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Robust H, FIR Filtering for Uncertain Time-Varying
Sampled-Data Systems

Hee-Seob Ryu, Byung-Moon Kwon and Oh-Kyu Kwon

Abstract - This paper considers the problem of robust H,. filter with FIR (Finite Impulse Response) structure for linear

continuous time-varying systems with sampled-data measurements. It is assumed that the system is subject to real
time-varying uncertainty which is represented by the state-space model having parameter uncertainty. The robust F,, FIR

filter is derived by using the equivalence relationship between the FIR filter and the recursive filter, that would be guarantee

a prescribed H,, performance in the continuous-time context, irrespective of the parameter uncertainty and unknown initial

states.
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1. Introduction

In practical systems, it is ofien the case that the plant
dynamics is represented by continuous-time processes but
the output signal is measured by digital devices. Digital
filtering devices tend to fail when the sampling frequency
is too low and the system dynamics are relatively too fast
because the inter-sampling behavior of the system is not
considered. So, in the estimation problems for the
continuous-time system, it is required to produce a
continuous-time estimate of an analogue signal based on
sampled-data measurements. In this situation, the
performance measure should be defined directly in terms
of the continuous-time signals. This filtering approach is
referred as the sampled-data filtering. The important
feature of sampled-data filtering is that we deal directly
with a continuous-time model of the signal generating
mechanism which is highly desirable, in particular when
the model is subject to parameter uncertainty as is often
the case. A state space approach to sampled-data filtering
in an H, formulation has been proposed in [8,9].
However, the conventional FH,, filters proposed so far are
mainly limited to time-invariant systems. Therefore they
can not be applied to general time-varying systems on the
infinite horizon [0, o) since one of two Riccati
differential equations required to solve the problem can
not be computed on the infinite horizon [6].

This paper deals with the robust H,, filtering problem
for a class of continuous time-varying uncertain systems
under sampled-data measurements on the infinite horizon.
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The class of uncertain systems is described by a linear
state space model with real time-varying norm-bounded
parameter uncertainty in the state and output matrices.
Here attention is focused on the design of linear filters for

time-varying systems which guarantee a prescribed
performance, irrespective of the uncertainty. The
performance measure is defined directly in the

continuous-time context and is of an A, type. The basic
idea of the current paper is to formulate the robust H,

filtering problem on the continuous-time moving horizon

[¢— 7,1 and to adopt the FIR (Finite Impulse
Response) filter structure.

FIR filters are widely used in the signal processing area,
and they were utilized in the estimation problem as the
optimal FIR filters [3,4,5]. Note that IR (Infinite Impulse
Response) or recursive filter structure requires the initial
conditions on each horizon, which is an impractical
assumption, but that FIR filter structure does not requires
the initial conditions. The optimal FIR filters are,
however, presented so far not in the H,, setting but in
the minimum variance formulation.

The estimator of the current paper is rather a
one-step-ahead predictor than a filter. This filtering
problem is referred to as robust H. FIR sampled-data

filtering in the sense that it is an H,, sampled-data filter
with the FIR structure for uncertain systems. We show
that the robust H, FIR sampled-data filtering problem

can be solved in terms of two Riccati equation.
One of the main contributions of the current paper is
that the H., FIR sampled-data filter always has a solution

if the standard H., sampled-data filter exists on the finite
horizon. Therefore, it is noted that the sampled-data filter
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proposed works on the
sampled-data measurements.

time-varying systems with
2. Problem formulation

Let us consider the following class of uncertain
sampled-data time-varying systems

2P = [AD+JAD]x(D+ B(Ou(D, x(0)=2x; (1)

I

z(d
w2

L(Bx(D (2)
[ C() + AC()]x(2) + DX Dov(3), 3

I

where x(H=R”™ is the state, x; is unknown initial

state, w(f)e R’ is the process noise, ()R ™ is the
sampled measurement, p(;)e R’ is the measurement
noise, z()e R’ is a linear combination of state variables
to be estimated over a moving horizon [¢t— T, #], 7 is an
integer, A(H, B(H, C(7), D(i) and L(#) are known
real time-varying bounded matrices of appropriate
dimensions with A(f), B(f) and L(# being piecewise
continuous, and JA(#) and AC(;) are real-valued matrix
functions which represent real time-varying parameter
uncertainties in  A(#) and ((z), respectively. These
uncertainties are assumed to be of the form

AA(D = H(OF(HE(D 4)
AC(I) = Hd(i)Fd(i)Ed(i), (5)

where F(HeR % and Fyi)=R “# are unknown
time-varying matrix functions satisfying

FUHFH <1, Vit (6)
FIGDWF () < I, Vi (7)

with the elements of F(5 being Lebesgue measurable,
and E(D,EL?),H(H and H,/7) are known real time-
varying bounded matrices of appropriate dimensions with
E(D and H(P being piecewise continuous. For the sake
of notation simplification, in the sequel the dependence on
¢t or 7 for all matrices will be omitted.

