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Robust Non-fragile Decentralized Controller Design for Uncertain
Large-Scale Interconnected Systems

Ju H. Park

Abstract - In this brief, the design method of robust non-fragile decentralized controllers for uncertain large-scale
interconnected systems is proposed. Based on Lyapunov second method, a sufficient condition for asymptotic stability is
derived in terms of a linear matrix inequality (LMI), and the measure of non-fragility in controller is presented. The solutions
of the LMI can be easily obtained using efficient convex optimization techniques. A numerical example is given to illustrate

the proposed method.
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1. Introduction

With the enlargement of dimension of a control system,
analysis and control for the system becomes very
complicated. It is standard to divide such systems into a
number of interconnected subsystems. In general, a
large-scale interconnected dynamical system can be
usually characterized by a large number of state variables,
system parametric uncertainties, and a complex interaction
between subsystems (Mahmoud er al., [14], Siljak [16]).
During the last decade, the problem of decentralized
stabilization of large-scale systems has received
considerable attention, because there are a large number
of large scale interconnected dynamical systems in many
practical control problems, e.g. transportation systems,
power systems, communication Systems, ecomonic
systems, social systems, and so on (Chen ef al. 2], Chen
[3], Geromel and Yamakami [8)], Ho et al. [9], Hu [10],
Lee and Rodovic [13], Shi and Gao [15], Yan et al. [17]).

On the other hand, it is generally known that feedback
systems designed for robustness with respect to plant
parameters, may require very accurate controllers (Dorato
[4], Keel and Bhattacharyya [11]). Therefore it is
necessary that any controller should be able to tolerate
some uncertainty in parameters. Since the controller
fragility is basically the performance deterioration of a
feedback control system due to inaccuracies in controller
implementation, non-fragile control problem has been
important issues (Dorato et al. [5], Famularo et al. [6],
Kim and Park [12]). However, there are no papers
considering non-fragile controller design methods of
large-scale interconnected systems.

This paper is concerned with the design problem of
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robust non-fragile decentralized controller for the
large-scale systems with parametric time-varying uncer -
tainties. A sufficient condition for robust stability of the
system is derived in terms of LMI using Lyapunov
method. Moreover, the measure of non-fragility in
controller can be calculated by solving the LMI. The LMI
approach has been one of the hot spots in the control
problem due to its computational advantage and simplicity
in solving the addressed problems (Boyd et al. [1]). The
controller parameters which satisfy the above LMIs can be
easily found by wvarious efficient convex optimization
algorithms.

Notations: Throughout the paper, R” denotes the $n$
dimensional Euclidean space, and R"™*™ is the set of all
n xm real matrices. [ denotes the identity matrix with
appropriate dimensions. For symmetric matrices X and
Y, the notation X> Y(respectively, X>Y) means that
the matrix X—Y is positive definite, (respectively,
nonnegative).

2. Problem Formulation

Consider a class of uncertain large-scale system

composed of N interconnected subsystems described by

Si 2 = [A+JADIx(H+ g[Aij+AAz}(t)]xj(t) (1)
+ Buft, i=1,2, N

where x{f)e R" is the state vector, and y(He R™
is the control vector. The system matrices A; B; and
A are of appropriate dimensions, and JA,(#), and
dA () are real-valued matrices representing time-
varying parameter uncertainties in the system.
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(A,"Bi),i= 1,"',N, iS
stabilizable, and the time-varying uncertainties are of the
form

Assume that the pair

AA ,'( f) = D aiF ai( t)E ats AA ,:'j( t) = D az’;’F az'j( t) E aijs (2)

where D, D, E,, and E,; are known constant real
matrices with appropriate dimensions, and F ,{f, and
F ,;(#) are unknown matrix functions which are bounded as

FiOF (DI, Fi(DF (D <L ¥ 4, j20. ()
Now, although one finds the controller (5= Kx{!
for each subsystems, the actual controller implemented is
u(H=—[I1+ 8,0 HIKx (¥ “)

8, is the
positive scalar, the term §,0,(HK; represents controller

where K, 1s the nominal controller gain,

gain variations, and @J{#) is assumed to be bounded as

ol (noLp<I (5

Here, the value of ¢, indicates the measure of non-

fragility against controller gain variations.
With the control law (4), the resulting closed-loop
subsystem becomes

xi()=[A;+ dALD — BLI+ 5;0())K 1x (1) 6)
+ ﬁ[A s+ 4A {(D]x; (9.

Then, the problem is to find the feedback gain matrix
K, of the control law (4) so that the closed-loop system

(6) is asymptotically stabilized with non-fragility §,.
Before proceeding further, we will state well known
lemma.

