ON SOME PROPERTIES OF PRETOPOLOGICAL CONVERGENCE STRUCTURES

Sang-ho Park and Myeong-Jo Kang

Abstract In this paper we introduce generalized q-interior operator and n-th pretopological modification of q. Furthermore we establish a characterization of $\pi_n(q) = \lambda(q)$.

1. Introduction

A convergence structure q defined by Kent ([4]) is a correspondence between the filters on a given set X and the subsets of X which specifies that filters converge to points of X. For given convergence structure q on a set X, Kent introduced convergence structures with q, which are called the pretopological modification and the topological modification. They are denoted by $\pi(q)$ and $\lambda(q)$, respectively.

A q-interior operator I_q introduced by Choquet ([3]) is a set function which has all of the properties of topological interior operator except idempotency. In this paper, we introduce generalized q-interior operator and n-th pretopological modification of q. They are denoted by I^n_q and $\pi_n(q)$, respectively. Also, we study some properties of them and obtain a characterization of $\pi_n(q) = \lambda(q)$.

2. Preliminaries

Received September 19, 2000. Revised April 17, 2001
2000 Mathematics Subject Classification 54A20.
Key words and phrases convergence structure (space), pretopological convergence structure (space), q-interior operator
Let \(X \) be a set. A nonempty collection \(\Phi \) of nonempty subsets of \(X \) is said to be a filter on \(X \) if it satisfies the following conditions:

1. \(A \in \Phi \) and \(B \in \Phi \) implies \(A \cap B \in \Phi \),
2. \(A \in \Phi \) and \(A \subseteq B \) implies \(B \in \Phi \).

For a nonempty set \(X \), \(F(X) \) denotes the set of all filters on \(X \) and \(P(X) \) the set of all subsets of \(X \).

A convergence structure \(q \) on a set \(X \) is defined to be a function from \(F(X) \) into \(P(X) \) satisfying the following conditions:

For each \(\Phi \) and \(\Psi \) in \(F(X) \),

1. \(x \in q(\hat{x}) \) for each \(x \in X \),
2. if \(\Phi \subset \Psi \), then \(q(\Phi) \subset q(\Psi) \),
3. if \(x \in q(\Phi) \), then \(x \in q(\Phi \cap \hat{x}) \),

where \(\hat{x} \) denotes the ultrafilter containing \(\{x\} \). In this case the pair \((X, q) \) is said to be a convergence space. If \(x \in q(\Phi) \), we say that \(\Phi \) \(q \)-converges to \(x \). The filter \(V_q(x) \) obtained by intersecting all filters which \(q \)-converge to \(x \) is said to be a \(q \)-neighborhood filter at \(x \). If \(V_q(x) \) \(q \)-converges to \(x \) for each \(x \in X \), then \(q \) is said to be a pretopological convergence structure on \(X \), and \((X, q)\) a pretopological convergence space. The pretopological convergence structure \(q \) is said to be a topological convergence structure if for each \(x \in X \), the filter \(V_q(x) \) has a filter base \(B_q(x) \) with the following property:

\[
y \in G \in B_q(x) \implies G \in B_q(y).
\]

Let \(C(X) \) be the set of all convergence structures on \(X \), partially ordered as follows:

\[
q_1 \leq q_2 \iff q_2(\Phi) \subset q_1(\Phi) \text{ for all } \Phi \in F(X).
\]

If \(q_1 \leq q_2 \), then we say that \(q_1 \) is coarser than \(q_2 \) and \(q_2 \) is finer than \(q_1 \).

For any \(q \in C(X) \), we define the following related convergence structures \(\pi(q) \) and \(\lambda(q) \):

1. \(x \in \pi(q)(\Phi) \iff V_q(x) \subset \Phi \),
2. \(x \in \lambda(q)(\Phi) \iff U_q(x) \subset \Phi \),
where \(U_q(x) \) is the filter generated by the sets \(U \in V_q(x) \) which have the property: \(y \in U \) implies \(U \in V_q(y) \).

In this case \(\pi(q) \) and \(\lambda(q) \) are called the the pretopological modification and the topological modification of \(q \). Also, the pairs \((X, \pi(q))\) and \((X, \lambda(q))\) are called the pretopological modification and the topological modification of \((X, q)\), respectively.