In the current paper, the FIR filter is defined by the
form

Rl D = 30 MGk TINA)
2i+1E T = Lii+Dx(i+11i D),
where M(7, -; T) is the finite impulse response with the

finite duration 7. This FIR filter is a kind of the
one-step-ahead predictor since it estimates the state or the

output at the time point 7+ 1 based on the observation on
[i— T, . The H, FIR filter is obtained by constructing
its impulse response from that of the H. filter on the
finite moving horizon [;— T, 7]

The following assumption for the system (1)-(2) is to be
assumed:

Assumption 1.

(a) [D(:) HAL:] is of full the row rank for all

ie(i— T, ;

(b) DB'=0.

Assumption 1(a) means that the robust filtering problem
is ‘non-singular’. We observe that when there is no
parameter uncertainty in the output matrix, i.e. H(7)=0
over the moving horizon (7— T,7), which corresponds to
a standard non-singularity condition in the H,, filtering
problem for the nominal system (1)-(3). Assumption 1(b)
means that the system is un-correlated. But if the system
is correlated, the state equation should be modified in
order to apply the FIR filter to the system since it
requires the system be un-correlated.

Note that parameter uncertainty structure as in (4)-(5)
has been widely used in the problems of robust control
and filtering of uncertain systems {2] and can represent
parameter uncertainty in many practical cases. Also, it
should be observed that the uncertainty matrices F(¢) and
F(i) are allowed to be state dependent, i.e.
F(H=F(t,x) and Fi)=F,(i,x) as long as (6)-(7)
are satisfied. Furthermore, any possible parameter
uncertainties in  B(# and IX7) are assumed to be
absorbed in w and v, respectively.

In this paper we are concerned with obtaining an
estimate z(#) of z(#) over a moving horizon [t— T, {]
via a linear causal filter using the measurements
{ y(d),i— T<{i<i}, and where no a priori estimate of the
initial state of (1)-(3) is assumed. The filter is required to
provide a  uniformly small estimation error,
e()=2()— 2(H for any weL,[0,%), velh(0,)
and for all admissible uncertainties. More specifically, the
robust filtering problem we address is as follows:

Given a prescribed level of noise attenuation y>( and
an initial state weighting matrix R= R™>(, find a linear
causal filter such that the estimation error dynamics in
the infinite horizon, z(f)— z(f), is exponentially stable
and

Nz—2l1% < Al g+ 03 ry+x0Rxy} (8

holds for any non-zero (w, v, x,)€ L,[0, 00) D 1(0, )P
R" and for all admissible uncertainties with initial state
Xy =X ( t— :T)

The initial weighting matrix R is a measure of the
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uncertainty in the initial state of (1)-(3) relative to the
uncertainty in % and ¢. A large value of R reflects that
the initial state is certain to be close to zero. In the case

when the initial state of the system (1)-(3) is known to
be zero, (8) will be replaced
lz— zI12< A Nwll% - g+ 1ol % 7.0} )

It should be noted that (9) can be viewed as the limit
of (8) as the smallest eigenvalue of R approaches
infinity.

3. Preliminaries

In the sequel the bounded real lemma for linear
time-varying systems with finite discrete jumps will be
recalled. It will be fundamental in the derivation of our
main results.

Consider the following linear time-varying system with
finite discrete jumps:

(2 2 = AWDHD+ BOHu(DH, =i, x(t—T)=x,
2 = ALDx(i )+ BADuv(d),
2D = C(Hx(D

where xR " is the state, weR‘ and y= R~ are input
signals which belong to L,[0,00) and /(0,c0),

respectively. z= R’ is the output, 7 is the integer and
A(D, ALD, B(H, B i) and C(H are known real
time-varying bounded matrices of appropriate dimensions
with A(H, B(H and C(§ being piecewise continuous.

Next, introduce the following worst-case performance
index for (X))

_ lell — 1" (10
1D = soo | o e e | (00
where R= R7>( is given weighting matrix for x.

We now present the bounded real lemma on finite
moving horizon [0, 7] for systems of the form of (X))
with the performance measure (10).