Lemma I (Boyd et al., [1]): The linear matrix inequality

x) S(x)
LS pi]o

is equivalent to
R(0)>0, x)—S(0R(x) 'S(x) "0,

where Q)= Q(x)’, R(x)=R(x)” and S(x) depend
affinely on x.

3. Robust Controller Design

In this section, we give a stability criterion for robust

stability of the system (1) using Lyapunov method and
LMTI technique.
Now, we synthesize the gain matrices K, as follows:

K,=yBP, i=12,N (N

where y, is positive scalar, and P, is positive-definite
matrix.
Note that the K, given in (7) is a class of gain matrix

of optimal control law, which is often utilized as
controller structure in many control applications.
Here, for simplicity, we define

1/2 172

Adi=<§/1 i;‘AzT'f) ' Ddz‘:(;DmyDZ]) ,
Eu=(ZELEL)". (®)

Then, using Lyapunov method, we have following
theorem for robust stability of the system (1).

Theorem I: The closed-loop system (6) is asymptotically
stable with non-fragility ¢&,, if for /=1,2,:-, N, there

exist positive definite matrix X ;, and positive scalars
Y €oiy @y and @ p, which satisfy the following LMI:

QAXirian, ap )=

[Qi(xi,wl) B B XEY X; XEY;
vB]  —aal 0 0 0 0
B! 0 —ax 0 0 0 1:0©
E 4X; 0 0 -1 0 0 '
X, 0 0 0 ~UMN=IDI 0
E,,,XL 0 0 O O ‘“60,'1
where
Q= XA+ AX+ey D DYy—2vBBT+A A%+ D 4D
aq = &/8, ap=1/(e8), X,=P7", &>0.
(10)
Proof: Consider a Lyapunov functional candidate
V=2 Vi= 2al (0P (0 an

where P; is the positive-definite matrix to be defined in (7).
The time derivative of V is given by

V= ﬁ & (DP xfH+x] (D P x(D)
= gZx,»T(t)P,» xi{D. (12)
Substituting (6) into (12), we have

V= BHOLAIP +PA+2PD F L(OE
—27:P BBP,—2yP.B6:0t)B]P]
D+ (P, 3 (Ay+ D uF w(DE k).
(13)
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Using the known fact that
UdVT+ VAU < eUUT+ e 7 'vVh >0

for any matrices U,V and 4 with A474<I, we can
eliminate the unknown factor, F ,(?), F (2 and @/(#),

of parameter uncertainties. Then the terms on right-hand
side of (13) are bounded as

2x[(DP.D 4F ADE jx{D <
€ Or'xiT( HPD F . DFT (DDLPx (D
+eg 1t (DELE 20
<eox/(DPD  DLPx D) +ep'x] (DELE (1)

— B0l (07PBIO()BIPal)<

ﬁf( e ' Poxl (D PBBIPx(d

+e8x] (DP BB (DO BIPxfb)
< ﬁ:(eflé-y? H(OPBBIPx/1)

+edx] () P.BBIPx (D)

WOV WITOED )
( <F(HP; ﬁA ATP(D)+ ﬁxf(t)x,(t))
- ﬁ(x,»u)P,-A SATPx(D + (N—DxT(Dxd D)

ﬁ 2x1Op; ﬁ]Da,,F A DE 4x{t) <
(D P 33D o D F (DD P (D)
+ 2T O ELE (D)
< 2( H t)PﬁD D 5P D
+ 2T ELE (1)
= ST PD D P
+ ST DELE e (9)

where A , and D, are defined in (8), and &y and &;
are positive scalars to be chosen.
Using (14), we obtain a new bound of V as

V < ﬁl{xiy‘( t) [AITP z'+ PtAz+ 60iPiDaiDTazPi
+ e ELE i+ e 0 PB.BIP,— 2y P .BB/P,
+ &8, PBBPi+ PA 4A 4P+ PD 4D P

FON- D0+ 3 IO BTLE w0,
(15)

Now, note that

ﬁl ]Aﬁl (t)Eav m’}xf'( t)
= 30 3 (ELE W0 (6)

- ﬁlxi(ﬂEdi B 0.
Then (15) is simplified as

v < ﬁ{ TO[AIP+PA+eoPD DYP,

+eg'EVE ;—27.P.BBIP.+ &7 '87°P.B.BlP,
+ e8P BBIP:+ PA ;ALP;+ PD 4zD%P;
+(N— DI+ ELE 4)x (D).

a7

Therefore, V is negative if the following condition holds:

AP+ PA+euPD DVP+ei'ELE
—27.P BBIP + e '67PBB/P:+¢e08,PBBIP,
+PA zALP+ PD ;DLP,+(N—1)I+ ELE 440,
for i=1,2,--,N
(18)

By premultiplying and postmultiplying X, onto (18), we
get

XZAI'T_"_AiXi_{»gOzDaiDZ—f_E(;ile'EZiEath"ZY1BiBf
+e 07 BBl +ed BB+ A 4A G+ DDy
+(N—DXTX+ X, FLE ;X;<0, for i=1,2,--,N

(19)

Then, Lemma 1, the equation (19) is equivalent to (9).
This completes the proof.

