Improvement of $^{4}I_{11/2}{\to}^{4}I_{13/2}$ Transition Rate and Thermal Stabilities in $Er^{3+}-Doped\;TeO_2-B_2O_3\;(GeO_2)-ZnO-K_2O$ Glasses

  • Cho, Doo-Hee (Basic Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Choi, Yong-Gyu (Basic Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Kyong-Hon (Basic Research Laboratory, Electronics and Telecommunications Research Institute)
  • 투고 : 2001.03.26
  • 발행 : 2001.12.30

초록

Spectroscopic and thermal analysis indicates that tellurite glasses doped with $B_2O_3$ and $GeO_2$ are promising candidate host materials for wide-band erbium doped fiber amplifier (EDFA) with a high 980 nm pump efficiency. In this study, we measured the thermal stabilities and the emission cross-sections for $Er^{3+}:^{4}I_{13/2}\;{\to}\;^{4}I_{15/2}$ transition in this tellurite glass system. We also determined the Judd-Ofelt parameters and calculated the radiative transition rates and the multiphonon relaxation rates in this glass system. The 15 mol% substitution of $B_2O_3$ for $TeO_2$ in the $Er^{3+}-doped\;75TeO_2-20ZnO-5K_2O$ glass raised the multiphonon relaxation rate for $^4I_{11/2}\;{\to}\;^4I_{13/2}$ transition from 4960 $s^{-1}$ to 24700 $s^{-1}$, but shortened the lifetime of the $^4I_{13/2}$ level by 14 % and reduced the emission cross-section for the $^4I_{13/2}\;{\to}\;^4I_{15/2}$ transition by 11%. The 15 mol% $GeO_2$ substitution in the same glass system also reduced the emission cross-section but increased the lifetime by 7%. However, the multiphonon relaxation rate for $^4I_{11/2}{\to}^4I_{13/2}$ transition was raised merely by 1000 $s^{-1}$. Therefore, a mixed substitution of $B_2O_3$ and $GeO_2$ for $TeO_2$ was concluded to be suitable for the 980 nm pump efficiency and the fluorescence efficiency of $^4I_{13/2}{\to}^4I_{15/2}$ transition in $Er^{3+}-doped$ tellurite glasses.

