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Road-Lane Detection Based on a Cumulative Distribution
Function of Edge Direction

Un-Kun Yi, Joon-Woong Lee and Kwang-Ryul Baek

Abstract - This paper describes an image processing algorithm capable of recognizing road lanes by using a CDF (cumulative
distribution function). The CDF is designed for the model function of road lanes. Based on the assumptions that there are no abrupt
changes in the direction and location of road lanes and that the intensity of lane boundaries differs from that of the background, we
formulated the CDF, which accumulates the edge magnitude for edge directions. The CDF has distinctive peak points at the
vicinity of lane directions due to the directional and the positional continuities of a lane. To obtain lane-related information a
scatter diagram was constructed by collecting edge pixels, of which the direction corresponds to the peak point of the CDF, then
the principal axis-based line fitting was performed for the scatter diagram. Noises can cause many similar features to appear and to
disappear in an image. Therefore, to reduce the noise effect a recursive estimator of the CDF was introduced, and also to prevent
false alarms or miss detection a scene understanding index (SUI) was formulated by the statistical parameters of the CDF. The
proposed algorithm has been implemented in real time on video data obtained from a test vehicle driven on a typical highway.

1. Introduction

This paper introduces a novel algorithm that recognizes
lanes in monocular gray-level road images. The algorithm
uses low-level image processing. Recently, the analysis of
road traffic environments has been a useful topic to the
scene understanding and required strict reliability in
accordance with the increasing interest in traffic safety.
Although various studies have been conducted, most of
them have only shown limited success in their performance
and produced unexpected erroneous results due to
dynamically changing illumination, unpredictable weather

conditions and the complexity of road traffic environments.

While segmenting moving vehicles [4, 15] and recognizing
road lanes have been classified into two major tasks in the
field of computer vision for understanding road scenes, the
advent of a robust algorithm has remained as a hard and
open problem. This paper focuses on the presentation of a
robust algorithm that recognizes road lanes for images
taken from a CCD camera mounted on a test vehicle as
shown in Fig. 1.

Much research about road-lane recognition by image
processing has been conducted. Of such research there are
feature-based methods [1, 5, 9, 10, 12], model-based
methods (3, 13, 14}, neural network-based methods [8, 11],
probabilistic methods [20], etc. Most research share and
combine some principles from each of these methods. One
common issue of these methods is how to provide a
reliable algorithm even in the noisy sources because all
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(a) Test vehicle

(b) Captured image (c) Lane recognition

Fig. 1 Lane recognition

these methods are strongly influenced by noise.

The well-known Hough transform [8, 16] and other line
approximation techniques [2, 10] are typical approaches of
the feature-based method. The Hough transform, however,
has inherent problems such as a quantization error for
Hough space and a lengthy processing time. Bimbo et al.
[8] combined the Hough transform and a neural-net
application for recognizing road lanes. They divided an
input image into multiple tiles and extracted line segments
for each tile by using the Hough transform and took
advantage of a neural network to estimate road boundaries
by using extracted line segments. Liou and Jain [1]
presented a vanishing point-based road-following algorithm.
Unlike most approaches that attempt to control vehicles by
finding the road center, their approach utilizes the
displacement between the previous vanishing point and the
current point to determine the steering angle. Bertozzi and
Broggi [12] assumed the road lane mark to be the region of
a vertical bright line of a constant width surrounded by a
darker region in the top view-image, which is obtained by
inverse perspective mapping. Such an assumption is not
true for unpainted roads. Their method would apply well to
white-painted lane marks. However, roads cannot always
satisfy the condition of being white-painted due to sources
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of noise such as wear, shadows and occlusion by sandy
trash. In addition, to take top-view images their method
requires data that describe the geometric relationship
between the road and the camera. Even though the top-
view image is in the spotlight of the lane recognition, it
requires geometric data for inverse perspective mapping
and the interpolation of transformed image to obtain an
even-sized image, as done in the RALPH [9]. In the
SCARF [20], Crisman and Thorpe combined feature-based
lane recognition with probabilistic modeling. The SCARF,
however, does not determine the initial road location
automatically. Because the probabilistic modeling in the
SCAREF classifies the pixels into “road” and “off-road”, the
classification may be degraded in white-painted paved
roads. Taylor et al. [6] relied on a template-based
correlation matching to look for similar patterns on the
road. While the RALPH [9] and ALVINN [11] had the
common goal of generating the steering command for the
lane keeping system, their approaches were different. The
RALPH, based on the scan-line intensity profile from low-
level image processing, estimates the road curvature and
computes the lateral vehicle location. In the RALPH,
several hypothesized models are used to determine the
appropriate road curvature, and an adaptation process is
also required whenever the geometric information about
driving lanes changes. The RALPH does not take into
account vehicles passing other vehicles. On the other hand,
the ALVINN is based on a neural-net application, which
requires time for learning and needs human intervention.
Dickmanns et al. [14] and Takahashi [13] described a
model of road geometry and the relative structure between
the road lane and the camera mounted on a vehicle.
Because of its great dependency on the model, the
efficiency of the model-based method is degraded when
the accuracy of the model worsened. However, compared
to the feature-based method this method is less sensitive to
noise.

