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Remaining Life Prediction of Deteriorating Bridges Based on

Lifetime System Reliability
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ABSTRACT : The construction of highway bridges is almost complete in many
countries including the United States. The government and highway agencies
change the focus from constructing to maintaining. To maintain the bridges
effectively, there is an urgent need to assess actual bridge loading carrying
capacity and to predict their remaining life. The system reliability techniques
have to be used for this purpose. Based on lifetime distribution (function)
techniques, this study illustrates how typical highway bridges can be modeled
to predict their remaining life. The parameters of lifetime distribution are
generated by Monte. The results can be used for optimization of planning

interventions on existing bridges.

& A2 o wmE AlA"APA, I, Eey, BHEEy
KEYWORDS : bridges: system reliability: load carrying capacity: remaining life:
Monte Carlo simulation

1) v Zasteddty ESSAgey Ay B =8 i £ 200249 4¥ 30Y7H] 3z By
_T_

2) B84,

Agaddtn EE2gee) wy A Eol FH-E AAsAFUH.

A 132 5% 20014 109

467



1. Introduction

About half of highway bridges in United
States are considered to be deficient and
therefore are in need of repair or replacement.
Half of these are functionally obsolete, and
others do not have the required strength
(State 1989). For these bridges, repairs
and replacements are needed to increase
service life. In order to avoid the high cost
of rehabilitation, the rating (evaluation) of
these bridges must correctly report the
actual load-carrying capacity. The manuals
(AASHTO 1983, AASHTO 1994) are used
for bridge rating. To predict the remaining
lifetime of deteriorating bridges, new tool
is needed to model these deteriorating
bridges with time.

Resistances and loads are not constant
with time. This is because ductility and
strength of materials deteriorate with time
and are affected by previous loading history,
and loads on structures vary with time.
Time invariant reliability analysis of structural
systems may provide unconservative reliability
estimation because it considers only the
initial variability of random variables, which
may increase with time (lizuka and Frangopol
1991). In the case of previous study on
bridge degradation, mostly the resistances
are the function of time [(Kameda and
Koike 1975, Estes 1997). As the time goes
on, the resistance (i.e. cross section) decreases.
The degradation parameters are used to
predict the changing resistance. After the
resistances are estimated, the reliability
index is computed to assess the bridges

with time.

In this paper, the lifetime distributions
are used to predict the probability of failure
for the components or system. There are
several lifetime distributions to describe
the evolution of the probability of failure.
Mainly, the survivor functions are used in
this paper. By using the concept of system
reliability and lifetime, this paper addresses
the methodology how to model the bridge
and how to predict the probability of

failure.
2. System Reliability Analysis

2.1 Structure Function

Structure function [Leemis 1995) is a
useful tool to describe the state of system
with n components. Structure function defines
the system state as a function of the
component state. A system is assumed to
be a collection of n components [{Ghosn and
Frangopol 1999}, In addition, it is assumed
that both components and the system can
either be functioning or failed. The state of

component I, x;, is assumed as

0 if component has failed
X =
* |1 if component  is functioning (D

The n component system can be expressed

as a system state vector as following.
x,} (2)

Structure function, #¢(x), expresses the
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system state vector x to zero or one. The
structure function ¢ (x) for a given system

state vector is

/60 = 0 if the system has failed
TN if the system is functioning

The most common system is the series
and parallel system. For series system,
since the any one component failure in the
system causes the system failure, the series

system is expressed as

0 if thereexists an i such that x, =0

”X)z{l if x, =1foralli=1,2,...,n

=min{x, x,, ..., x,} (4)

ey Xy
n
i=l

For parallel system, all component failures
in a system cause the system failure, the

parallel system is expressed as

0 ifx,=0foralli=1,2,...;n
1 if thereexists an i such that x; =1

#(x)={

=max{x, X,, ..., X, } (5)

=1-TJa-x)

As an example, the structure function is
obtained for a 5-component system shown
in Fig. 1. Also, Fig. 1 shows the reduction
steps. These reduction steps are also expressed
as functions through Eq. (6) to Eq. (9).

