V,Vil(x), -+ ,[V,Viu](x)). Then we get, if s < 7,

/ ) [(VE) NV exp() [V, V](exp(-) (&) 22

[V, V(exp () (€:))"(V exp(-)) (V&) lw(dz) = 0.
Divide the above by v(p) and let p tend to 0. Then we obtain
(V&) TV, VIBIV, VIH(VE) 1 =0, if s<r,

where B := lim infpﬁg(v(p))*l\/(p). Since B is non-degenerate, if s < 7,
we get; I*(VE) TV, V] =0 or

F(VE)TV, V] =0, k=1,2,---,m

Next consider the bounded variation part A;. It is equal to

-3 [ s e

since the terms of A; involving I*(V&) 7!V, V4], k& > 1, are 0. There-
fore, [*A; = 0 implies

Zl*vgs YW,V =0, if s<r.

Thus, we get the result. O]
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Proof of Proposition III-1. If (II-11) is given, because V& (z) is
invertible by Lemma III-1, we get for any non-zero vector I(# 0) € R%

<l (V&() ' [V.Vi(&(2)) ># 0
for any given vector field V and k = 1,2, ..., m. Then, by Lemma III-3,
<l, (V&) Vil&(x)) >#0.
Thus, because of V¢, = V&(VE,)™!, we get
< l, v&r,t(fr)vk(fr) >7é 0.
Thus, by Lemma III-1, we get

det(V,07)7" = det((VE.4(&) VIENV(E) T (VEHEN )
# 0.
Thus we get (II-1) in Proposition II-1;

t
H(det/ U, Ukdr) |, < oo. O
0
From the Sobolev inequality;
swp|[H()| <C S /|H(k)(x)|dx
|k|=d+1
for smooth functions H with compact support in R?, we deduce that;
sup |H(z)| < C ) / |H®) (z)|dz (ITI — 4)
|z]<p |k|<d+1 {lz|<p+1}
for a C' which does not depend on p (c.f. [5]).

LEMMA III-4. (see [5]) Let Hy(w,x1,u) and Ho(w,x1,z,u),z1 €
R% x € R% u € E(a parameter space), be random functions such that

[sup [Hi(z1,0)|, < Qux1),
[sup |H (1,2, 0)|, < Quplx),  (II1—5)

for p > 1,k € N% some functions Qp, Qrp with at most polynomial
growth, and HQ(k) are the derivatives with respect to x. Then the function

H : (z1,u) — Hy(xy, Hi(z1,u),u)
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satisfies an estimate similar to the one for Hy; for any p, there exists a
function (), with at most polynomial growth such that

Isup [H (z1, u)lll, < Qplz1).  (IIT —6)

LEMMA III-5. (See [4] and [5])  We have
I sup [DWe(@)lll, < Quplx)  (I11=7)

0<s<t<T

for some functions ), with at most polynomial growth, and where the
supremum is relative to the couples (s,r).

More generally, we can get also that, for any stopping time o, the
process &, ¢(x) is the solution of (II-7) with initial value = at time o, and

| sup |&e(@)[ll, < Cp(1+ [z),
o<t<T
| sup [DW&, @), < Cp  (IIT—8)
o<t<T
for k # 0 and where C, does not depend on o.
Proof of the Theorem. Consider a function

$(p, z,1) =2+ pl2] exp(d | 2*Va)(w) —x),p 2 0,]2] < 1,

a=1
and the random map
R(JjOa pl>t17 21,00 7pk’7tk‘7 Zk)
ftk,t o ¢(pk7 2k ) o gtk_l,tk ©---0 §t1,t2 o ¢(P17 21, ) o 50,151 ([L'())

for 0 <t; <ty <--- <ty <t. Then, for 7 = ((t1,21), -, (tg, 2x)), we
get
& o 57Jf = o 5;;721 o 52;22 0---0 5;;7%
- R(QS(), |2’1|,t1,2’1, T 7|Z/€|vtkvzk)>
and
DTF = Té-t
= §t05 — &
ZL’(],’21| tl?'zlv' |Zk‘ tk,Zk) 5

|21 |2k | oF
/ / apl R(l’mpb"' 7tkazk>dpkdp1
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(1). In order to get the boundedness of (II-4) in (1) of Proposition
II-1, we can use
| D-F| -
SSUP | R(anplv"' 7tk72k)|7
N ETRRE

ess sup{

ngj§1,0§t1<t2<"'<tk§t,’2j’ Sl}
To estimate the supremum of
ak
Op1 - Opi
we use that the derivatives of ¢(p, z, z) with respect to p;
) _ o
8—p¢(p,z,x) = |2 (exp(d_ 2*Va)(x) — 2),p = 0, ]2 < 1,

a=1

R('T07p17t172:17 e 7pk7tkazk)7

is bounded. Further, from Lemma II-1, the derivatives of ¢(p, z, ) with
respect to x are bounded. Thus, it is reduced to estimate the moments
of variables of type;

D(k/)ft]',tjurl o ¢(p]7 zj? ) o gtjfl,tj 0--+0 ¢<1017 Zl? .> o 60,751 (mo)

From Lemma III-5, we can estimate of D®)¢, ;. (z) and &, 4, (2) for
all j and [ < k. Thus we obtain the (II-4) of Proposition II-1.
(2). To get the Condition (2) of Proposition II-1, we use the fact;

Goel, = &ul&+ ) 2Val&) +c(&,2))
a=1

m

= Sr,t(exp(z Zavoc) (&))

a=1
is differentiable with respect to z at z = 0. Thus from the fact, we get

Dr,zft = §o 5; &

m

= gr,t(eXp(Z 2*Vo) (&) — &
a=1
grto¢<|z| ) 57“(1‘0) _gr,togb(()?za') Ofr(l‘g)
= 'T07|Z| r, Z) R(xo,(),r, Z)
|2|
R(zo,p, 1, 2, p, t,|2|)dpdp.
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Therefore, from the fact;

R<x0’ 07 tv Z) = Sr,t o gb(O, 2, ) © 57“(1‘0)7

and
SoRE062) = Tel€ o) 50l o) o
= vgnt(gr)gl'V(exp(i Vo) (&) — &),
we get that
|z|a%R(x07 0,t,2) = V& (&)Y (&, 2) + ail 2Va(&r))-
Thus we get

U,z =

Therefore, we get

rzgt -

v&’,t (57’)\7 (ér)z
d
Y bl eV )2

‘Z|%R(l’0, O, t, Z) - vfr,t(ér)vc(fm Z)

|| )
/ / apa :EO»paTaZapat?’Zdedp_ |Z’a—pR($0,0,t,2)
+ Vfrt(fr)vc(ng)

d |2 0? g o . .
= Z/O' 0 OxtOri (l‘o,p, T, Z)8_p¢ (p, Z7§T)8—p¢](p7z7ér) odp
2,

+ vfr t(fr)VC(fr, Z)

lzl P 92
/ 0 aa:la

J

57"75 ¢(p7Zafr))a_p(#(p’Z:é-T)a_png(p?Za&“)dpdﬁ

+ V& (&) Ve, 2).

The moments of the first and second derivatives are proved to be bounded
from (III-8). Also, the variables exp(> . 2*V,) (&) — & and c(&,, 2)
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are, respectively, of order |z|? and |z|" because V, are bounded functions
(c.f.[3] and [4]). Therefore, this expression is order |z|™? for |z| < 1.
Thus, we can get the (II-5) of (2) in Proposition II-1. Thus, from the
Proposition II-1, we get the result. O
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