2. Overview

An algorithm in this paper is based on the following
three assumptions about road lanes. /) Directional
continuity: The direction of lane boundaries does not
change abruptly. 2) Positional continuity: The position of
lane boundary does not change abruptly. 3) Lane
boundaries lie at the border between two regions with
different intensity distributions. The essence of the
algorithm is to infer such assumed facts by low-level
image processing. As the fundamental image primitive for
the inference, we chose the edge because edge pixels from
lane boundaries have a large magnitude and form a group
along boundaries. While the edge is sensitive to noise it
leads to different consequences depending on how the edge
information is reprocessed. In this paper, we assume that

noise-filled pixels occur randomly and are scattered, and
expect that the summation of edge pixels reduces the
effects of noise. Based on the three assumptions and the
expectation we designed a CDF (cumulative distribution
function) of edge directions as the model function of road
lanes. The function accumulates the edge magnitude of
edge directions. It provides a peak value at the vicinity of
the lane directions because except for the lane boundaries
there seldom exists a mark or a feature satisfying the three
assumptions simultaneously and continuously. The CDF is
noteworthy because it reflects well the properties of the
three assumptions of road lanes. The CDF has enabled the
edge-related information and the lane-related information
to be connected.

While driving, a human driver effectively uses not only
the three assumptions but also other information such as
the traveling direction of other vehicles, objects on the
road, geographical features, and an intuition based on
experience and learning. However, it is still considered a
difficult problem to extract such factors by image
processing. Unlike a human driver, the proposed algorithm
cannot work well in situations where lane boundaries are
difficult to detect. The CDF constructed with images
captured under poorly visible conditions does not provide a
clear peak value. Eventually, the algorithm may result in a
false alarm or a missed detection. Therefore, to prevent a
false alarm or a missed detection the algorithm should at
least identify whether or not a situation in which it is
difficult to extract subject features has occurred. For this
purpose, we introduce an index for understanding a scene
called the SUI (scene understanding index). The SUI is the
ratio of the mean and the standard deviation of the CDF.
The SUI judges whether or not the algorithm can find
features for lane boundaries.

In addition to the SUI, this paper introduces a moving
summation-based recursive estimator. The estimator
gradually adapts itself to new circumstances such as lane
changes.

