DOI QR코드

DOI QR Code

A Study on the Prediction of Self-absorption in Opposed Flames Using WSGGM-Based Spectral Model

파장별 회체가스중합모델을 이용한 대향류 화염에서의 복사 흡수 예측에 관한 연구

  • 김욱중 (한국기계연구원 열유체환경연구부) ;
  • ;
  • ;
  • Published : 2001.04.01

Abstract

WSGGM based low-resolution spectral model for calculating radiation transfer in combustion gases is applied to estimate self-absorption of radiation energy in one-dimensional opposed flow flames. Development of such a model is necessary in order to enable detailed chemistry-radiation interaction calculations including self-absorption. Database of band model parameters which can be applied to various one-dimensional opposed flow diffusion and partially premixed flames is created. For the validation of the model and database, low resolution spectral intensities at fuel exit side are calculated and compared with the results of a narrow band model with those based on the Curtis-Godson approximation. Good agreements have been found between them. The resulting radiation model is coupled to the OPPDIF code to calculate the self-absorption of radiant energy and compared with the results of an optically thin calculation and the results of a discrete ordinates method in conjunction with the statistical narrow band model. Significant self-absorption of radiation is found for the flames considered here particularly for the fuel side of the reacting zone. However, the self-absorption does not have significant effects on the flame structure in this case. Even in the case of the low velocity diffusion flame and the partially premixed flame of low equivalence ratio, the effects of self-absorption of radiation on the flame temperature and production of minor species are not significant.

Keywords

References

  1. Ju Y., Guo H., Liu F. and Maruta K., 1999, Journal of Fluid Mechanics, 379, pp. 165-190 https://doi.org/10.1017/S0022112098003231
  2. Zhu X. L., Lim J. and Gore J. P., Combustion and Flame, submitted
  3. Daguse T., Groonenbrock T., Rolon J. C., Darabita N. and Soufiani A., 1996, Combustion and Flame, 106, pp. 271-287 https://doi.org/10.1016/0010-2180(95)00251-0
  4. Chan S. H., Yin J. Q. and Shi B. J., 1998, Combustion and Flame, 112, pp. 445-456 https://doi.org/10.1016/S0010-2180(97)00133-8
  5. Vranos A. and Hall R. J., 1993, Combustion and Flame, 93, pp. 230-238 https://doi.org/10.1016/0010-2180(93)90105-C
  6. Shih S. Y., Bedir H., T'ien, J. S. and Sung C. J., 1999, Journal of Propulsion and Power, 15, pp. 903-908
  7. Soufiani, A. and Taine, J., 1997, International Journal of Heat and Mass Transfer, 40, 987-991 https://doi.org/10.1016/0017-9310(96)00129-9
  8. Tien C. L., 1968, Advances in Heat Transfer 5, Academic Press, New York, pp. 253-324
  9. Grosshandler, W. L., 1980, International Journal of Heat and Mass Transfer, 23, pp. 1447-1457 https://doi.org/10.1016/0017-9310(80)90149-0
  10. Lutz A. E., Kee R. J., Grcar J. F. and Rupley F. M., 1996, Sandia Report SAND 96-8243
  11. Ludwig, C. B., Malkmus, W., Reardon, J. E. and Thompson, J. A. L., 1973, Handbook of Infrared Radiation from Combustion Gases, NASA SP-3080
  12. Edwards, D. K., 1976, Advances in Heat Transfer 12, Academic Press, New York, pp. 115-193
  13. Lallemant N. and Webber R., 1995, International Journal of Heat and Mass Transfer, 39, pp. 3273-3286 https://doi.org/10.1016/0017-9310(95)00400-9
  14. Hottel, H. C. and Sarofim, A. F., 1967, Radiative Transfer, McGraw-Hill
  15. Smith, T. F., Shen, Z. F. and Friedman, J. N., 1982, Journal of Heat Transfer, 104, pp. 602-608
  16. Denison M. K. and Webb B. W., 1993, Journal of Heat Transfer, 115, pp. 1004-1012
  17. Denison M. K. and Webb B. W., 1995, Journal of Heat Transfer, 117, pp. 359-365
  18. Goody R., West R., Chen L. and Crisp D., 1989, JQSRT, 42, pp. 539-550 https://doi.org/10.1016/0022-4073(89)90044-7
  19. Riviere P., Scutaru, D., Soufiani A. and Taine J., 1994, Proceeding of the Tenth International Heat Transfer Conference, Taylor & Francis, Bristol, UK, pp. 129-134
  20. Riviere P., Soufiani, A. and Taine J., 1992, JQSRT, 48, pp. 187-203 https://doi.org/10.1016/0022-4073(92)90088-L
  21. Riviere, P., Soufiani, A. and Taine, J., JQSRT, 48, pp. 335-346 https://doi.org/10.1016/0022-4073(95)90064-0
  22. Taine, J., and Soufiani, A., 1999, Advances in Heat Transfer 33, Academic Press, New York, pp. 295-414
  23. Kim, O. J. and Song, T. H., 1996, Numerical Heat Transfer, Part B: Fundamentals, 30, pp. 453-468 https://doi.org/10.1080/10407799608915093
  24. Kim, O. J. and Song, T. H., 1997, Radiation '97 International Symposium on Radiative Transfer, Kusadasi, Turkey, pp. 445-459
  25. Kim, O. J. and Song, T. H., 2000, JQSRT, 64, pp. 379-394 https://doi.org/10.1016/S0022-4073(99)00125-9
  26. Arora, J. S., 1989, Introduction to Optimum Design, McGraw-Hill
  27. Crosbie, A. L. and Viskanta, R., 1970, JQSRT, 10, pp. 487-509 https://doi.org/10.1016/0022-4073(70)90111-1
  28. Modest, M. F., 1993, Radiative Heat Transfer, International ed., McGraw-Hill, Singapore, pp. 799-802
  29. Abrams, M., 1971, Ph. D. Thesis, Purdue University, West Lafayette, IN
  30. Nishioka M., Nakagawa S., Ishikawa Y. and Takeno T., 1993, Progress in Astronautics and Aeronautics, 151, pp. 141-162
  31. Kee R. J., Miller J. A., Evans G. H. and Dixon-Lewis G., 1988, Twenty Second Symposium(International) on Combustion, The Combustion Institute, Pittsburgh, PA., pp. 1479-1494
  32. Lutz, A. E., Kee, R. J., Grcar, J. F. and Rupley, F. M., 1996, Sandia Report SAND 96-8243
  33. Kim, T. K., Menart, J. A. and Lee, H. S., 1991, Journal of Heat Transfer, 113, pp. 946-952
  34. Bowman C. T., Hanson R. K., Davidson D. F., Gardiner Jr. W. C., Lissianski V., Smith G. P., Golden D. M., Frenkach M. and Goldenberg M., http://www.me.berkeley.edu/gri_mech/
  35. Kee R. J., Rupley F. M. and Miller J. A., 1989, Sandia Report SNAD89-8009