Proposition 1 ([4]). Let \((X, q)\) be a convergence space. If \((X, \pi(q))\) and \((X, \lambda(q))\) are the pretopological modification and the topological modification of \((X, q)\), respectively. Then the following statements hold:

1. \(\pi(q) \) is the finest pretopological convergence structure coarser than \(q \),
2. \(\lambda(q) \) is the finest topological convergence structure coarser than \(q \),
3. \(\lambda(q) \leq \pi(q) \leq q \).

Let \(f \) be a map from a convergence space \((X, q)\) to a convergence space \((Y, p)\). Then \(f \) is said to be continuous at a point \(x \in X \), if the filter \(f(\Phi) \) on \(Y \) \(p \)-converges to \(f(x) \) for every filter \(\Phi \) on \(X \) \(q \)-converging to \(x \). If \(f \) is continuous at every point \(x \in X \), then \(f \) is said to be continuous.

We define a set function \(I^\infty_q : P(X) \to P(X) \) for each \(n \in N \cup \{\infty\} \cup \{0\} \), where \(N \) is the set of all positive integers, as follows:

1. \(I^0_q(A) = A, \)
2. \(I^n_q(A) = I_q(A) = \{x \in X \mid A \in V_q(x)\}, \)
3. \(I^{n+1}_q(A) = I_q(I^n_q(A)), \) if \(n \in N, \)
4. \(I^\infty_q(A) = \bigcap \{I^n_q(A) \mid n \in N\}. \)

Proposition 2 ([5]). For each \(n \in N \cup \{\infty\} \cup \{0\} \), \(I^n_q \) has the following properties:

1. \(I^0_q(\emptyset) = \emptyset, I^n_q(A) \subset A, \)
2. \(I^0_q(X) = X, \)
3. \(I^n_q(A \cap B) = I^n_q(A) \cap I^n_q(B), \)
4. \(A \subset B \) implies \(I^n_q(A) \subset I^n_q(B) \)

for each \(A, B \subset X \).

But, in general \(I^n_q(I^n_q(A)) \neq I^n_q(A) \) for all \(A \subset X \).
Define $V_q^n(x) = \{ A \subset X \mid x \in I_q^n(A) \}$. Then $V_q^n(x)$ is a filter on X for each $n \in N \cup \{ \infty \}$.

Also, we know that for each $n \in N \cup \{ \infty \}$

$$I_q^n(A) \supset I_q^{n+1}(A) \supset I_q^\infty(A)$$

and

$$V_q^n(x) \supset V_q^{n+1}(x) \supset V_q^\infty(x)$$

for each $x \in X$.

Define a structure $\pi_n(q)$ for each $n \in N \cup \{ \infty \}$ as follows:

$$x \in \pi_n(q)(\Phi) \iff V_q^n(x) \subset \Phi$$

for each $\Phi \in F(X)$.

While, since $V_q^n(x) \subset \hat{x}$, $x \in \pi_n(q)(\hat{x})$ for each $x \in X$. Also, $\Phi \subset \Psi \in F(X)$ implies $\pi_n(q)(\Phi) \subset \pi_n(q)(\Psi)$.

Let $x \in \pi_n(q)(\Phi)$. Then $V_q^n(x) \subset \Phi$. Since $V_q^n(x) \subset \hat{x}$, we obtain $V_q^n(x) \subset \Phi \cap \hat{x}$ and so $x \in \pi_n(q)(\Phi \cap \hat{x})$. Also, $x \in \pi_n(q)(V_q^n(x)) = \pi_n(q)(\pi_n(q)(x))$ for each $x \in X$. Thus $\pi_n(q)$ is a pretopological convergence structure on X.

In this case $\pi_n(q)$ is called the n-th pretopological modification of q.

Also, $(X, \pi_n(q))$ is called the n-th pretopological modification of (X, q).

It is not difficult to show that for each $n \in N \cup \{ \infty \}$, the following statements hold:

1. $V_{\pi_n(q)}(x) = V_q^n(x)$ for all $x \in X$.
2. $I_{\pi_n(q)}(A) = I_q^n(A)$ for all $A \subset X$.
3. For each $n \in N$, $q \geq \pi_n(q) \geq \pi_{n+1}(q) \geq \pi_{\infty}(q)$.