The proposed algorithm is organized as shown in Fig. 2.
First, edge detection and the construction of the CDF were
performed for each input frame. Second, for successive N
images, an ACDF (averaged CDF) was constructed by
averaging the N CDFs. There is no difference between the
CDF and the ACDF except for the smoothing effect of the
ACDF. Third, the SUI of the ACDF was computed to
judge whether or not the proposed algorithm could detect
lanes. Fourth, the local maximum points of the ACDF were
searched for. F ifth, among the local maximum points, two
points, 6, and €., were selected as the respective estimates
of the lane directions on the right and left lane boundaries,
and two scatter diagrams were formed by collecting the
edge pixels with the same values of 6, and ¢, . Sixth, the
principal axis-based line fitting was performed for each
scatter diagram to obtain the position of lanes.
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Fig. 2 Organization of the algorithm

3. The CDF
3.1 Edge detection

An edge is theoretically defined by the gradient of an
intensity function [7]. At location (x,y) of an image
f(x,»), the gradient is represented by the vector, as
follows:

r Tor orT
vE=[G, G,] {ﬂ—’: }ﬂ :

The vector in turn has two important physical quantities,
magnitude and direction, as respectively shown below:

Vf(x,y)=4/G] + G} =|G,

+

G =tan"’ o,
|, a(x.y)=tan o)

To construct a CDF we set the range of a(x,») as 0 to
180 , and express the direction of the edge pixel in terms
of 1.

In the detection of edges, one serious problem is
reducing the processing time. We used two approaches to
reduce the time. One of them limits the processing area
above the vanishing point [19]. Because lanes visible in a
road image generally lie in this area, it is believed that this
approach will reduce the processing time. The other
approach utilizes a look-up table to compute the edge
direction, as done by Kahn et al [10].

In a road image, There are many pixels of a small
magnitude. Therefore, to leave the pixels belonged to the
lane boundaries we eliminated pixels that have a small
magnitude. Determining the threshold for edge magnitude
has been a difficult problem in the detection of edges. We
provide an adaptive method for determining the threshold
without endowing a heuristic value. The adaptive method
utilizes simple statistics such as the mean and the standard
deviation of pixels in a small rectangle J fixed at the
center of the lower part of an image. The mean and the
standard deviation for the edge magnitude in J are
respectively computed as follows:

#O=ﬁ Y V) anddﬁ{L > (Vf(x’y)—/“‘l’)z} ’
~x

BULR] ”S (x,y)e3

in which |3 is the size of the rectangle 3. Then, the
threshold is determined as 7, = 4, + 6, for the initial frame.
For the successive images, the threshold t is updated
recursively by taking the exponentially weighted average
of the mean and the standard deviation, as follows:

it = (1= A + M., and w1 = (1~ )6, + Aoy,

in which A is experimentally determined to be 0.6, £, and
6, are the updated values of the previous frame, and 4.,
and ©o,., are respectively the mean and the standard
deviation of the current image. We used 4, and &, as the
respective initial values of f and &,. Then, the threshold
value is updated as 7i., =/ +6,. . Even though this
method has no theoretical background, it makes a
significant contribution to the algorithm because it
eliminates the need for human intervention.

3.2 The CDF

Based on edge information, we designed a model
function to describe the characteristics of a road lane. The
function is constructed by accumulating the edge
magnitude, as follows:

F(d)=Y Vf(x.» (1)

nd)

where n(d) is the number of edge pixels of the direction
a(x.y)=d , in which the range of angle d is 4 (0,180 ),
We expect that if the edge magnitude of the pixels of the
direction d is accumulated, then one-dimensional function
can be obtained, as shown in Fig. 3. The function
represents the distribution of edge direction. So, we call it
CDF (cumulative distribution function).

If the shape of the CDF is examined carefully, it can be
noticed that it has two important properties. One is that it
has two distinct local maximum points, and the other is
that it has a symmetric property centering around 90 if the
optical-axis of the CCD camera mounted on a test vehicle
is at the center of a lane. The local maximum points
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Fig. 3 CDF

become the estimates of the lane direction because they are
likely to correspond to the lane direction. In particular,
because the CDF shows a symmetrical shape, the
symmetric property can be used to solve a vehicle’s lateral
position control problem.