The first reduction step is a parallel system

between components 2 and 3. By first
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BEFORE REDUCTION FIRST REDUCTION

SECOND REDUCTION THIRID REDUCTION

i =

FOURTH REDUCTION

QUIV. SYSTEM

Fig. 1 Sequential Reduction Procedure

reduction, the subsystem 1 is obtained and

expressed as following.
Palx) =1-(1-x,)1-x,) (6)

Where

xi = State of component i

The second reduction is a series system
between components 4 and 5. This is

expressed as following.
P (X)) =X4Xs (7)

The third reduction is also series system

between subsystem 1 and component 1.
? 3(x) =x|¢51 (8)

By fourth reduction, the structure function

for this b-component system is obtained.
¢ (x)=1-fl-x[-(-x)1-x)}U-xx)  (9)

2.2 Reliability Function

The structure function is deterministic.
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This assumption may be unrealistic for
certain types of components or system. So,
reliability functions {Leemis 1995) are
necessary to model the structures which are
in use. In section 2.1, x; was defined to be
the deterministic state of component 1.
Now, x;is a random variable. The probability

that component i is functioning is given by
p.=PFlx, =1] (10)

Where

Pi = Probability that component i is functioning

If there are components, reliability vector

of system can be written as
p ={pi Pove 2} (11)

The system reliability function is defined
by

r=r(p)=P(4 (x)=1] (12)

In order to obtain the reliability function
for a 5-component system shown in Fig. 1,
the same procedure is necessary. But the
component reliability function, p, is used

in each step instead of component state x.
3. Lifetime Distribution

Reliability function gives the reliability of
components or system at specific time ¢. In
this section, the probability of failure is
generalized to be a function of time with
lifetime distribution. There are several
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lifetime functions to describe the evolution
of the probability of failure. In this paper,
one lifetime function is introduced called
Survivor function. The lifetime function applies
to both discrete and continuous lifetime
and is used to describe the distribution of
system lifetime, as well as of its components.

The survivor function is the generalization
of reliability because the survivor function
gives the reliability that a component or
system is functioning at one particular

time. The survivor function is expressed
S()=P[T 21¢] t20 (13)

It is assumed that when ¢<0,5(#) is one.
The survivor function has to satisfy three
conditions. These are
D S0)=1
2) }EESU):O

3) 8(1) is non-increasing without any maintenance

Several distributions are used as survivor
functions. The exponential distribution,
Weibull distribution, Log-Logistic distribution,
and Exponential Power distribution are used
in this paper. These survivor functions are

shown in table 1.

Table 1 Survivor Function

Distribution Survivor function
Exponential exp(—At)
Weibull exp(~(A)"*)
1
Log-logistic m
Exponential- power exp(l — exp(A£)*)

=Tz =R



Where
A = Failure rate
x = Shape factor
! =Time, t=0
The failure rate is the frequency of
failure in unit time (hours, years, etc.).

The failure rate is defined as following.

=18 59

S() (14)

Where

das(t)

S B
Exponential survivor function is only one
parameter distribution and has constant
failure rate. Others have two parameters
(failure rate and shape factor). Depending
on shape factor, «, survivor functions
have an increasing failure rate or constant
failure rate or decreasing failure rate. The
typical trends of each survivor functions

are shown in Fig. 2 to Fig. 5.

1.0 T T T T T T T T T
S(t) = exp(-At)

0.7 2=0.001 —

Survival Probability. S(t)
=3
n
T
1

04l 1=0.005 N
0.3 2=0.009 4
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0.0 1 I ] i I ] 1
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Time, |

Fig. 2 Exponential Survivor Function
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Fig. 3 Weibull Survivor Function
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Fig. 4 Log-logistic Survivor Function
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Fig. 5 Exponential Power Survivor Function

47



In order to find out lifetime function for
system, the concept of section 2 and section
3 are used. To make lifetime function for
system, the component survivor functions
are used as arguments. As an example, if
there is a three-component series system
with independent relation for each component,

the system reliability function is

S() = 85,(1)S,(H)S,(t) (15)

Where

50 = Survivor function of component i

For three-component parallel system, the

system lifetime function is

S@=1-(01=§NA-5,ON1~5)  (16)

4. Modeling Methodology for Real
Bridge

Due to nonlinearity in multi-girder bridge
types, single girder failure doesn’t cause
the bridge failure. When one girder fails on
bridge, the load redistribution takes place
and the bridge is capable to carry additional
loads. The multi-girder bridges are modeled
as combination of series and parallel systems
in reliability analysis. For example, if the
bridge has five girders with concrete deck,
the bridge may be modeled as combination
of failure model as follows:

» Any one girder failure or deck failure

causes the bridge failure.