3. Main Results

By Proposition 1 and the definition of $\pi_n(q)$, we know that

$q \geq \pi(q) \geq \pi_2(q) \geq \cdots \geq \pi_n(q) \geq \pi_{n+1}(q) \geq \cdots \geq \pi_{\infty}(q) \geq \lambda(q)$.

Theorem 3. Let (X, q) be a pretopological convergence space. Then the following are equivalent:

1. q is a topological convergence structure.
2. I_q is idempotent.
PROOF (1) ⇒ (2): It is clear that $I_q(I_q(A)) \subset I_q(A)$ for all $A \subset X$. We will show that $I_q(A) \subset I_q(I_q(A))$. Let $x \in I_q(A)$. Then $A \in V_q(x)$. Since q is a topological convergence structure, there exists $G \in B_q(x)$ such that $G \subset A$, where $B_q(x)$ is a filter base of $V_q(x)$ which has the following property:

$$y \in H \in B_q(x) \text{ implies } H \in B_q(y).$$

Since $y \in G \Rightarrow G \in B_q(y) \subset V_q(y)$, we obtain $y \in I_q(G)$. Thus $I_q(G) = G$. Since $G = I_q(G) \subset I_q(A)$ and $V_q(x)$ is a filter, $I_q(A) \in V_q(x)$. Thus $x \in I_q(I_q(A))$ and so $I_q(A) = I_q(I_q(A))$. That is I_q is idempotent.

(2) ⇒ (1): Take $B_q(x) = \{B \in V_q(x) \mid I_q(B) = B\}$ for each $x \in X$. Since $I_q(X) = X$, we obtain $B_q(x)$ is not an empty collection. Since $\emptyset \notin V_q(x)$, we obtain $\emptyset \notin B_q(x)$. Let $G_i \in B_q(x)$ for $i \in \{1, 2\}$. Then $G_i \in V_q(x)$ and $I_q(G_i) \subset G_i$ for $i \in \{1, 2\}$. Since $G_1 \cap G_2 = I_q(G_1) \cap I_q(G_2) = I_q(G_1 \cap G_2)$ and $V_q(x)$ is a filter, we obtain $G_1 \cap G_2 \in B_q(x)$. Also, let $A \in V_q(x)$. Since I_q is idempotent, $I_q(A) = I_q(I_q(A))$ and $I_q(A) \in V_q(x)$. Thus $I_q(A) \in B_q(x)$. Since $I_q(A) \subset A$, $B_q(x)$ is a filter base of $V_q(x)$. Let $y \in H \in B_q(x)$. Since $H = I_q(H)$, we obtain $y \in I_q(H)$. Thus $H \in B_q(y)$. Therefore q is a topological convergence structure.

PROPOSITION 4 Let (X, q) be a convergence space. Then $\phi(q) = \lambda(q)$ if and only if I_q is idempotent.

PROOF. Assume that $\pi(q) = \lambda(q)$. Since $\pi(q)$ is a pretopological convergence structure and $\pi(q) = \lambda(q)$, $\pi(q)$ is a topological convergence structure. By Theorem 3, $I_{\pi(q)}$ is idempotent. Since $I_{\pi(q)}(A) = I_q(A)$ for all $A \subset X$, I_q is idempotent. Conversely, let I_q be idempotent. By Theorem 3, q is a topological convergence structure. It is clear that $\lambda(q) = q$ if q is a topological convergence structure. We know that $q \geq \pi(q) \geq \lambda(q)$. Thus $q = \pi(q) = \lambda(q)$.

