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A recursive approach for mechanical system
design sensitivity analysis

Daesung Bae*

I Abstract }

algorithm using backward difference.

Recursive formulas have been effective in solving the equations of motion for large scale constrained mechanical sys-
tems. However, derivation of the formulas has been limited to individual terms in the equations of motion, such as veloci-
ty, acceleration, and generalized forces. The recursive formulas are generalized in this paper. The velocity transformation
method is employed to transform the equations of motion from Cartesian to the joint spaces. Computational structure of
the equations of motion in the joint space is carefully examined to classify all necessary computational operations into sev-
eral categories. The generalized recursive formula for each category is then developed and applied whenever such a cate-
gary of computation is encountered. Since the velocity transfermation method yields the equations of motion in a compact
form and computational efficiency is achieved by generalized recursive formulas, the proposed method is not only easy to
implement but is also efficient. A library of generalized recursive formulas is developed to implement a dynamic analysis

1. Introduction

Erdman"’ has developed a design method for special pur-
pose mechanisms. Kinematic equations that are formulated
for a specific mechanism are directly used to develop a
design process. Design methods for general mechanical
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systems have been presented in.”

In designing a structural system, numerical optimization
has become already a routine procedure. Design sensitivity
and optimization methods have been developed for size,
shape, configuration, and topology of structural systems.”
The first- and second-order design sensitivity analyses
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using Treffiz method have been presented by Kita.” In”,
the configuration design method has been successfully
applied for kinematically driven systems. In contrast to
structural design, there exist few general-purpose codes
with design-optimization capabilities for mechanical sys-
tems. One of the major difficulties is to establish an effi-
cient and reliable way to analyze the design sensitivity of
dynamic responses due to a design change. The objective
of this research is to develop an efficient and reliable
method for the design sensitivity analysis of general
mechanical systems.

There are two kinds of methods in developing the gov-
erning equations of design sensitivity; direct differentiation
method and adjoint-variable method. In the direct differen-
tiation method the governing equations are obtained by dif-
ferentiating the equations of motion and the constraints.”
The adjoint-variable method was developed in optimal con-
trof® and involves the forward numerical integration for
the dynamic analysis and the backward numerical integra-
tion for the sensitivity analysis. Since the backward numer-
ical integration may incur numerical errors, this research
employs the direct differentiation method.

There are several methods in defining the generalized
coordinates for dynamic analysis of mechanical systems.
Cartesian coordinates have been used in several commer-
cial codes.*” The natural-coordinate method [8] uses points
and unit vectors as its generalized coordinates. The orienta-
tion of a body is represented by unit vectors. Therefore, the
orientation matrix is quadratic in the natural coordinates
and its Jacobian is linear. To systematically formulate the
equations of motion in relative coordinates™, Wittenburg
proposed the velocity-transformation method. For compu-
tational efficiency, Hooker proposed a recursive formula-
tion for the dynamic analysis of a satellite which has a tree
topology™. He showed that the computational cost of the
formulation increases only linearky with respect to the num-
ber of bodies. Featherstone also proposed a recursive for-
mulation to calculate the acceleration of robot arms using
screw notation."" These ideas have been extended by
many researches for multibody rigid and flexible systems
in.""" Recently the recursive formulation was generalized
in"* to improve both implementation and efficiency.

The first fully three-dimensional applications of the
design sensitivity analysis were demonstrated by Mani"®
The velocity-transformation method was used to derive the
governing equations of design sensitivity.

Even though the formulations proposed in the previous
studies were for the general mechanical systems, their
applications were confined to relatively simple problems
due to the complexity of the formulations. The formulation
complexity problem was resolved by using a computer
algebra,

Constrained mechanical systems are represented by dif-
ferential equations of motion and algebraic constrained
constraint equations, which are often called the overdeter-
mined differential algebraic system (ODAS), Several solu-
tion methods have been proposed to solve the ODAS in"
" In particular, the parameterization method treated the
ODAS as an ordinary differential equations {ODEs) on the
kinemnatic constraint mantfolds of the system. The stability
and convergence of the method were proved in."”