Lemma 1 [7]. Consider the system (ZX; with the

performance measure (10) and let y> (0 be a given scalar.
Then, the following statements are equivalent over a
moving horizon [0, TI:

(@) IR, D<y;

(b) There exists a bounded matrix function
P() = PU(t = 0, Veel0, T], satistying
— P = ADTP+PAH+ ¥y iPB(OBT(HP

+C(HC(H, =i (1)

D =190 (12)
Y I— BXHP(ET)BALD) > 0 (13)

P() = ALDTPGDALD+AJDHPGTIBLD
<[P I-BIGDPGT)BLH] B PGHALD (14)

P(0) < ¥R ; (15)

(c) There exists a bounded matrix function X5 =

QT(H > 0, V=0, T] satistying
- Q> AT()Q+ QA(D + 7y *QB(HBT()Q
+ vy, (16)
X7 >0 (17)
Y I—-Bi()Qi")BLi) > 0 (18)

QD > ANDQUNAL) +ANDQGT)IBLI)
AI-BIGDQUNBLD] 'BEHHQUITIALD (19)

0) < ¥R, (20)
n
Note that (12) and (17) are terminal conditions and (15)
and (20) are initial conditions over the moving horizon
[0, 71, and when the initial state of (X)) is known to be
zero, the condition of (15) and (20) in Lemma 1 will no
longer be required as an initial state which is certain to be
zero corresponds to choosing a ‘very large’ value of
matrix R.
We end this section by recalling a matrix inequality that
will be need in the proof of our main results.

Lemma 2. [1] Let A, E, F, H and M be real matrices
of appropriate dimensions with M being symmetric. Then,

there exists a matrix P = P > () such that

[A+HFE\"PLA+HFEY+M < 0 (2n

for all matrices F satisfying F'F < I, if there exists
some & > () such that the following conditions are
satisfied
@ e"H'PH < I
(b) ATPA+A"PHlel— H'PH] "'H'PA+eE"E+M < 0.
|

4. Robust H,, FIR Sampled-Data Filters

In this section a Riccati equation approach is proposed
for solving the robust H., FIR sampled-data filtering
problem for system (1)-(3). The following result provides
a solution to the robust H, FIR filtering problem over a
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finite moving horizon.

Theorem 1. Consider the system (1)-(3) satisfying
(4)-(7) and Assumption 1. Given a scalar y >  and an
initial state weighting matrix R = R7 ) 0, the robust
H., FIR sampled-data filtering problem over a moving
horizon [(, 7] is solvable if for some non-zero & and
v, the following conditions are satisfied:

(a) There exists a bounded solution P(# over [0, T]
to the Riccati differential equation with jumps

— () = AT(HP()+ PWWAWD + 7 *P(DB B P(d
+ETE, i (22)

PG) = PN +VETE,, Yie(0,T) (23)

with terminal conditon P(7) = ( and such that

P(0) < ¥°R, where
B = [B leH]

(b) There exists a bounded solution S(# over [0, T]
to the Riccati differential equation with jumps

Sty = AS(H+S(H AT+ 5y 2S(HLT(HL(HS(H
+B B, t+i (24)

S() = [ST'GH+CTHV a7, (25)

with initial condition S(0) = [R—y *P(0)] !, where
Ay = AW+ *BB'P(p), V(i) = D(i) D' (s and

N

D= [D(i)le H,,].

Moreover, if conditions (a) and (b) are satisfied, a
suitable filter is given by

D) = Ax(d, t#i H0)=0 (26)

I

D) = 2G)+SHCTHV ) — G 21, 27)

2D = Lx(y), Ve=[0, T1. (28)

Proof. Firstly, associated with the system (1)-(3) and the

filtler (26)-(28), we define x = x—x. Since x(i) =
x(:7), from (1)-(3) and (26)-(28), we have that

WD) = [AD+ s AJH D+ 2 A — 2 A Jx(D
+ B(Ow(d), t==i; x(0) = x

W) = ALD (i )+ Bd) 2 C(Dx(i”)
+ B D()v(7),

where

ALD = I-S(HCTGH Ve,

sA, = y BB P,
B = —S(HCHHVE.

7=1[xT x7}7, the estimation error
z— 2 is described by:

Hence, defining

ot = [A+HFEINH+ Buld, (29)
70) = [xf x017

77(1) = [A dc+HdCFdEdc]”(li)“}’Bdcv(Z)y (30)
2D —2H = Cad, (31
where
_ T A 0 11 0
A= [—AAe A+ AAJ’ A = [o Ad(i)]’
_ [ B _ 0 _IH
B = [ o) B [Bd(z')D(z')]’ He =[]

_ 0 _
Hy [Bd(i)Hd]’ c. = [0 LD,

Ec: [EO]a Edc: [Edo].