Contrary to our expectations the CDF of Eq. (1) often
produces peak points that are unclear due to corrupted
images. Therefore, it is risky to estimate the directional
information of a lane based on the CDF constructed by
single or short frames. To solve the problem, we took into
account the fact that except for lane boundaries there
seldom exists a mark or a feature on a road satisfying the
three assumptions simultaneously. Based on this fact, to
prevent an incorrect estimation of lane directions due to
noise effects we constructed an ACDF (averaged CDF) by
adding and averaging the CDFs obtained from a sequence
of successive images. The ACDF is formulated as follows:

k

2. F(d), k2N )

1
H (d)=—
* N5

where the subscript k represents the current frame and N
denotes the consecutive N image frames. According to
Gelb [18], the mean value is known to be an unbiased and
minimum variance estimator. Generally, on a highway, the
road environment is exposed to much noise, the road
curvature is relatively small, and lane marks are painted by
broken lines. Therefore, a larger N is more effective to
noisy environments. However, a larger N does not quickly
reflect a change because of a larger smoothing effect.
Eventually, we can not help determining N experimentally
because advantages and disadvantages exist at the same
time.

3.3 The Estimator

We propose an estimator for the ACDF. The estimator is
derived based on the moving summation. It is similar in
form to the ACDF of Eq. (2). This estimator is formulated

as follows:
n k
H(d)= ) F(d), k2N (3)
i=k-N+1
where N is the same as the N in Eq. (2). To reduce the
processing time we did not take the average as done in Eq.

(2). Without averaging, this equation can be expressed as a

recursive form, as follows:
Hi(d)=Hu(d)~F, (d)+F(d), k2N+1. (4)

Except for computing the initial value Hy(d), Eq. 3) isno
longer used. The estimator discards old measurements and
takes new measurements at every step. So, it produces a
reliable estimate as soon as the normal state is recovered
from a transition state such as a lane change. Therefore, we
regard the estimator shown in Eq. (4) as being suitable for
estimating the general traffic scenario.

3.4 The SUI

When lane marks become poorly visible due to noises,
the CDF does not provide a distinct peak value, and the
proposed algorithm may lead to a missed detection or a
false alarm. To note the occurrence of such situation in
advance, we derived an index called an SUI (scene
understanding index). The SUI judges whether or not the
algorithm can find features for lane boundaries. It is
believed that when a function has a distinct peak value, the
variance of the function is larger than when it does not
have such a distinct peak value. Based on this fact, we
derived the SUI as follows: ® = /0 where 4 is the mean
value, and & is the standard deviation of the function.

X
¢ 0,and 9,: direction of lane
0, o,
Right
Lane boundary H(d)
24

(a) Image coordinate and
lane boundary

(b) Points on CDF correspon-
ding to lane direction

Fig. 4 Lane directions and their corresponding points on
the CDF

We can apply this concept to the CDF. If the SUI is high,
the CDF has a relatively larger possibilty of not having a
distinct peak value than when the SUI is low. We divided
the CDF into right and left sides, centering around 90", as
shown in Fig. 4(b), and reformulated the SUI for both
sides, as follows:

9{,:% and ~R,.=§, (5)
I

where R, and R, are SUIs, and 4, o, and #,, o, are
the mean and the standard deviation of the left and right
sides of the CDF, respectively.

When the lane recognition procedure is initially
performed, if either of the SUls exceeds an experimentally
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determined threshold value, the procedure skips over the
initial frame and proceeds to the next frame because the
initial information about the recognized lane is utilized in
the subsequent recognition process. The basic application
scheme of the SUIs is summarized as follows:
o For the initial processing :
if (R, 2« or R, 2«), gato next frame
else do lane recognition
o For the subsequent processing :
if (R, <x and R, <x), da lane recognition
elseif ( R, 2« and %, 2x ) lane information =
previous lane information
elseif (R, 2 ) right-side lane information = previous
right-side lane information
else left-side lane information = previous left-side
lane information
where x is the experimentally determined threshold value
of the SUIs.

