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THE MAXIMAL OPERATOR OF BOCHNER-RIESZ
MEANS FOR RADJIAL FUNCTIONS

SuncceeEuM HONG

ABSTRACT. Author proves weak type estimates of the maximal func-
tion associated with the Bochner-Riesz means while it is claimed p =
2n/(n+1+28) and 0 < 6 < {n — 1)/2 that the maximal function is
bounded on L?

rad’

1. Introduction

We consider the maximal operator associated with the Bochner-Riesz
means defined on R™.
Let S%, € > 0 and 5¢ on L2(R") by

S0 f(z) = (2m) f (1 - 1e€?). Fe)e<e d,
.

and
S f(z) = sup S f ().
ex>(

respectively.

We set §% = S‘ls . C. Herz [5] showed that, when restricted to radial
functions on LP(R"), S? is bounded if and only if 2n/{n+1) <p < 2n/(n—
1). This result can not be extended to arbitrary functions. This was proved
by C. Fefferman [4]. Kenig and Tomas [8] showed that for p = 2n/(n+1), 5°
is not of weak type on radial functions in I, and S. Chanillo {1] showed that
S0 is of restricted weak type on radial functions in I? for p = 2n/(n + 1}.
Chanillo and Muckenhoupt [2] proved that S° is of weak type (p,p) on
radial functions in P where p = 2n/(n+ 1+ 26) and 0 < § < (n —1}/2.
Y. Kanjin [6, 7] showed that S? is bounded on radial functions in I? when
2n/(n+1+26 <p<2nf/n—1-26)and 0 <4 < (n—1)/2.

The purpose of this paper is an extension of a result by Chanillo and
Muckenhoupt (2] on Bochner-Riesz means.
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Let LF_, be the space of all measurable functions f of the form f(z) =

g{|z]), for which
oo i/p
poo= Psmld
il = ([ latpsras)

THEOREM 1. Let f € LY (R™). Then for > 0, 0 < § < (n— 1)/2,
and n > 2

is finite.

{z € R":|S2f(z)| > a}{ < C (Hf”]?%)

with p = 2n/(n + 1+ 26). The constant C does not depend on « or f.

COROLLARY 1. If p=2n/(n+1+25) and 0 < d < (n—1)/2, n > 2,
then

Sif— f

almost everywhere as ¢ — 0 when f € LY ..

A version of Theorem 1 for Jacobi expansions was obtained by Chanillo
and Muckenhoupt [3].

2. The maximal operator

In order to prove the theorem, we will show that S¢ is of weak type
(p,p) acting on radial functions in LP(R") where p is the critical value
2nf(n+1+28) and 0<d < (n—1)/2.

For the radial function f(z), i.e., f(z) = g{|z|), by Hankel transform we
have

F(§) = §(p) = p~ =212 fo g(s)Tnzz (ps)s™/? ds.
Let |z| = 7 and define S¢ f(z) = A%g(r). Moreover,
1 1/
& _ —(n-2)/2 2 (™2 dop.
A4(r) = gt | = ez do
Substituting the expression for §(p) into that for A%g(r), we see that

OO .
Adg(r) = ot =22 [ o()s™? K.(r, s) ds
0

(2m)™
where

(2.1) K.(r,s) =2 /1 w(1 — w?) J a2 (ur/€) Jn_2 (us/e) du.
0 2 2
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'To proceed with the proof of the theorem, we state the following lemmas
which are based on Chanillo and Muckenhaupt [2].