THEOREM 5 Let (X, q) be a convergence space. Then for each $n \in N \cup \{\infty\}$, the following statements are equivalent:

1. $\pi_n(q) = \lambda(q)$,
2. I_q^n is idempotent.
PROOF. (1) ⇒ (2): Assume that \(\pi_n(q) = \lambda(q) \). We will show that \(I^n_q \) is idempotent. Let \(A \subset X \) and \(x \in I^n_q(A) \). Then \(A \in V^n_q(x) \). Since \(\pi_n(q) \) is a topological convergence structure, there exists \(G \in B^n_q(x) \) such that \(G \subset A \), where \(B^n_q(x) \) is a filter base of \(V^n_q(x) \) which has the following property:

\[
y \in H \in B^n_q(x) \text{ implies } H \in B^n_q(y).
\]

Thus \(I^n_q(G) = G \). Since \(G = I^n_q(G) \subset I^n_q(A) \) and \(V^n_q(x) \) is a filter, we obtain \(I^n_q(A) \in V^n_q(x) \). Thus \(x \in I^n_q(I^n_q(A)) \) and so \(I^n_q(A) = I^n_q(I^n_q(A)) \). That is \(I^n_q \) is idempotent.

(2) ⇒ (1): Assume that \(I^n_q \) is idempotent. Let \(B^n_q(x) = \{ G \in V^n_q(x) \mid I^n_q(G) = G \} \) for each \(x \in X \). Since \(I^n_q(X) = X \), we obtain \(X \in B^n_q(x) \). Since \(\emptyset \notin V^n_q(x) \), we obtain \(\emptyset \notin B^n_q(x) \). Let \(G_i \in B^n_q(x) \) for \(i \in \{1, 2\} \). Since \(G_1 \cap G_2 = I^n_q(G_1) \cap I^n_q(G_2) = I^n_q(G_1 \cap G_2) \) and \(V^n_q(x) \) is a filter, we obtain \(G_1 \cap G_2 \in B^n_q(x) \). Also, let \(A \in V^n_q(x) \). Since \(I^n_q \) is idempotent, \(I^n_q(A) = I^n_q(I^n_q(A)) \) and \(I^n_q(A) \in V^n_q(x) \). Thus \(I^n_q(A) \in B^n_q(x) \). Since \(I^n_q(A) \subset A \), \(B^n_q(x) \) is a filter base of \(V^n_q(x) \). Let \(y \in G \in B^n_q(x) \). Since \(H = I^n_q(H) \), we obtain \(y \in I^n_q(H) \). Thus \(G \in B^n_q(y) \). Therefore \(\pi_n(q) \) is a topological convergence structure. Since \(\lambda(q) \) is the finest topological convergence structure coarser than \(q \). That is \(\pi_n(q) = \lambda(q) \).

In that case \(n = \infty \), the proof is similar to in the case \(n \in N \).

DEFINITION 6. Let \((X, q)\) be a convergence space. The length of \(q \) is defined by the smallest positive integer \(n \) satisfying \(I^n_q + 1(A) = I^n_q(A) \) for each \(A \subset X \). We denote \(l(q) = n \).

If \(l(q) \neq n \) for all \(n \in N \) and \(I_q(I_q^\infty(A)) = I_q^\infty(A) \) for all \(A \subset X \), then we denote \(l(q) = \infty \).

THEOREM 7. Let \((X, q)\) be a convergence space and \(n \in N \cup \{\infty\} \). Then the following statements are equivalent:

(1) \(I^n_q \) is idempotent and \(I^m_q \) is not idempotent for \(m < n \).
(2) \(l(q) = n \).
At first we will prove in the case \(n \in N \).

(1) \(\Rightarrow \) (2): Assume that for each \(A \subseteq X \), \(I_q^n(I_q^n(A)) = I_q^n(A) \) and \(I_q^m(I_q^m(B)) \neq I_q^m(B) \) for some \(B \subseteq X \) if \(m < n \). By the definition of \(I_q^n \):

\[
I_q(A) \supset I_q^2(A) \supset \cdots \supset I_q^n(A) \supset I_q^{n+1}(A) \supset \cdots \supset I_q^\infty(A)
\]

Since \(I_q^n(I_q^n(A)) = I_q^n(A) \), we obtain \(I_q^{n+1}(A) = I_q^n(A) \). Suppose that \(I_q^{m+1}(A) = I_q^m(A) \) for \(m < n \). Then \(I_q^n(I_q^m(A)) = I_q^m(A) \) and so \(I_q^m \) is idempotent. This is a contradiction. Thus \(l(q) = n \).