This paper employs the velocity-iransformation method™
to derive the governing equations of motion and design
sensitivity. Since the virtual displacement and acceleration
relationships between the Cartesian and relative coordinates
are substituted simultaneously in the velocity transforma-
tion method, the govemning equations will appear in a com-
pact matrix form, Note that the matrix operations can be
computed in a recursive way. Therefore, the matrix form
not only makes it easy to debug and understand the com-
puter program but also assures computational efficiency by
using the generalized recursive formulas ™

The recursive kinematic relationships are derived, then
generalized in Section 2. The governing equations of
design sensitivity and their solution method are presented
in Section 3. A set of generalized recursive formulas is
derived and applied to evaluate the terms in the equation of
motion and design sensitivity in Section 4. A numerical
example is presented in Section 5. Finally, conclusions are
drawn in Section 6.

2 Relative coordinate kinematics and
recursive formulas
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2.1 Coerdinate systems and relative kinematics

Constder a pair of bodies, as shown in Fig. 1. The X-Y-Z
is the inertial reference frame and primed coordinate sys-
tems are the body reference frames. Double primed coordi-
nate systems denote the joint reference frames. The orienta-
tion of the body reference frame is denoted by A.

Translational and angular velocities of the x{ ~y; -z’
frame, the reference frame for body i, in the X-Y-Z frame
are respectively defined as r; and @, . Twist velocity in
the x{—y{—z] frame is defined as

Y = =
o] Alo,

Define a cross product matrix associated with vectors a
and b to denote the vector cross product as follows.

(0

ab=—axbh

Recursive vefocity formula for a pair of contiguous bod-

ies have been derived in"¥ as

Y, =B_, Y  +B

(=135 (-1 (2)

(i-niz Vi1

where Vi denotes the relative velocity vector for
joint (i-1}i and the matrices By and By, are
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e 13:. The matrix Hy; )i is determined by the
axis of rotation and  90-1i denotes the relative generalized
coordinate vector for joint (i-1)i. The vectors Sy, and

S(._1yi are defined in Fig 1. It is important to note that the
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Fig.1 Kinematic relationship between two adjacent bodies

matrices By and By;_yy;are only functions of the rela-
tive coordinates of the joint between bodies i-1 and i. As a
eensequence, further partial differentiations of the matrices
B and B, 1y in Eq. (2) with respect to other rela-
tive generalized coordinates than 4,y becomes zero.
This property will play a key role in simplifying the gener-
alized recursive formulas in section 4,

2.2 Generalization of the velocity recursive
formula

In order to generalize the velocity recursive formula, con-

sider a mechanical system which consists of 6 bodies, as

shown in Fig. 2. The system has a closed loop which is

opened to form the tree structure in Fig. 3. The velocity Y,

for body 1 in the tree structure is obtained by replacing i by

1inEq. (2) as
Y =B, Y, +Bj,vg 4

Similarly, the velocity Y, for body 2 can be obtained as

follows,
Y, =B, Y +B,v, (5)
Substitution of Eq. (4) into Eq. (5} yields
Yy =By By Yo + By Biga v + By v (6)
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Cut Joint

J : Joints

Fig, 2 A chain mechanism

If similar steps are taken for all bodies in Fig. 2, the
Cartesian velocity Y is obtained as

Y; = By5 By, By By, By, Y,
+B5 By By B Boavg
+B.5 By By By,
+B5 By By vy
+ B Byvy,

n

+B.vys

Thus, the Cartesian velocity Y for all bodies is obtained
in the following compact matrix form:
Y =Bv (8)
where the matrix B is the transformation matrix between
the Cartesian and relative generalized velocities and

T
Y=Y, Y YY)V (9)

v=[vl Vi v v V] (10)

The Cartesian velocity Y e R™ witha given ve R™
,where nc and nr respectively denote the numbers of the
Cartesian and relative coordinates, can be evatuated either
by using Eq. (8) obtained from symbotlic substitutions or by
using Eq. (2) with recursive numeric substitutions of Y;s .
Since both formulas give an identical result and recursive
numeric substitution is ptoven to be more efficient’, the
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matrix multiplication Bv with a given v will be actually
evaluated by using Eq. (2). Since v in Eq. (8) is an arbi-
trary vector in R™, Eqs. {2) and (8), which are computa-
tionally equivalent, are actually valid for any vector
v e R"™ such that

X=Bx (i1

and

(12)

X = B(ill)ilx(H) + B(i-])iZX(ill)i
where X € R™ is the resulting vector of multiplication
of Band x.
As a result, the transformation of xeR™
into Bx € R™ is actually calculated by recur-
sively applying Eq. {12} to achieve computational efficien-
cy in this research.

