THE MAXIMAL OPERATOR OF BOCHNER-RIESZ MEANS FOR RADIAL FUNCTIONS #### SUNGGEUM HONG ABSTRACT. Author proves weak type estimates of the maximal function associated with the Bochner-Riesz means while it is claimed $p = 2n/(n+1+2\delta)$ and $0 < \delta \le (n-1)/2$ that the maximal function is bounded on L^p_{rad} . ### 1. Introduction We consider the maximal operator associated with the Bochner-Riesz means defined on \mathbb{R}^n . Let $S_{\epsilon}^{\delta}, \ \epsilon > 0$ and S_{\star}^{δ} on $L^{2}(\mathbb{R}^{n})$ by $$S_{\epsilon}^{\delta} f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} (1 - |\epsilon \xi|^2)_+^{\delta} \widehat{f}(\xi) e^{i \langle x, \xi \rangle} d\xi,$$ and $$S_*^{\delta} f(x) = \sup_{\epsilon > 0} |S_{\epsilon}^{\delta} f(x)|.$$ respectively. We set $S^{\delta} = S_1^{\delta}$. C. Herz [5] showed that, when restricted to radial functions on $L^p(\mathbb{R}^n)$, S^0 is bounded if and only if 2n/(n+1) . This result can not be extended to arbitrary functions. This was proved by C. Fefferman [4]. Kenig and Tomas [8] showed that for <math>p = 2n/(n+1), S^0 is not of weak type on radial functions in L^p , and S. Chanillo [1] showed that S^0 is of restricted weak type on radial functions in L^p for p = 2n/(n+1). Chanillo and Muckenhoupt [2] proved that S^{δ} is of weak type (p,p) on radial functions in L^p where $p = 2n/(n+1+2\delta)$ and $0 < \delta \le (n-1)/2$. Y. Kanjin [6, 7] showed that S^{δ}_* is bounded on radial functions in L^p when $2n/(n+1+2\delta) and <math>0 \le \delta < (n-1)/2$. The purpose of this paper is an extension of a result by Chanillo and Muckenhoupt [2] on Bochner-Riesz means. Received December 30, 1999. ²⁰⁰⁰ Mathematics Subject Classification: Primary: 42B15, 42B25. Key words and phrases: maximal operator, radial functions in L^p . The research was supported by GARC-KOSEF. Let L_{rad}^p be the space of all measurable functions f of the form f(x) = g(|x|), for which $$||f||_{L^p_{rad}} = \left(\int_0^\infty |g(s)|^p s^{n-1} ds\right)^{1/p}$$ is finite. THEOREM 1. Let $f \in L^p_{rad}(\mathbb{R}^n)$. Then for $\alpha > 0, \ 0 < \delta \leq (n-1)/2$, and $n \geq 2$ $$|\{x \in \mathbb{R}^n : |S_*^{\delta} f(x)| > \alpha\}| \le C \left(\frac{||f||_{L^p_{rad}(\mathbb{R}^n)}}{\alpha}\right)^p$$ with $p = 2n/(n+1+2\delta)$. The constant C does not depend on α or f. Corollary 1. If $p=2n/(n+1+2\delta)$ and $0<\delta\leq (n-1)/2,\ n\geq 2,$ then $$S^{\delta}_{\epsilon}f o f$$ almost everywhere as $\epsilon \to 0$ when $f \in L^p_{rad}$ A version of Theorem 1 for Jacobi expansions was obtained by Chanillo and Muckenhoupt [3]. ## 2. The maximal operator In order to prove the theorem, we will show that S_*^{δ} is of weak type (p,p) acting on radial functions in $L^p(\mathbb{R}^n)$ where p is the critical value $2n/(n+1+2\delta)$ and $0<\delta\leq (n-1)/2$. For the radial function f(x), i.e., f(x) = g(|x|), by Hankel transform we have $$\widehat{f}(\xi) = \widetilde{g}(\rho) = \rho^{-(n-2)/2} \int_0^\infty g(s) J_{\frac{n-2}{2}}(\rho s) s^{n/2} ds.$$ Let |x| = r and define $S_{\epsilon}^{\delta} f(x) = A_{\epsilon}^{\delta} g(r)$. Moreover, $$A_{\epsilon}^{\delta}g(r) = \frac{1}{(2\pi)^n} r^{-(n-2)/2} \int_0^{1/\epsilon} (1 - \epsilon^2 \rho^2)^{\delta} J_{\frac{n-2}{2}}(\rho r) \widetilde{g}(\rho) \rho^{n/2} d\rho.