Runoff Analysis of Modified TOPMODEL with Subsurface Storm Flow Generation Mechanism

지표하 흐름을 고려한 개선된 TOPMODEL의 유출분석연구

  • 이학수 (부산대학교 청정공학협동과정) ;
  • 한지영 (부산대학교 환경공학과) ;
  • 김경현 (부산대학교 환경기술·산업개발연구센타) ;
  • 김상현 (부산대학교 공과대학 환경공학과)
  • Published : 2001.08.01

Abstract

This paper investigates the applicability of a modified version of TOPMODEL considering shallow subsurface storm flow in a forested mountaneous catchment. The macroporous soil structure provides a hydrological pathway for rapid runoff generation. A modified version of TOPMODEL introduces the two-storage system to analyze the hydrograph recession including rapid subsurface storm flow component. The two-month continuous hydrologic simulations of sulmachun watershed suggest that a modified version of TOPMODEL represents comprehensive and realistic flow generation mechanism comparing to those of an original version of TOPMODEL. The results of parameter calibration with Monte-Carlo method indicate a modified version of TOPMODEL produces a set of physically meaningful parameters.

본 연구에서는 지표하층과 암반층 사이의 지표하흐름을 기존 TOPMODEL의 구조에 연계시킨 수정 TOPMODEL의 국내 유역 적용성을 검증하였다. 지표하층에 존재하고 있는 대공극은 신속한 유출발생을 위한 수문경로를 제공하고 있으며, 수문감쇠곡선 분석을 위한 이중저류체계의 필요성을 의미한다. 설마천 유역을 대상으로 2개월간의 연속적인 유역수문거동을 모의한 결과 수정 TOPMODEL은 기존 TOPMODEL에 비해 유출발생과정을 모다 포괄적이고, 현실적으로 재현할 수 있는 것으로 밝혀졌다. Monte-Carlo 방법을 도입한 매개변수 산정결과도 수정 TOPMODEL의 경우가 물리적으로 타당한 것으로 밝혀졌다.

Keywords

References

  1. 김상현, 김경현 (1999) '공간적 포화면적의 공간적 연결을 고려한 TOPMODEL의 개선과 적용' 한국수자원학회논문집, 한국수자원학회, 제32권, 제5호, pp. 515-524
  2. 윤용남 (1998). 공업수문학. 청문각, pp. 245-247
  3. 정선희, 김상현 (1999). 'TOPMODEL 투수량계수 감소함수 일반화과정의 적용에 관한 연구' 한국수자원학회논문집, 한국수자원학회, 제32권, 제6호, pp. 637-647
  4. 한국건설기술연구원 (1998). 시험유역의 운영 및 수문특성 조사.연구 연구보고서, 건기연 98-077, pp.5-24
  5. Ambroise B., Beven, K.J, and Freer, J. (1996). 'Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrological similarity.' Water Resour. Res., Vol. 32, No.7, pp. 2135-2145 https://doi.org/10.1029/95WR03716
  6. Barling, R.D., Moore, LD., and Grayson, R.B. (1994). 'A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content.' Water Resour. Res., Vol. 30, No. 4, pp. 1029-1044 https://doi.org/10.1029/93WR03346
  7. Beven, K.J. (1982). 'On subsurface stormflow an analysis of response times.' Hydrol. Sci. J.. Vol. 27, pp. 505-521
  8. Beven, K.J. and Kirkby, M.J. (1977). 'Considerations in the development and validation of a simple physically-based, variable contributing area model of basin hydrology.' paper presented at the 3rd International Symposium on Theoretical and Applied Hydrology., Colo. State Univ., Fort Collins
  9. Beven, K.J,. and Kirkby, M.J. (1979). 'A physically-based variable contributing area model of basin hydrology.' Hydrol. Sci. Bull., Vol. 24, pp. 43-69
  10. Chow, V.T., Maidrnent, D.R., and Mays, L.W. (1988). Applied Hydrology. McGraw-Hill, Inc. pp. 132 -135
  11. Hammermeister, D.P., Kling, G.F., and Vomocil, J.A (1982a). 'Perched water tables on hillsides in western Oregon, I, Some factors affecting their development and longevity.' Soil Sci. Soc. Am J; Vol. 46, No.4, pp. 811-818
  12. Hammermeister, D.P., Kling, G.F., and Vomocil, J.A (1982b). 'Perched water tables on hillsides in western Oregon, II, Preferential movement of water and anions.' Soil Sci. Soc. Am J.. Vol. 46, No.4, pp. 819-826
  13. Hewlett, J.D., and Hibbert, AR. (1965). 'Factors affecting the response of small watersheds to precipitation in humid areas.' paper presented at International Symposium on forest Hydrology. Pa. State Univ., University Park
  14. Lowery, B., Kling, G.F., and Vomocil, J.A. (1982). 'Overland flow from sloping land: Effects of perched water tables and sloping drains.' Soil Sci. Soc. Am J., Vol. 46, No. 1, pp. 93-99
  15. Nash, J.E, and Sutcliffe, lV. (1970). 'River flow forecasting through conceptual models, I, A discussion of principles.' J. Hydrol., Vol. 10, pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  16. Quinn, P.F., Beven Kj., Chevallier P., and Planchon O. 0991l. 'The prediction of hillslope flow path for distributed hydrological modeling using digital terrain models.' Hydro. Proc., Vol. 5, pp. 59-79 https://doi.org/10.1002/hyp.3360050106
  17. Scanlon, T.M., Raffensperger, J.P., and Hornberger, G.M. (2000). 'Shallow subsurface storm flow in a forested headwater catchment : Observations and modeling using a modified TOPMODEL.' Water Resour. Res., Vol. 36, No.9, pp, 2575-2586 https://doi.org/10.1029/2000WR900125
  18. Weyman, D.R. (1973). 'Measurements of the downlope flow of water in a soil.' ]. Hydrol., Vol. 20, pp. 267-288 https://doi.org/10.1016/0022-1694(73)90065-6
  19. Wigrnosta, M.S., and Lettenmaier, D.P. (999). 'A comparison of simplified methods for routing topographically driven subsurface flow.' Water Resour. Res., Vol. 35, No.1, pp, 255-264 https://doi.org/10.1029/1998WR900017
  20. Wood, E.F., Sivapalan, M., and Beven, K.J. (1990). 'Similarity and Scale in catchment storm response.' Rev. Geophys., Vol. 28, No.1, pp. 1-18
  21. Whipkey, R.Z. (965). 'Subsurface storm flow from forested slopes.' Bull. Int. Assoc. Sci. Hydrol., Vol. 10, pp. 74-85