(2) \(\Rightarrow \) (1): Assume that \(l(q) = n \). Then \(I_q^n(A) = I_q^{n+1}(A) = I_q(I_q^n(A)) = I_q^2(I_q^n(A)) = \cdots = I_q^\infty(I_q^n(A)) \). Thus \(I_q^n \) is idempotent. Also, by the definition of \(l(q) = n \), \(I_q^m \) is not idempotent for \(m < n \). In that case \(n = \infty \). By the definition of \(l(q) = \infty \), it is clear that (1) \(\Leftrightarrow \) (2).

Corollary 8 Let \((X, q)\) be a convergence space and \(n \in N \cup \{\infty\} \). Then \(\pi_n(q) = \lambda(q) \) and \(\pi_m(q) \neq \lambda(q) \) for \(m < n \) iff \(l(q) = n \).

Proof By Theorem 5 and Theorem 7.

Proposition 9 Let \((X, q)\) and \((Y, p)\) be convergence spaces and \(f : (X, q) \rightarrow (Y, p) \) be a map. Then for each \(n \in N \cup \{\infty\} \), the following statements are equivalent:

1. \(f(V_q^n(x)) = V_p^n(f(x)) \) for all \(x \in X \).
2. \(I_q^n(f^{-1}(B)) = f^{-1}(I_p^n(B)) \) for each \(B \subseteq Y \).

Proof (1) \(\Rightarrow \) (2): Assume that \(f(V_q^n(x)) = V_p^n(f(x)) \) for all \(x \in X \). Let \(x \in I_q^n(f^{-1}(B)) \). Then \(f^{-1}(B) \in V_q^n(x) \) and so \(B \in f(V_q^n(x)) \). Since \(f(V_q^n(x)) = V_p^n(f(x)) \), \(B \in V_p^n(f(x)) \). Thus \(f(x) \in I_p^n(B) \) and so \(x \in f^{-1}(f(x)) \in f^{-1}(I_p^n(B)) \). Therefore \(I_q^n(f^{-1}(B)) \subseteq f^{-1}(I_p^n(B)) \). The reverse inequality is proved by the counter-order.

(2) \(\Rightarrow \) (1): Assume that \(I_q^n(f^{-1}(B)) = f^{-1}(I_p^n(B)) \) for each \(B \subseteq Y \). Let \(B \in V_p^n(f(x)) \). Then \(f(x) \in I_p^n(B) \) and so \(x \in f^{-1}(I_p^n(B)) \). Since \(I_q^n(f^{-1}(B)) = f^{-1}(I_p^n(B)) \), \(x \in I_q^n(f^{-1}(B)) \). Thus \(f^{-1}(B) \in V_q^n(x) \) and so \(B \in f(V_q^n(x)) \). Therefore \(V_p^n(f(x)) \subseteq f(V_q^n(x)) \). The reverse inequality is proved by the counter-order.
Proposition 10. Let \((X, q)\) and \((Y, p)\) be convergence spaces. Let \(f : (X, q) \rightarrow (Y, p)\) be a map. Then the following statements are equivalent:

1. \(V_p(f(x)) = f(V_q(x))\).
2. \(V_p^n(f(x)) = f(V_q^n(x))\) for each \(n \in \mathbb{N} \cup \{\infty\}\).

Proof. (2) \(\Rightarrow\) (1): It is clear.

(1) \(\Rightarrow\) (2): We will use the mathematical induction to prove above Proposition. Assume that \(V_p^k(f(x)) = f(V_q^k(x))\) and let \(B \in V_p^{k+1}(f(x))\). Then \(f(x) \in I_p^{k+1}(B) = I_p(I_p^k(B))\) and so \(I_p^k(B) \subseteq V_p(f(x)) = f(V_q(x))\).

By assumption and Proposition 9, \(f^{-1}(I_p^k(B)) = I_q^k(f^{-1}(B)) \subseteq V_q(x)\). Thus \(x \in I_q^k(I_q^k(f^{-1}(B)) = I_q^{k+1}(f^{-1}(B))\) and so \(f^{-1}(B) \subseteq V_q^{k+1}(x)\).

Finally, \(B \subseteq f(V_q^{k+1}(x))\). This means \(V_p^{k+1}(f(x)) \subseteq f(V_q^{k+1}(x))\). The reverse inequality is proved by the counter-order.