LEMMA 1. Let K.(r,s) be defined as in (2.1). Then for § > —1 and
n > 2, we have

Ce 2 ((z))) T <90 <,
|[Ke(r s)| < { Ce? ({1+§)( e))fl/Q iff%*flSQ,
Ce |t =2 (4 +)7" iz -2>2

LEMMA 2. Let f be supported in |z| < 2e. Then for z| > 4e, p =
2nfin+1+2)and0<e<(n—1)/2,

152 £ (@){ < Ol 42972 g

Proof. From [9], p.171, it follows that

$10) = oy [ PO T snale ~ vl/e) dy

Thus from the fact {J,(su)|] < (1 + sw)~"2 for s,u > 0 and p > 0 (see
[9], p.158), we have

e*fﬂ,

158 f(z)| < € /

dy.
yl<2e fw) (|lz — y|/c)nT1+20)/2 y

Suppose p =1, that is § = (n — 1}/2. If |z| > 4e, then |z — y|/e = |z|/c.
Thus,

n—1

1S * f(x)]

IA

C (jalfe)™ /| e
Y5 i€
Clal™ Iy

IA

Lrud )

Suppose p > 1, that is 0 < § < {(n — 1)/2. With 1/p + 1/q = 1, we have

C e (|a) fe)~vr120)/2 / F @)l dy

[yl<2e
C la| 2 £ 0

|52£ ()]

IA

IA

In the remaining part of our work we will prove Theorem 1.
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Proof. We first consider the case p > 1, that is 0 < § < {n —1)/2. We
now consider the situation when r < 4e. We have

A3 g(r)|
e
< Cr-(”-”/?( [ s ko ds + |
0 8

= Cr D2y 4 ).
By Lemma 1 when r < 4e and s < 8¢, |K(r,s)] < C e 2((r/e)
(S/E))(n—2)/2. Thus,

8e
DY < Ce‘“( f Ig(s)ls”“lds)
0 A

8¢ 1/p Be e ' i/q
< Ce_”( f |g(s)|Psn-1ds) ( ] gl p”lqu)
0 0

Ce |1 fllpr,

o0

l9(s)|s™/*| Ke(r, )] dS)

€

74l

Since r < 4e,

PR U < C () fllgp €I = ORI | f

rad

Now consider 7~ ™~2/2 V. Since r < 4¢ and s > 8¢, we have s > 2r, and
thus by Lemma 1, with 1/p+1/¢ = 1, we have

oo

8¢

1/
cemr e ([Tig(epanias)
8e

oo — 1/q
" (/ S[ﬁ—(5+%)—£7111qu)
8¢

< C(r/e)—(”"2)/2 g(n+1+25)/2”f”Lp .
Since (r/e)=2/2 < (rfe)~nF1420)/2)

,r.—(n—2)/2 V< O,,,—(n+1+26)/‘2 Hf”Lp )

rad

I/

Thus for r < 4e,
(2.2) |ASg(r)] < Cr= A2 5|1 |

rod
We now pass to the case r > 4¢. We make a preliminary reduction. Let
g(s) = gi(s) + g2(s), where g1(s) = g(5) - X(s<2¢)- Then by Lemma 2,

(2.3) [A%g(r)] < CrmHIFRIZ( f l91(5)[Ps™1ds) '
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We now estimate S?g,(r). We then have

Alga(r) < cr-m*z)/z( / / /:m(snsn/z|KE(T,S)|ds)

= Cr~ B2 (x 4y 2)

By Lemma 1, if 2¢ < s < /2, then {K.(r,s)| < Ce 2(r/e)~ @3/ (5/¢)71/2,
Thus with 1/p+ 1/g = 1, we have

r/2
pTB x < gD / / |g(s)]s™2 (/&) =02 (5 /)72 e 2 ds
2e

oo 1/p
(2.4) < C(rjoy HITI/ (1D (f g(s)Psm? ds)
(]

00 e e 1/q
X (f s[ngl_LP_]l]q ds)
2e

< Cr (n+1+26)/2”fH

r'ad
For the integral Z, since s > 2r,
[Ke(r, )| < Ce™(s/) 0D ((r/e) (s/e)) ™2
Thus with 1/p+ 1/g = 1, we have

20 L/p
(2.5) < cr—("—l)/%ﬁ( / Lg(s)|ps”_lds)
0

oo " 1/q
X(/ SB—(6+ L——Q]qu)
2r

C(r/e) 2= ] 1 .