키워드

참고문헌

  1. Technical Digest of Conf. Optical Fibe-Comm.1997 (OFC'97) $1.5 {\mu}m$ Broadband Amplification by Tellurite-Based EDFAs Mori, A.;Ohishi, Y.;Yamada, M.;Ono, H.;Nishida, Y.;Oikawa, K.;Sudo, S.
  2. Opt. Lett. v.23 no.4 Gain Characteristics of Tellurite-Based Erbium-Doped Fiber Amplifiers for 1.5-${\mu}m$ Broadband Amplification Ohishi, Y.;Mori, A.;Yamada, M.;Ono, H.;Nishida, Y.;Oikawa, K.
  3. J. Lightwave Technol. v.9 Erbium-Doped Glasses for Fiber Amplifiers at 1500 nm Miniscalco, W.J.
  4. OSA TOPS v.25 980 nm-Pumped Er-Doped Tellurite-Based Fiber Amplifier Nakai, T.;Noda, Y.;Tani, T.;Mimura, Y.;Sudo, T.;Ohno, S.
  5. Phys. Rev. B v.56 Spectroscopic Properties of $Er^{3+}$- and $Yb^{3+}$-Doped Soda-Lime Silicate and Aluminosilicate Glasses Hehlen, M.P.;Cockroft, N.J.;Gosnell, T.R.;Bruce, A.J.
  6. Handbook of Physics and Chemistry of Rare Earths Reisfeld, R.;Jorgensen, C.K.;Gschneidner, K.A. Jr.(ed.);Eyring, L.(ed.)
  7. J. Non-Cryst. Solids v.162 Spectroscopic Properties of $Er^{3+}$- and $Yb^{3+}$-Doped Soda-Lime Silicate and Aluminosilicate Glasses Zou, X.;Izumitani, T.
  8. Appl. Opt. v.30 Output Saturation in a 980 nm Pumped Erbium-Doped Fiber Amplifier Quimby, R.S.
  9. Electron. Lett. v.35 no.20 Enhanced $^4I_{11/2}\;{\to}\;^4I_{13/2}$ Transition Rate in $Er^{3+}/Ce^{3+}$-Codoped Tellurite Glasses Choi, Y.G.;Lim, D.S.;Kim, K.H.;Cho, D.H.;Lee, H.K.
  10. Optical Materials v.3 Tellurite Glass: a New Candidate for Fiber Devices Wang, J.S.;Vogel, E.M.;Snitzer, E.
  11. J. Am. Ceram. Soc. v.65 Preparation and Properties of Heavy-Metal Fluoride Glasses Containing Ytterbium or Lutetium Drexhage, M.G.;El-Bayoumi, O.H.;Moynihan, C.T.;Bruce, A.J.;Chung, K.H.;Gavin, D.L.;Loretz, J.T.
  12. J. Non-Cryst. Solids v.52 Compositional Dependence of Nonradiative Decay Rate in Nd Laser Glasses Toratani, H.;Izumitani, T.;Kuroda, H.
  13. J. Lumin. v.75 Optical Transitions of $Er^{3+}$ in Lead-Tellurium-Germanate Glasses Pan, Z.;Morgan, S.H.
  14. Phys. Rev. v.127 Optical Absorption Intensities of Rare Earth Ions Judd, B.R.
  15. J. Chem. Phys. v.37 Intensities of Crystal Spectra of Rare Earth Ions Ofelt, G.S.
  16. Phys. Rev. v.157 Probabilities for Radiative and Nonradiative Decay of $Er^{3+}$ in LaF3 Weber, M.J.
  17. Phys. Rev. B v.27 Optical Transitions of $Er^{3+}$ Ions in Fluorozirconate Glass Shinn, M.D.;Silbley, W.A.;Drexhage, M.G.;Brown, R.N.
  18. Phys Rev. B v.8 no.1 Multiphonon Relaxation of Rare-Earth Ions in Yttrium Orthoaluminate Weber, M.J.
  19. Phys. Rev. B v.1 Photon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids Miyakawa, T.;Dcxter, D.L.
  20. Optical Fiber Amplifiers: Materials, Devices, and Applications Ohishi, Y.;Sudo, S.(ed.)
  21. Laser Crystals: Their Physics and Properties Kaminski , A.A.
  22. Erbium-Doped Fiber Amplifiers: Principles and Applications Dcsurvire, E.
  23. J. Non-Cryst. Solids v.182 $Pr^{3+}$-Doped Ge-Ga-S Glasses for 1.3 ${\mu}m$ Optical Fiber Amplifiers Wei, K.;Machewirth, D.P.;Wenzel, J.;Snitzer, E.;Sigel, G.H. Jr.
  24. Phys. Rev. A v.134 Theory of Phonon-Terminated Optical Masers Mc Cumber, D.E.
  25. Opt. Lett. v.16 General Procedure for the Analysis of $Er^{3+}$ Cross-Sections Miniscalco, W.J.;Quimby, R.S.
  26. Laser and Excited States of Rare Earths Reisfeld, R.;Jorgensen, C.K.
  27. Opt. Lett. v.20 no.5 $Pr^{3+}$-Doped GeSx-Based Glasses for Fiber Amplifiers at 1.3 ${\mu}m$ Simons, D.R.;Faber, A.J.;de Waal, H.
  28. ETRI J. v.23 no.3 $Pr^{3+}$- and $Pr^{3+}/Er^{3+}$-Doped Selenide Glasses for Potential 1.6 ${\mu}m$ Optical Amplifier Materials Choi, Yong-Gyu;Park, Bong-Je;Kim, Kyong-Hon;Heo, Jong