In that case \(n = \infty\), let \(B \in V_p^\infty(f(x))\). Then \(f(x) \in I_p^\infty(B)\) and so \(f(x) \in I_p^n(B)\) for each \(n \in \mathbb{N}\). Thus \(B \in V_p^n(f(x)) = f(V_q^n(x))\) for each \(n \in \mathbb{N}\). \(B \in \bigcap\{f(V_q^n(x)) \mid n \in \mathbb{N}\} = f(\bigcap\{V_q^n(x) \mid n \in \mathbb{N}\}) = f(V_q^\infty(x))\). Finally, \(V_p^\infty(f(x)) \subseteq f(V_q^\infty(x))\). The reverse inequality is proved by the counter-order.

Definition 11 ([16]). Let \((X, q)\) and \((Y, p)\) be convergence spaces. An onto map \(f : (X, q) \rightarrow (Y, p)\) is said to be open if satisfies the following condition: whenever an ultrafilter \(\Psi\) on \(Y\) \(p\)-converges to \(y\), then for each \(x \in f^{-1}(y)\) there is a filter \(\Phi\) which maps on \(\Psi\) and \(q\)-converges to \(x\).

Proposition 12. Let \((X, q)\) and \((Y, p)\) be convergence spaces. If a map \(f : (X, q) \rightarrow (Y, p)\) is onto, continuous and open, then \(V_p(f(x)) = f(V_q(x))\) for each \(x \in X\).

Proof. Since \(f\) is continuous, \(f(\Phi)\) \(p\)-converges to \(f(x)\) whenever \(\Phi\) \(q\)-converges to \(x\). Thus \(f(V_q(x)) = f(\cap\{\Phi \mid x \in q(\Phi)\}) = \cap\{f(\Phi) \mid x \in q(\Phi)\} \supseteq \cap\{f(\Phi) \mid f(x) \in p(f(\Phi))\} \supseteq f(V_p(f(x)))\). Also, we will claim that \(f(V_q(x)) \subseteq V_p(f(x))\). Let \(B \subseteq f(V_q(x))\). Then \(B = f(A)\) for some \(A \subseteq V_q(x)\). Let \(\Psi\) be an ultrafilter which \(p\)-converges to \(f(x)\). Since \(f\) is open, there is a filter \(\Phi\) such that \(\Phi\) \(q\)-converges to \(x\) and
Since $A \in \Phi$, we obtain $B = f(A) \in f(\Phi) = \Psi$. Thus B is in each ultrafilter which p-converges to $f(x)$ and so $B \in V_p(f(x))$. Therefore $f(V_q(x)) \subset V_p(f(x))$.

Theorem 13 Let (X, q) and (Y, p) be convergence spaces. Let a map $f : (X, q) \to (Y, p)$ be onto, continuous and open. If I_q^n is idempotent, then I_p^n is idempotent.

Proof Let $B \subset Y$. Then $f^{-1}(B) \subset X$. Since I_q^n is idempotent, $I_q^n(I_q^n(f^{-1}(B))) = I_q^n(f^{-1}(B))$. By Proposition 9 and Proposition 12, $I_q^n(I_p^n(f^{-1}(B))) = I_p^n(I_q^n(f^{-1}(B))) = f^{-1}(I_p^n(I_q^n(B)))$ and $I_q^n(f^{-1}(B)) = f^{-1}(I_p^n(B))$. Thus $f^{-1}(I_p^n(I_q^n(B))) = f^{-1}(I_p^n(B))$ and so $I_p^n(I_q^n(B)) = I_p^n(B)$. Therefore I_p^n is idempotent.

Corollary 14 Let (X, q) and (Y, p) be convergence spaces. Let a map $f : (X, q) \to (Y, p)$ be onto, continuous and open. Then f preserves the length of convergence structure.

Proof By Corollary 8 and Theorem 13.

References

Sang-ho Park
Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea
\textit{E-mail:} sanghop@nongae.gsnu.ac.kr

Myeong-Jo Kang
Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea
\textit{E-mail:} S-kmjo@gshp.gsnu.ac.kr