$Pr^{3+}-and$ $Pr^{3+}/Er^{3+}$-Doped Selenide Glasses for Potential $1.6{\mu}m$ Optical Amplifier Materials

  • Choi, Yong-Gyu (Telecommunication Basic Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Park, Bong-Je (Telecommunication Basic Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Kyong-Hon (Telecommunication Basic Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Heo, Jong (Department of Materials Science and Engineering, Pohang University of Science and Technology)
  • 투고 : 2000.09.15
  • 발행 : 2001.09.30

초록

$1.6\;{\mu}m$ emission originated from $Pr^{3+}:\;(^3F_3,\;^3F_4)\;{\longrightarrow}\;^3H_4$ transition in $Pr^{3+}-\;and\;Pr^{3+}/Er^{3+}$-doped selenide glasses was investigated under an optical pump of a conventional 1480 nm laser diode. The measured peak wavelength and fullwidth at half-maximum of the fluorescent emission are ~1650nm and 120nm, respectively. A moderate lifetime of the thermally coupled upper manifolds of ${\sim}212{\pm}10{\mu}s$ together with a high stimulated emission cross-section of ${\sim}(3{\pm}1){\times}10^{-20}\;cm^2$ promises to be useful for $1.6{\mu}m$ band fiber-optic amplifiers that can be pumped with an existing high-power 1480 nm laser diode. Codoping $Er^{3+}$ enhances the emission intensity by way of a nonradiative $Er^{3+}:\;^4I_{13/2}\;{\longrightarrow}\;Pr^{3+}:\;(^3F_3,\;^3F_4)$ energy transfer. The Dexter model based on the spectral overlap between donor emission and acceptor absorption describes well the energy transfer from $Er^{3+}$ to $Pr^{3+}$ in these glasses. Also discussed in this paper are major transmission loss mechanisms of a selenide glass optical fiber.