2.3 Generalization of the force recursive formula
The generalized recursive formula for the transformation
of x e R™ into a new vector Bx in R™ was derived in
section 2.2. Conversely, it is often necessary to transform a
vector G in R™ into a new vector g=B"G in R™.
Such a transformation can be found in the generalized force
computation in the relative coordinate system with a known
force in the Cartesian coordinate system. The virtual work

done by a Cartestan force Q e R"™ is obtained as follows.
W =82"Q (13
where SZ must be kinematically admissible for all joints

for a tree  structure consisting of n serial bodies. Substitu-
tion of Z = Bdq into Eq. (13) yields

oW =3q'B'Q=5"Q (14)
where Q" =B"Q.
The recursive formula for " has been obtained in™
Qi =Bl (Qi +51,)  i+4.0 (19
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where

S, = 0

i = BEri+1)(i+2)1(Qi+2 +8..2) (16)

Since Q is an arbitrary vector in R™ , Egs. (15) and (16)
are valid for any vector Q in R". As a result, the matrix
multiplication of B"G is aciually evaluated to achieve
computational efficiency in this research by

Eijie) = an)z(Gi*«l +Si+l)
s, = 0 Li=4..0
S = B;i+])(Gi+l +Si+l)

1

arn

where ge R™ is BTG.

3 The governing equations of
design sensitivity

3.1 Implicit numerical integration of equations
of motion
The variational form of the equations of motion for con-
strained mechanical systems is
8¢ {B"(MY + ]2 - Q)} =0 (18)
where 89 must be kinematically admissible for all tree
structure joints, A e R™ is the Lagrange multiplier vector
for cut joints™ and m is the number of cut constraints.
deR™ and P, represent the position-level constraint
vector and the constraint Jacobian matrix, respectively. The
mass matrix M and the force vector Q are defined as fol-
low.

M = diag(M . M;,...M,, ) (19)

Q=(Q[.Q.. Q%) (20)

where nbd denotes the number of bodies. Since &q is

arbitrary, The following cquations of motion are obtained.

F=B"(MY+®/A-Q)=0 1)
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The equaticns of metion can be mplicitly rewritten by
introducing ¥ =4 as

F(g,v¥,A)=0 22)

Successive differentiations of the position level con-
straint yield

(b(q,v)zdiqv—-u:() 23)

D(g, v, V)= ¢ v-y=0 (24)

Equation (22) and all levels of constraints comprise the
overdetermined differential algebraic system (ODAS). An
algorithin for the backward differentiation formula (BDF)
to solve the ODAS is given in"® as follows.

-H(p) 1 -F(qsv’ V,l)
® Dv-y
) tI)qv -y
i) o]
LUN NG W =0 (25)
k.
Ug(b_DRJ UOT[EO—V—V—Q]
h h .
_U;(ERQ]_ Ug[;{:v—q—g)

1 1 . .
where £, = b_E:;l b.vei and &: 5?2;1 b9, , in which
v o

k is the order of integration, b; are the BDF coefficients

and pE[qT‘ vT,oeT, AT]T. The columns of UD g R
constitute bases for the parameter space of the position-
level constraints and is obtained by LU-decomposition of
the constraint Jacobian so that the following matrix is non-
singular:

]

The number of equations and the pumber of unknowns in
Eq. {25) are the same, and so Eq. (25) can be solved for p.
Newton Raphson method can be applied to obtain the solu-

(26)
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tion p.
H Ap=-H @n
p=p +Ap (28)
where
F, F, F, F]
o, 0 0 0
o &, 0 0
H=|. . . (29)
o, @ o 0
U, BU, 0 0
0 Uy BU, 0]

Recursive formulas for Hy and H in Eq. (27) will be
derived in Section 4 to evaluate them efficiently.

Equation {25) is linear for the acceleration and the
Lagrange multipliers but are nonlinear for the generalized
coordinates and velocities. However, all variables are treat-
ed as nonlinear in selving them. Further investigations will
be camied out in a near future to take advantage of the lin-
earity for the acceleration and the Lagrange multipliers.