+ Any two adjacent girder failures or

deck failure cause the bridge failure.
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* Any three adjacent girder failures or
deck failure cause the bridge failure.

* Failure of any external girder or any
two adjacent internal girders or deck

failure cause the bridge failure.

These failure models are shown in Fig. 6.
With these failure modes, the reliability

analysis will be performed for each bridge.

ODaaDa@aSacd

Any one girder failure or deck failure causes the

bridge failure

Any two adjacent girder failures or deck failure
cause the bridge failure

Any three adjacent girder failures or deck failure
cause the bridge failure

Failure of any external girder or any two adjacent
internal girders or deck failure cause the bridge failure

Where
D = Deck failure
Gl and G5 = Exterior girder failure

G2, G3, and G4 = Interior girder failure

Fig. 6 Failure Modes
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The FORTRAN program is developed to
predict the probability of failure by using
the concept of system reliability and lifetime
function. Since the failure rates of survivor
functions are obtained by data analysis, that
may have different distribution types for
each data. When the program is developed,
the Monte Carlo simulation is used to
simulate the failure rates of survivor
functions.

Fig. 7 and Fig. 8 shows the series system
when the failure rate is deterministic and
random variable, respectively. It is assumed
that each component is independent and
has same failure rate. The values of failure
rates are on the figures.

Fig. 9 and Fig. 10 are for parallel system.
Also, each component is independent.

Fig. 11 and Fig. 12 shows the cumulative-
time failure probability of 3-component
system. The system is shown on each
figure. The failure rate of component 1
changes on Fig. 11 and the failure rate of
component 3 changes on Fig. 12. In these

figures, each component is independent and
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Table 2 Case Study

Case | Component 1 | Component 2| Component 3
Exponential Weibull Log-logistic
A Uniform Uniform Uniform
- k=1.5 k=1.5
Exponential | Exponential { Exponential
B Uniform Uniform Uniform
Weibull Weibull Weibull
C Uniform Uniform Uniform
t=1.5 k=15 k=15
Log-logistic | Log-logistic Log-logistic
D Uniform Uniform Uniform
k=15 t=1.5 £=1.5

474

same survivor function.

As a case study, when each component
has different survivor function, the probability
of failure is predicted for three-component
system. The survivor functions for each
case are summarized in table 2.

In case A, each component has a different
survivor function: component 1 is Exponential,
component 2 is Weibull, and component 3
the

failure rate is assigned a uniform distribution

is Log-logistic. For all components,
whose parameters are 0.00413/year and
0.00586/yvear, and the shape factor is 1.5,
In case B, each component has an Exponential
survivor function. In case C. each component
has a Weibull.

ogistic.

In case D, each is Log-
The parameter values used in
cases B, C, and D are the same as that of
case A for each survivor function.

The probability of failure for each case is
shown in following figures.

Fig. 13 is the result of case A. Fig. 14 is
for case B. Fig. 15 and Fig. 16 are for case
C and case D, respectively. All cases are

compared in Fig. 17. From Fig. 17, the
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Fig. 13 Cumulative-Time Failure Probability for
Case A
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case B is worst case. The reason is that
the shape factor used in each survivor
function is bigger than 1. When shape
factor is bigger than 1, the failure rate is
increased from zero to infinity. Except case
B, the slops of rest of cases are not steep
at the beginning but the slops are steep
with time. From the results, it is easy to
see and compare the time dependent system
reliability.

5. Conclusion

Based on the concept of system reliability
and lifetime function, the FORTRAN program
was developed and used to predict the
probability of failure for the system, which
is combination of series and parallel system.
Monte Carlo simulation is used to simulate
the failure rate. The survivor function is
useful tool to compare the survivor patterns
of each component or system. As shown in
Fig. 17, it is easy to compare survivor
patterns. And. because the program gives
the probability of failure with time, the
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optimal intervention time can be computed

and intervention plan can be made by

using this program.
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