키워드

참고문헌

  1. Nature (London) v.404 Towards the Clarity Limit in Optical Fibre Thomas, G.A.; Shraiman, B.I.;Glodis, P.F;Stephen, M.J.
  2. OSA Trends in Optics and Photonics Series (TOPS) v.16 Optical Amplifiers and Their Applications Zerras, M.N.(ed.); Miller,A.E.(ed.);Sasaki, S.(ed.)
  3. Electron. Lett. v.23 Low-Noise Erbium-Doped Fiber Amplifier Operating at 1.54 ${mu}m$ Mears, R.J.;Reekie, L.;Jauncey, I.M.;Payne, D.N.
  4. Opt. Lett. v.23 no.4 Gain Characteristics of Tellurite-Based Erbium-Doped Fiber Amplifiers for $1.5-{\mu}m$ Broadband Amplification Ohishi, Y. ;Mori, A. ;Yamada, M. ;Ono, H.;Nishida, Y.;Oikawa, K.
  5. ETRI J. v.23 no.1 Performances of Erbium-Doped Fiber Amplifier Using 1530 nm-Band Pump for Long Wavelength Multichannel Amplification Choi, B.H.;Chu, M.J.;Park, H.H.;Lee, J.H.
  6. J. Am. Ceram. Soc. v.83 no.4 Optical Amplification at $1.3\;{\mu}m$ in a Praseodymium-Doped Sulfide Glass Fiber Tawarayama, H.;Ishikawa, E.;Yamanaka, K.;Itoh, K.;Okada, K.;Aoki, H.;Yanagita, H.;Matsuoka, Y.;Toratani, H.
  7. IEEE Photon. Technol. Lett. v.10 no.11 Modeling of $Dy^{3+}$-Doped GeAsSe Glass $1.3-{\mu}m$ Optical Fiber Amplifiers Schaafsma, D.T.;Shaw, L.B.;Cole, B.;Sanghera, J.S.;Aggarwal, I.D.
  8. Opt. Lett. v.24 no.23 1.50-?m-Band Gain-Shifted Thulium-Doped Fiber Amplifier with 1.05- and $1.56-{\mu}m$ Dual-Wavelength Pumping Kasamatsu, T.;Yano, Y.;Sekita, H.
  9. IEEE Photon. Technol. Lett. v.8 no.3 35-dB Gain Tm-Doped ZBLYAN Fiber Amplifier Operating at $1.65\;{mu}m$ Sakamoto, T.;Shimizu, M.;Yamada, M.;Kanamori, T.;Ohishi, Y.;Terunuma, Y.;Sudo, S.
  10. J. Am. Ceram. Soc. v.83 no.5 $Pr^{3+}/Er^{3+}$ Codoped Ge-As-Ga-S Glasses as Dual-Wavelength Fiber-Optic Amplifiers for 1.31 and $1.55\;{mu}m$ Windows Park, S.H.;Lee, D.C.;Heo, J.;Kim, H.S.
  11. IEEE J. Quantum Electron v.30 no.12 Infrared Laser Characteristics of Praseodymium-Doped Lanthanum Trichloride Bowman, S.R.;Ganem, J.;Feldman, B.J.;Kueny, A.W.
  12. Opt. Express v.1 no.4 Spectroscopy of the IR Transitions in $Pr^{3+}$ Doped Heavy Metal Selenide Glasses Shaw. L.B.;Harbison, B.B.;Cole, B.;Sanghera, J.S.;Aggarwal, I.D.
  13. J. Non-Cryst. Solids v.217 $1.3\;{mu}m$ Emission and Multiphonon Relaxation Phenomena in $PbO-Bi_2O_3-Ga_2O_3$ Glasses Doped with Rare-Earths Choi, Y.G.;Heo, J.
  14. J. Appl. Phys. v.88 no.7 Comparative Study of Energy Transfers from $Er^{3+}$ to $Ce^{3+}$ in Tellurite and Sulfide Glasses under 980 nm Excitation Choi, Y.G.;Kim, K.H.;Park, S.H.;Heo, J.
  15. Rev. Electr. Commun. Lab. v.32 no.3 Preparation of Chalcogenide Optical Fiber Kananmori, T.;Terunuma, Y.;Miyashita, T.
  16. J. Non-Cryst. Solids v.270 Structure and Properties of the Pure and $ Pr^{3+}$-Doped $Ge_{25}Ga_5Se_{70}$ and $Ge_{30}Ga_5Se_{65}$ glasses Nemec, P.;Frumarova, B.;Frumar, M.
  17. J. Non-Cryst. Solids v.278 Emission Properties of $Er^{3+}: ^4I_{11/2}{\to}^4I_{13/2}$ Transition in $Er^{3+}$-and $Er^{3+}/Tm^{3+}$-Doped Ge-Ga-As-S Glasses Choi, Y.G.;Kim, K.H.;Lee, B.J.;Shin, Y.B.;Kim, Y.S.;Heo, J.
  18. IEEE J. Quantum Electron v.32 no.12 Radiative and Multiphonon Relaxation of the Mid-IR Transitions of $Pr^{3+}$ in $LaCl_3$ Shaw, L.B.;Bowman, S.R.;Feldman, B.J.;Ganem, J.
  19. J. Am. Ceram. Soc. v.82 no.10 Spectroscopic Properties of and Energy Transfer in PbO-$Bi_2O_3-Ga_2O_3$- Glass Doped with $Er_2O_3$ Choi, Y.G.;Kim, K.H.;Heo, J.
  20. J. Appl. Phys. v.82 no.6 Cross Relaxation and Upconversion Coefficients of the Mid-Infrared Transitions of $Pr^{3+}:LaCl_3$ Kirkpatrick, S.M.;Bowman, S.R.;Shaw, L.B.;Ganem, J.
  21. J. Chem. Phys. v.21 no.5 A Theory of Sensitized Luminescence in Solids Dexter, D.L.
  22. Phys. Chem. Glasses v.39 no.6 Influence of $OH^-$ and $Nd^{3+}$ Concentrations on the Lifetimes of the TEX>$Nd^{3+}: ^4F_{3/2}$ Level in PbO-$Bi_2O_3-Ga_2O_3$ Glasses Choi, Y.G.;Heo, J.
  23. J. Non-Cryst. Solids v.11 Energy Transfer between $Tm^{3+}$ and $Er^{3+}$ in Borate and Phosphate Glasses Reisfeld, R.;Eckstein, Y.
  24. Opt. Lett. v.20 no.5 $Pr^{3+}$-Doped $GeS_x$-based Glasses for Fiber Amplifiers at $1.3\;{mu}m$ Simons, D.R.;Faber, A.J.;de Waal, H.
  25. IEEE Photon. Technol. Lett. v.6 no.5 Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for $1.3\;{mu}m$ Optical Fibre Amplifiers Hewak, D.W.;Medeiros Neto, J.A.;Samson, B.;Brown, R.S.;Jedrzejewski, K.P.;Wang, J.;Taylor, E.;Laming, R.I.;Wylangowski, G.;Payne, D.N.
  26. Appl. Opt. v.24 no.3 Theoretical Analysis of Optical Fiber Laser Amplifiers and Oscillators Digonnet, M.J.F.;Gaeta, C.J.
  27. Phys. Rev. B v.5 no.8 Weak Absorption Tails in Amorphous Semiconductors Wood, D.L.;Tauc, J.
  28. Appl. Phys. Lett. v.73 no.22 Excitation of $Er^{3+} Emission by Host Glass Absorption in Sputtered Films of Er-Doped $Ge_{10}As_{40}Se_{25}S_{25}$ glass Ramachandran. S.;Bishop, S.G.
  29. J. Non-Cryst. Solids v.256;257 Active and Passive Chalco-Genide Glass Optical Fibers for IR Applications: a review Sanghera, J.S.;Aggarwal, I.D.
  30. Proc. SPIE v.1048 The Role of Impurities in the Optical Losses of Chalcogenide Glass Fibers Devyatykh, G.G.;Churbanov, M.F.;Scripacher, I.V.;Dianov, E.M.;Plotnichenko, V.G.
  31. Proc. 26th ECOC $Pr^{3+}$-Doped Selenide Fiber for 1610~1650 nm Optical Amplifiers Choi, Y.G.;Cho, D.H.;Chang, D.I.;Lim, D.S.;Kim, K.H.;Park, B.J.;Heo, J.