3.2 Implicit numericat integration of equations of
design sensitivity
In general, the nonlinear constrained optimization prob-
lem can be written mathematically as follows:

Minimize or Maximize : Q(p.7) objective function (30)

Subject to
gj(p,r)SO 1=1.m inequality constraints
h(p.7)=0 k=11 equality constraints

7i<7,<7' i=ln side constraints  (3])

where the Tis the vector of design variables. A mechani-
cal system consists of bodies, joints, and force elements
whose physical properties are described by various parame-

ters. The geometric properties of a joint, the inertial proper-
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ties of a body, and the compliance characteristics of a force
element are candidate design variables. The objective func-
tion rm Omega in Eq. (30) and the constraint functions in
Eq. {31) may be linear or nonlinear functions of the state
and design variables. When an optimization algorithm
takes a step or when a design engineer carries out a what-if
study, the first derivatives of the objective function must be
calculated as follows.

dQ &)dp 2.y
dr 8pdr o

The most difficult term to compute in Eq. 32 is
the dp/dt . Thus, this paper focuses on how to compute
the dp/dt efliciently.

Differentiating Eq. {25) with respect to a design
variable 7 and appending the BDF yield the following
equations of design sensitivity:

(32)

|9
dr - - \ .
4o Fq, tFv. +Fy +Fa +F
dr 04, +9,
db (i)q,ﬂi) ¥, + 0,
g =5 = =0 (33)
(be:) ¢t b,g,+8,5, + 0¥, +0,
ib
o Uglhe, v, -q)
WUIR,)| [Uolh™: -a,-c.)
hUg{R,)|

h . .
where h'= 5 o and ¢y are collections of all previ-

o

ous values at integration knot points for V- and q, in

the BDF and P =[al. v. ¥1. A7 Equations in Eq. (33)

comprise the same number of equations as the unknowns
and are solved for P« as

¥, p.=-1 (34)

. . T T1¥ . _
where ?r=[F_-T.d>fT~¢.»T'<D:T.—(U§§.) —(Uds:) ] .Since ¥y, =
H,, the matrix ‘¥, need not be caleulated. Since various
parameters in a system can be selected as the design vari-
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Fig.} Graph representation of the chain mechanism

Read Initial conditions
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Compute Hand H,
Update p
from Eqs. (27) and (28)
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inEq. 31)
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Fig.4 Solution algorithm for scnsitivity analysis

ables, it is not easy to implement the formula for the right
side M of Eq. (34). For that reasén, the finite-difference
method (FDM) has been implemented for the calculation
of 71 in this paper. Though the proposed method is conve-
nient to implement and accurate than the pure FDM, it still
has inherent drawbacks of the FDM such as inefficiency for
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a design problem involving with a large number of design
variables and difficulty in determining perturbation amourt.

An implementation algorithm for the governing equa-
tions of motion and of design sensitivity is shown in
Fig. 4.

4. Generalized recursive formulas and
their applications

Careful inspection of the residual H and the Jacobian
matrix M, shows that types of necessary recursive for-
mulas are classified into Bx, B'G, Bx, (Bx),, (B"G),,
(Bx)q, (Bx), where x € R™ and G € R™ are arbitrary
constant vectors. Formulas for Bx and BTq were
derived in sections 2.2 and 2.3. The rest of formulas will
be derived and then applied for computing H and H,
in this section. Note that all recursive formulas are tabulat-
ed in Table A.

Recursive formulas must be applied in a computational
sequence that represents the system connectivity. The
computational sequence can be determined from a repre-
sentation of mechanical systems. A body and joint in a
mechanical system are represented by a nede and an edge
in the corresponding graph, respectively. Nodes in the
graph are divided into four disjoint sets in conjunction with
a generalized coordinate 9 to denive the recursive formu-
las systematically as

set I{ 9« )= { outboard node of the edge having 9 as its
generalized coordinate }

set 11( 9z )= { all outboard nodes of I{ 9y ) }

set I 9x )= { all nodes between the base node and the
inboard node of I{ 4« ), including the
base and inboard nodes }

set!V( dy) = { the complementary set of I{ i) W
H( 9y) L HI 9.)}

As an example, consider a governor mechanism and its
graph representation shown in Figs. 5 and 6. The following
sets of nodes in conjunction with 924 (relative coordinate
between nodes 2 and 4) for the graph shown in Fig. 6 are
defined.
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Table A Summary of recursive formulas