rad

D2z < o pm(n-2/2 f g(8)s™2 (5/€)~ 02 (r/e) ™12 e 2 ds
27

IA

Since r > 4de,
—(n -2)/2 Z< CT—(n+1+2§)/2||fH -

rad

We now consider #~(®2/2) We first break up the range of the inte-
gration for the integral ) as follows:

D2y o 22 /{ 951572 (Ke(r, 5)] ds

T/2<s<2r}N{|r—s|<2e}

sy 95 e, ) s
{r/2<s<2r}rf|r—si>2¢} }
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By Lemma 1, when |r — s| < 2¢, |K.(r,8)| < C e 2((r/e){(s/e))~1/2. Thus,
e o(s)1s™2 1Kol )] ds
{r/2<s<2rin{|r—s|<2¢}
26) < 0 [ o) xicsen ds

Moreover, by Lemma 1, when |r — s| > 2¢, we thus have

(2.7) l9(s)|s™/? | K (r, 5)| ds

(n=2)/2 ]
{r/2<s<2r}In{|r—s|>2¢}
< el ('r/e)_(”_l)/2

/| SN/ e o oy ds
r—8|>2¢e
< cet f| O Xpacacony e = o/ e+ s

r—g|>2e

C Z g—ké (2—’“ ¢! /
|r

k>0 —s|~2ke

IA

19()] X 2oy ds)

Hence from (2.6) and (2.7),

=22y < 06_1/ |9(8)|X{r/2<s<2r}ds
|r—s|<2e
. >0 |1- 3|~2 €

Together with {2.2) — (2.5} and (2.8), we obtain

Alg(r) = sup |Alg(r)
=0

< C’?"_(n+1+26)/2 ”f“Lfad -+ C'M[QXDT]("’)a

where M is the Hardy-Littlewood operator and D, = {s:r/2 <s < 2r}.
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Thus, letting 1, = {r : 2"71 <r < 2¥} and Dy, = {s: 2572 < 5 < 2F+1),
we have :

[ rLdr
{r: |Adg(r)|>a}

< / " ldr + / L dr
{r: r—(n+1428)/2 £l .2 . >af2C}) {r: Mgxp,](r)>a/2C}
< Ca?||f|B, + ™ dr
Fraa k_z_oo {rel: Mlgxp, l(r)>a/2C}
<

CaPllflf, + Y 250D dr.
Fred k_z_:oo frel: Mlaxn,)(r)>a/20)

By the weak type (p,p) estimates for the Hardy-Littlewood operator, we
can majorize the expression above by

car (i, + 3 20 [ jatpas)

k=-o00

< Gl

We now prove the case p = 1, that is § = (n—1)/2. The only expressions
we treat differently for this case are the integrals V, X, and Z. The other
parts are similar to the case p > 1. Thus if p = 1, since 7 < 4e and s > 8¢,

P2y < gp--2)2 f (@™ (s/6) ") 2 s
8

€

< Or-(=2/2 (=22 /w lg(s)[s~ ds
8¢

< o/ [ lgtolls/er s s

8¢
o
< o [Tlglls s = 0l
86 ra

Now, since r > 4e and s < r/2,

r/2
T—(n—?}/2X < C,r—(n—Q)/2// |g(s)|sn/2 (7./6)—(6+3/2) (S/e)—1/2 6_2d8
2e

r/2

< O/ f l9(s)[(5/6)™ /2 L s

€

< Clr/e™ fg

€

o0

lg()l(s/e)* e ds < Cr || fll -
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Likewise, since r > 4e and s > 2r,

o0
T—{n—?)/2 z < CT—(nf2)/2[ |g($)|3n/2 (S/E)—(6+3/2) (’I‘/E)_l/2 =2 ds
2r

< C(rjey P2 j lg(s)|(s/€)~ ¢ ds

2r

C (rjo) w2 ( e ds) (rfe) ™ e
< CrrIfil

We may proceed as in the case p > 1. This proves Theorem 1. Ol
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