4. Lane-Related Information
4.1 Lane direction

As shown in Fig. 4, it can be supposed that the local
maximum point (LMP) of CDF #,(d) corresponds to the
direction of a road lane. Following to Luenberger[17], we
introduced a definition for the LMP of a function f over A,
as follows:

Definition LMP:

If there is an ¢ > 0O such that f(x)<f(x') for all
x € A within a distance g of x, then x is said to be a strict
relative maximum point of f over A.

Based on the above definition, we searched for the
positions of local maxima on both sides of the estimated
CDF H,(d). As shown in Fig. 4, the LMP from the left-
side of the CDF corresponds to the direction 8, of the
right-lane boundary and the LMP from the right-side of the
CDF corresponds to the direction 6, of the left-lane
boundary. We set the two LMPs as the estimates of the
lane directions 6, and &, .

4.2 Scatter diagram

We constructed two sets, [; and I, by collecting edge
pixels of 6, and 92, as follows: T, —{(x nax,y)= ‘} and
T, ={x =6},
Each set forms a scatter diagram. We applied a line fitting
to these sets to obtain the lane-related information.

4.3 Lane-related information

To extract the lane-related information from the sets I,
and T',, we considered the least squares-based line fitting

(LSBLF) and the principal axis-based line fitting (PABLF).

where a(x,y) is the edge direction.

As experimentally proved by Lee and Kweon [2], the
PABLF is less affected by locally grouped pixels than the
LSBLF is. Thus, we applied the PABLF to extract the
lane-related information consisting of locations and
orientations.

First, by using the (p+q)'h-order moments [7], we
computed the center of the mass of each set by the
following calculation: X =m,/my, ¥=my/my, where
m,, is the (p+q)"'-order moment. The center of mass for
each scatter diagram represents the location of a lane. By
using Eq. (%,¥), (%,,),) is obtained for set I';, and (x,,7,)
is obtained for set I, . Next, the principal axis ¢ is
computed by the well-known equation:

¢=~1—tan"—————2u“ ,
2 Uy ~ Uy
where u, is the (p+ )'"-order central moment by
U, =22 (x=X)"(y=F) , in which (%.¥) is the center of
Xy

mass. Principal axes ¢ for set I', and ¢, for set I', are
obtained. A principal axis represents the orientation for the
lane to be recognized.

5. Experimental Results

We have conducted on-road tests at highways and rural
roads. A driver drove the test vehicle at the average
velocity of 100 km/h during the test. In the evaluation, the
size of the image was 320x240 pixels and a 3%3 Sobel
operator [7] was used as the edge operator. Experimental
results proved the algorithm to be robust with images of
highways and suburban roads under a wide variety of
conditions.

In the experiment, we dealt with the initial lane
recognition problem. When the algorithm is performed to
extract a lane, there is initially no information except for a
video signal. So, we newly constructed an ACDF by Eq.
(2). To obtain the initial lane-related information, the
symmetric property of the ACDF centering around 90
was used.

The initial lane recognition process is presented in Fig. 5.
First, the ACDF, shown in Fig. 5(b), was constructed by
using ten successive image frames and their edges as
shown in Fig. 5(a). That is, N in Eq. (2) is ten, which has
been experimentally determined. Second, the SUIs of Eq.
(5) were computed to be B, =1.1029 and ®,=1.2540,
which satisfy the experimentally determined threshold of
x=2.0. The ACDF also satisfied the symmetric property
centering around 90 . Third, for the new input image,
shown in Fig. 5(c), we constructed the CDF by Eq. (1), as
shown in Fig. 5(d). Then, the ACDF was estimated
according to Eq. (4), as shown in Fig. 5(e). Fourth, the
LMPs &, and 6, were found according to the scheme in
section 4.1, then a scatter diagram was onstructed as shown
in Fig. 5(g). For the construction of the scatter diagram, to
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(d) The CDF for the new input image