Recursive

formulas iellg,) i elllq,)
(X0, =B X
Xy =(Bx), " +(B I ;' (xi)q, = B(i—ljul{xi—l)qI
(=1p2 gy ll-l]l
- e, = Bzl 'S
gq =(B1G),‘ (g‘ ' -t - ”.2):,‘ (g(;,.,;);.. =0
(S:. )q. =Byl S S, =0
(ii)q. =8 o da, X . B
. . X =B X,
x“ = (Bx)" (Bln-Un)‘i. Xi ( ']4. 'HM( -'_] )‘h
O +BE!*HiI(xI-I)‘Ix
+B 2 by, X
x. =(I:’ux}|. (xi)\-‘ =(B.:i-n»| )t‘x--l (X,)___ =B“ ||‘|l‘i |)
+(Bri-niz]v.x|i-||. ( m'«"' s
Recursive e .
formulas i elllig,) elVig,)
X, ={Bx), {Xl)q =0 (x, L. =B mtXol,
g, =BG, | Bl B' (), oy, =0
8.0, =B w8, 8., =0
xq =(]‘§x)“ (“‘(i]u‘ =0 (Xi)q. =0
X, ={Bx), (X, =90 X,),, =0
Recursive el <l s el Celv
formulas ieltq.) orieilig,) or i ellliq,) or i =1¥ig,})
X = Bx X, = Bu—ll‘uxl-l + B(i-ll-l“tm».
Bure = Bluan(G + 8.,
g, =BTG 8, =
8 =B (G, +8,.)
X = Bx ?.(, = 1lgn-nnx-—l +B ||n\ +B(| ¥ e

RL

Fig. 5 A governor mechanism

T : Transdational joint

R: Revalutejoint

VU': Universal jaint

81, 82 Spherical cut joints
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51

Cut Joints

Fig. 6 Graph representation of the governor mechanism

set[{ qa )= {noded}

set 1(qz) = {nodes6and?}
setll[{ §z4)= {nodesland 2}
set [V (g,4)= {nodes3, 5,and § }

4.1 Recursive formula for (X = Bx)

The recursive formula for Bx € R™ is easily obtained
by differentiating Eq. (12),

Xi =By X + By X + B Xy (35,

This recursive formula can be applicd to compute the
Cartesian acceleration Y, with known relative velocity

and acceleration.

4.2 Recursive formula for X = (Bx),

In order to obtain the recursive formula for (Bx), , Eq.
(12) is differentiated with respect to 4y fork =1, -~ cdots,
nr as follows.

(xi)qu(ﬂu-l)\l)mx 1B, (X ] +(B|i—|)|:)q‘x(1-n. (36)

Since the matrices B, and B,;_,,,, depend only on
the relative coordinates for joint (i-1)i, their partial deriva-
tives with respect 1o generalized coordinates other
than G-y vanish. In other words, the partial derivatives
vanish if q, does not belong toseti( q,).
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Therefore, if body i is an element of set I { q, ), Eq. (36)
becomes

(X)), =YX, (37)

If body i belongs to set HI{ g,) w IV ( g, ), X, is not
affected by 4. As aresult, Eq. (37) is further simplified as
follows.

(38)

Ifbody i is an element of set I { q, ), body i-1 is naturally
its inbeard body and it belongs to set III { g, ). Using Eg),
(38), Eq. (36) becomes

(Xi)qk = (B(i—l)il )qk X+ (B(i—l)i2 )qk Xiay (9

This recursive formula can be applied to compute the
partial derivative of the Cartesian velocity with respect to
relative coordinates Y, . As an example, if Eqs. (37), (38)
and (39) are applied to compute Y, , the resulting equa-
tions are shown in Fig. 7.

The recursive formulas for (BTG)q. (BX)q and (Bx)‘.
are obtained as in Table A by following the similar steps

(B12)p.= 0

(Yzu=
=

taken in this sections.

(B231)gu=
(BZBZ}W‘—

(Bm)q. ’
(524’}0:-

_(é‘:?‘:; ) {Bzg1)ga= 0,

(Braisdnt | (B282)0r= 0
(Bust)an= 0, epa
(Bug)ga=0 =0

(Bastlga=0,
Bis2)qu= 0
=0

it

Fig. 7 Computation sequence fer Yo
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3. Numerical example

To show the validity of the proposed formulation,
dynamic and design sensitivity analyses of a passenger
vehicle were performed. The MacPherson strut and multi-
link suspensions were employed as its front and rear sus-
pensions, respectively. The MacPherson strut suspension
consists of a knuckle, a lower control arm, & strut, and a
rack. The chassis and lower control arm are linked with a
bushing element, the lower control arm and knuckle, the
strut and chassis with ball joints, the knuckle and strut with
a translational joint, the steering rack and knuckle with a
tie rod, and the chassis and knuckle with a spring-dashpot
element. The inertia properties and spring and damping
constants are shown in Table B.1.