Remark 1: From the solutions, @; and ap, of the

LMI (9), the measure of non-fragility in each controller for
subsystems, §,, can be calculated by 8;= (a a5 2

Remark 2: In order to solve the LMI (9) given in
Theorem 1, we can utilize Matlab's LMI Control Toolbox
[7], which implements state-of-the-art interior-point
algorithms, which is significantly faster than classical
convex optimization algorithms [1].

Remark 3: The 7y, and P; which is the gain
parameters of the decentralized controller (7) for
subsystem 7, is not unique by solving the LMI (9). So,
one can choose the solution taking into account the design
specification such as the maximum magnitude of the gain
parameters, etc.

We now give an example to illustrate the proposed
method.

Numerical Example: Consider a large-scale system
which is composed of three subsystems
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fo=[] _Ymo+[ 04 70 Mo+ %3 Slaco

+ AA(Dx () + JA o Dxy () + AA 5(Dxs (D) + [ 0] u (D),

A I T P AR R

+ AAy(D2s (D + AA (D2, (D + AA 5 Dy (D + [ 0] w( D),

0= o] 8, B+ 200

+ A Dy (D + JA ﬂu)xl (D+ JA oDy (D + [ f] (),
where

02l 75 sinteallo 1
1] sin(2H[0 11,

1] cos(H[1 11,

AN
=
T

AAZ(D:[O 1 0,1][ Smo@t) sir?(t)][é (1)]
4A gl(t)z[o(.)l] sin(A[1 1)
AA 5() = [ 001] cos ([0 1]
aso=%" S5 smollo U
AA 5= [001] sin()[1 0]
AA 5(H= [ Ool] sin2)[ 1 1].

First, we find the positive solutions of the LMI (9) for
the subsystem 1 as

[ 0.1081 —0.0838 _
X1={ 29,0838 0.3160]’ 71=0.929
(111:1.4339, a12=1.5136, 801:1.2435.

Similarly, the other solutions of the LMI (9) for the
subsystem 2 and 3 are as follows:

_[ 0.476 —0.2215) . _
X [——0.2215 0.3491]» y5=1.7538
@0 =3.9388, an=2.4683, €gp=23.0038

_[0.4032 0.1508 _

X3 [0.1508 0.587()]’ 73="0.6245
@y =3.962, ap=2.T687, y=3.6907.

Therefore, the gain matrices, K, of the stabilizing

controller, #; for three subsystems are

K, =7 ,BfP,=[10.8157 2.8695],
K, =7,BJP,=[3.6246 7.3240],
Ky =7.BIP,=[2.9868 0.29681,

and the value of non-fragility in controller are as follows:

61 —(Q/ua’lz) - "—0 6788
8 =(agyap) 7=0.3207,
63 —‘<0’31H32) *'03006

From the above value of non-fragility of each subsystem,
one can see that the obtained robust decentralized
controller guarantees the asymptotic stability of the
closed-loop system in spite of each controller gain
variations of the subsystem 1,2 and 3 within 67.88%,
32.07%, and 30.06%, respectively.

For computer simulation, the following control laws and
initial conditions are employed:

) () =—(1+0.6788sin())K x,(#)
w3(8) =—(14+0.3006sin () Ksx5( £)
x(0) =[1 —0.517

x(0) =[1.5 —1.517

x3(0) =[—1 0.51"

Note that it is assumed that the controllers for the
subsystem 1, 2, and 3 are subjected to 67.88%, 32.07%,
and 30.06% gain variations, respectively. The simulation
results are given in Figs. 1-4. Figure 1, 2, and 3 show the
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Fig. 1 State responses of subsystem 1
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Fig. 2 State responses of subsystem 2
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Fig. 3 State responses of subsystem 3
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Fig. 4 Control inputs for subsystem 1, 2, and 3

state responses of the subsystems 1, 2, and 3,
respectively, Figure 4 shows the control laws of each
subsystem. From the figures, one can see that the system
is indeed well stabilized irrespective of uncertainties and
controller gain variations.

4. Conclusion

In this brief, a robust non-fragile controller design
method for uncertain large-scale interconnected systems, is
presented. Using Lyapunov method, a sufficient condition
for asymptotic stability of the system is derived in terms
of LMI. Finally, a numerical example is given for
illustration of controller design, and simulation result
shows that the system is well stabilized in spite of
controller gain variations and uncertainties.
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