W

{e) An estimated ACDF

(f) An overlap of Vf,(x,»)and Vf,_,(x,¥)

(g) A scatter diagram

(a) Ten successive gray-level images and their edges

(h) A fitted line calculated following PABLF

(b) The construction of the ACDF

(c) A new input image and its edges (i) A fitted line on a raw image

Fig. 5 Initial lane recognition process
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increase the number of pixels in the diagram, we used the
latest two successive images. The approach improved the
results of the PABLF. Finally, we applied the PABLF to
the scatter diagram and obtained the lane-related
information. The fitted line was displayed on the edge and
raw image, as shown in Figs. 5(h) and 5(i), respectively.
Further tests mainly dealt with the environmental
contexts, which greatly affect the appearance of the road.
The following experiment is an extension of the previous
initial recognition problem. The subsequent procedure is
almost the same as the initial procedure, except that there

now exist lane-related information and an estimated ACDF.

In this example, the appearance of the road varies due to
heavy shadows, letters, broken lane marks and arrow marks.
Fig. 6 shows that the proposed algorithm successfully
recognized a lane under the adverse conditions.

Fig. 6 Lane recognition with heavy shadows, letters, and
arrow marks on the road surface

Next, we provided test results for rural settings on
undivided, two-lane asphalt roads. According to Pomerleau
and Jochem [9], nearly 70% of roadway departure crashes
occur on such roads. Therefore, such rural settings must be
seriously examined. As shown in Fig. 7, noises in the
images causes lane boundaries to become blurred and
make the lane recognition difficult. However, the proposed
algorithm led to favorable results. We conducted the test as
done on highways without changing parameters.

The next two experiments were performed to show that
the proposed algorithm could be applied on a rainy day
(Fig. 8) and in nighttime (Fig. 9). The graphs in the
rectangles of the figures respectively present the ACDF
estimated from the previous frame (the upper graph) and

Fig. 7 Lane recognition in rural settings

Fig. 8 Lane recognition on a rainy day

75
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Fig. 9 Lane recognition in nighttime

the CDF constructed from the current frame (the lower
graph). The CDFs provide clues whether or not the lane
marks come into view on the image. If the lane marks are
not very visible, the CDF has no distinct peak value. Even
if the proposed algorithm performs successfully in a rainy
day, compared to a clear day, there is a higher possibility
of obtaining a false alarm or a miss-detection. On a rainy
day, road lanes are often not satisfied the assumption that
lane boundaries lie at the border between two regions with
different intensity distributions.

In reviewing the CDFs for the nighttime experimental
results, as shown in Fig. 9, it can be seen that the CDFs
were rough and uneven due to weak illumination, which
causes lane boundaries to become indistinct and reduces
the visible range of lanes. However, because the weak
illumination also prevents the disclosure of other sources
of noise, the proposed algorithm provided reliable results
in the nighttime experiment.

6. Conclusion

The main purpose of the proposed algorithm is to
connect the edge-related information to the three

assumptions of road lanes by means of the CDF. Because
the three assumptions of road lanes are viewed to be
perceptual constraints, the CDF is, in fact, considered to be
a road model. In addition, the CDF eliminates noise-related
effects in intensity images and edges. By estimating the
CDF with the use of the moving sum, the shape of the CDF
can be consistently maintained and the noise effects can be
overcome in a short time. The newly introduced SUI
provides a clue for understanding scene.

We successtully performed experiments under a wide
variety of road conditions without changing parameter
values or adding human intervention. In addition, the
algorithm minimized the use of heuristic parameters,
assumptions, and constraints. The most important goal in
lane recognition by image processing is maintaining
robustness. To realize this goal, we are now improving the
scene-understanding  function and the tracking
performance of lane geometry between frames. The
proposed algorithm was coded by MFC Visual C++ and
evaluated on a Pentium PC (330MHz) and a frame grabber
of Meteor-II with the speed of 10 frames per second.
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