A multi-link suspension system consists of a knuckle, a
strut, two toe control arms, a camber control arm and a trail
link. The toe control arms and chassis, the knuckle and toc
control arms, the trail link and knuckle, the trail link and
chassis, and the camber control arm and chassis are linked
with bushing elements. The camber control arm and knuck-

Table B.! Inertia properties and spring/damping constants of

the front suspension
Body Mass(kg) Moment of inertia { kg - m*)
{hassis 1440.0 484, 2344, 2245
Rack 1.0 10.1.0,20
Lower control arm 30 20,40.20
Tie rod 50 4.0,4.0,4.0
Kruckie 4.0 3.0,60,30
Strut 20 1.0,1.0,2.0
Spring constant 18639 Nim
Damping coefficient 1386 Nsim

Table B.2 Inertia properties and spring/damping constants of
the rear suspension

Body Mass(kg) Moment of inertia { kg - m*)
Toe control arm 20 .0,1.0,20
Chamber control arm 2.0 20,3.0,2.0
Trail link 20 20,2.0,20
knunckl 30 30,4030
Stru 20 20,3.0,20
Spring constant 21582 Nim
Damping coefficient 1021 Ns/m
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Ie are linked by a ball jont. The materia! propertics and
spring and damping constants are shown in Table B.2. In
summary, the system consists of 35 bodies, 34 joints, 30
bushings, and 6 springs and dampers and has 148 degrees
of freedom.

A J-turn simulation of the vehicle was carried out with an
initial velocity of 80kmv/h and step steering input shown in
Fig. 8. Roll acceleration obtained from the J-turn simula-
tion is shown in Fig. 9.

The damping coefficient of the suspension system was
chosen as a design variable to observe the effect of the
damping coefficient on the roll angle.The proposed sensi-
tivity analysis was carried out and the sensitivity of the roll
acceleration with respect to the damping coefficient change
was obtained, as in Fig. 10.

The sensitivity result was validated against that of the
FDM calculation,

o
g
]

o
2
>

Qo005

0 m3f

Rack position(mm)
o
g

[l b of

wh
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u 1 2
Tirnefsec)

Fig. 8 Rack position
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Fig. 9 Roli acceleration of chassis
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The sensitlvity of roll acceleration of chassis
w.r.t. damping coefflcient of the frent suspension
Dotap

G oosf

000

RULHE

p—
- H
Analytic|

—=—FDM

Sensitivity(N*deg'fsec’)

-0y

o0 . . . . . " s
MY 15 20 25 30 35 48
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Fig. 10 The sensitivity of roll acceleration

Since the absolute value of the sensitivity is very small,
the integration error-tolerance must be very small as well.
Otherwise, accurate FDM results can not be obtained. The
etrot tolerance of 107 for the FDM analysis was used for
this example. The sensitivities of proposed method and
FDM are shown to be close in Fig. 10, which validates the
proposed methed. The sensitivity analysis was performed
on 2 [BM compatible computer(266 MHz) and took about
10 min. This indicates that the sensitivity analysis of a fairly
complicated system can be accomplished in a moderate
period on a desktop computer if the number of design vari-
ables is not too excessive.

6. Conclusions

To compute the sensitivity for mechanical design, the
finite difference method(FDM) has been used. But the
method has always had a problem which is how to deter-
mine the variations of the design variables. These variations
are closely affected the stability and accuracy for numerical
analysis. Since the design sensitivity analysis method is
proposed is analytically derived the generalized recursive
formulas, the problem is swept away. The velocity-trans-
formation method was employed to transform the equa-
tions of motion from the Cartesian to the relative coordinate
system. The computational structure of the equations of
motion was examined to classify all necessary computa-
tions into several categories. The generalized recursive for-
mula for each category was then applied whenever such a
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category of computation was encountered. Since the veloci-
ty-transformation method yields the equations of motion in
a compact form and computational efficiency is achieved
by the generalized recursive formulas, the proposed method
is not only easy to implement but also efficient. Since the
direct differentiation method is used to formulate the gov-
erning equations of design sensitivity whose right hand
side is computed by the FDM. The proposed method is
semi-analytic. As an example, the design sensitivity analy-
sis of a large scale vehicle system due to a damping coeffi-
cient change was performed,

The computing time indicated that the sensitivity based
design iteration of a large scale mechanical system is pos-
sible on a PC level computer with the proposed method if
the number of design variables is not too excessive.
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