Here, from Theorem 3.1 of [9], condition (b) is
necessary and sufficient for the solvability on the finite
moving horizon [0, 7] of H. FIR filtering problem for

the linear system with sampled-data measurements

&) = A&H+ Buw(d, t=[0,T1; &0)=¢&  (32)

W) = C()HEG)+ Du(d), Vie(0, T) (33)
z28) = L(HE&(D, (34)

where £eR™ is the state, £, is an unknown initial

state, weR‘"¢ is the process noise, y(HeR™ is the
sampled measurement, ()R’ “ is the measurement
noise, z,&R’ is a linear combination of the state

variables to be estimated, 7 is an integer. The filtering
performance measure is given by

lz,— zI*

S“"[[ Nallfr 7o+ ol 70+ &LR— 7 P04

]} Cr (39)

where  z, is the estimate of z, . Also, observe that a

suitable estimate z, is given by
z2.(D) = L(x(D,

where %(9) is as in (26)-(27) and with y(7) as defined in
(33).
Now, letting & = &—x

) = AED+ Bw(d, =i H)=&
i) = AL EG)+BL) D), Vie (0, T)
20— z(H = LDED.
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Since the above system satisfies (35) by Lemmal, this
implies that there exists a matrix M= M"(¢) =0,
satisfying the following Riccati differential equation with
jumps

MO+ ATMD+ MDA+ 7 M) BBM(D)
+LTHLD = 0, t+ & MDD = 0 (36)

AI— D'BIOMGHYALD > 0, Vie0, D (37)

M) = ALD)"MGDHAL)+ AT (DOMGTBLHDG)
[#1- D"BA)TM()BLHD]

- DTBANTMGA L), (38)
M(0) < ¥R— P0). (39)
Next, let
_[PBH 0
x0 = [ 4y ]

where P(#) and M(y) are the non-negative definite
solution of (22)-(23) and (36)-(39), respectively. Note
that since M(0) < »’R— P(0), there exists a sufficiently
small scalar 6 > 0 such that

_ [H0)+ol 0
X0 <X = [P0 p poy-ar]

It is straightforward to verify that X(», Vt=[0, T]
satisfies the following Riccati differential equation with
jumps:
XD+ A XD+ X(DA+ 7 *X(9BBIX(1)
+ L XWHHIX(D+ CIC+ EIE~0,
=i X(T)=0
#I- B'.X(i7) By > 0,Vie(0, T)
X()=AaX(@ A o+ ALXG) By
(1= Bu"XGY) Ba]l ' Bu'XGDAL
+VELE 4, Yie(0, D

X(i—17 < X,
where

ey — O

B, [Bd(z')ﬁ]'

By Lemma 1, it follows that there exists a time- varying
matrix X,()=X[(H>0, Vte[0, T], such that

X0+ AIXTHD+ X (DA A+ » ' X (DBBIX, (D
+ é X((DH.HIX,()+ CTC.+ £ETE D, t+i (40)

X (0) =0 (4D

A~ B X)) Bg> 0, Vie(0, T (42)

XD > ALX (iAo + ALX (") By

P- B X6 Bu] T B XA
+ELE . Vie(0, T) (43)
X,(0) < X, (44)

Recalling that for any non-zero scalar &, any real
matrices E, F and H of appropriate dimensions, with
F'TF T,

1

i HH"+ £E7E,

HFE+E'FTHT <
it results from (40) that X ,(H, Vi=[0, 7] satisfies

X(D+[AA+HFE]" X () +X(D[A.+HFE]
+ ¥ X (DBBIX(D+ CIC 0, t+i.  (45)

Next, applying the matrix inversion lemma to (43)
implies that

XD > ALY ' =y H HY] A w+ VELE 4,

where V! = X7 4i")—y ’B,B". Now, using the
matrix inversion lemma we derive that

X)) > ALYA o+ AL YH [ I- HLYH ] 'HL.YA
+VELE 4, Vie(0, ).

Hence, by considering Lemma 2, it follows that

XD > [AutHaFEdTX )~y BaBY]
(A ot HuoFiE &), Vie(0, 7).

Furthermore, we observe that y ~3(0) 7 X7(0) = xT Rx,,
Finally, taking into account (41)-(42) and (44)-(46),
Lemma 1 implies that the system (29)-(31) satisfies

lz— 212 lewlld e 7.0+ N1ol1%i- 7 o+ 2 Rxg)

for all admissible uncertainties, which complete the proof.

5. Conclusion

This paper has presented a new methodology of robust
H., FIR filtering based on sampled measurements for a

class of linear continuous time-varying systems subject to
real norm-bounded parameter uncertainty and unknown
initial state. Attention is focused on the simultaneous
estimation of a continuous and discrete time-varying
signal using a K., performance measure which involves a
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mixed L.,//, norm of the estimation error of the moving

horizon [¢— T,¢] and (;— T,7) for the continuous and
discrete time signal, respectively.
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