$$ Substituting the expression for $\widetilde{g}(\rho)$ into that for $A_{\epsilon}^{\delta}g(r)$, we see that $$A_{\epsilon}^{\delta}g(r) = \frac{1}{(2\pi)^n} r^{-(n-2)/2} \int_0^{\infty} g(s) s^{n/2} \overset{\cdot}{K_{\epsilon}}(r,s) \, ds$$ where (2.1) $$K_{\epsilon}(r,s) = \epsilon^{-2} \int_{0}^{1} u(1-u^{2})^{\delta} J_{\frac{n-2}{2}}(ur/\epsilon) J_{\frac{n-2}{2}}(us/\epsilon) du.$$ To proceed with the proof of the theorem, we state the following lemmas which are based on Chanillo and Muckenhaupt [2]. LEMMA 1. Let $K_{\epsilon}(r,s)$ be defined as in (2.1). Then for $\delta > -1$ and $n \geq 2$, we have $$|K_{\epsilon}(r,s)| \leq \begin{cases} C \, \epsilon^{-2} \, \left(\left(\frac{r}{\epsilon} \right) \left(\frac{s}{\epsilon} \right) \right)^{(n-2)/2} & \text{if } \frac{r}{\epsilon} \leq 2, \frac{s}{\epsilon} \leq 2, \\ C \, \epsilon^{-2} \, \left(\left(1 + \frac{r}{\epsilon} \right) \left(1 + \frac{s}{\epsilon} \right) \right)^{-1/2} & \text{if } \left| \frac{r}{\epsilon} - \frac{s}{\epsilon} \right| \leq 2, \\ C \, \epsilon^{-2} \, \left| \frac{r}{\epsilon} - \frac{s}{\epsilon} \right|^{-(\delta+1)} \, \left(\left(1 + \frac{r}{\epsilon} \right) \left(1 + \frac{s}{\epsilon} \right) \right)^{-1/2} & \text{if } \left| \frac{r}{\epsilon} - \frac{s}{\epsilon} \right| > 2. \end{cases}$$ LEMMA 2. Let f be supported in $|x| \le 2\epsilon$. Then for $|x| > 4\epsilon$, $p = 2n/(n+1+2\epsilon)$ and $0 < \epsilon \le (n-1)/2$, $$|S_{\epsilon}^{\delta}f(x)| \le C |x|^{-(n+1+2\delta)/2} ||f||_{L_{rad}^{p}}.$$ *Proof.* From [9], p.171, it follows that $$S_{\epsilon}^{\delta} f(x) = \frac{C}{(2\pi)^n} \int_{\mathbb{R}^n} f(y) \frac{\epsilon^{-n}}{(|x-y|/\epsilon)^{\delta+n/2}} J_{\delta+n/2}(|x-y|/\epsilon) \, dy.$$ Thus from the fact $|J_{\mu}(su)| \leq (1 + su)^{-1/2}$ for s, u > 0 and $\mu \geq 0$ (see [9], p.158), we have $$|S_{\epsilon}^{\delta} f(x)| \le C \int_{|y| < 2\epsilon} f(y) \frac{\epsilon^{-n}}{(|x - y|/\epsilon)^{(n+1+2\delta)/2}} \, dy.$$ Suppose p=1, that is $\delta=(n-1)/2$. If $|x|\geq 4\epsilon$, then $|x-y|/\epsilon\approx |x|/\epsilon$. Thus, $$|S_{\epsilon}^{\frac{n-1}{2}} f(x)| \leq C (|x|/\epsilon)^{-n} \int_{|y| \leq 2\epsilon} |f(y)| \, dy \, \epsilon^{-n}$$ $$\leq C |x|^{-n} ||f||_{L^{1}_{and}}.$$ Suppose p > 1, that is $0 < \delta < (n-1)/2$. With 1/p + 1/q = 1, we have $$|S_{\epsilon}^{\delta} f(x)| \leq C \epsilon^{-n} (|x|/\epsilon)^{-(n+1+2\delta)/2} \int_{|y| \leq 2\epsilon} |f(y)| \, dy$$ $$\leq C |x|^{-(n+1+2\delta)/2} ||f||_{L^{p}_{rad}}.$$ In the remaining part of our work we will prove Theorem 1. *Proof.* We first consider the case p > 1, that is $0 < \delta < (n-1)/2$. We now consider the situation when $r \le 4\epsilon$. We have $$|A_{\epsilon}^{\delta}g(r)| \\ \leq Cr^{-(n-2)/2} \left(\int_{0}^{8\epsilon} |g(s)|s^{n/2}|K_{\epsilon}(r,s)|ds + \int_{8\epsilon}^{\infty} |g(s)|s^{n/2}|K_{\epsilon}(r,s)|ds \right) \\ := Cr^{-(n-2)/2} (\mathcal{U} + \mathcal{V}).$$ By Lemma 1 when $r \le 4\epsilon$ and $s < 8\epsilon$, $|K_\epsilon(r,s)| \le C \epsilon^{-2} \left((r/\epsilon)(s/\epsilon)\right)^{(n-2)/2}$. Thus, $$r^{-(n-2)/2} \mathcal{U} \leq C \epsilon^{-n} \left(\int_0^{8\epsilon} |g(s)| s^{n-1} ds \right)$$ $$\leq C \epsilon^{-n} \left(\int_0^{8\epsilon} |g(s)|^p s^{n-1} ds \right)^{1/p} \left(\int_0^{8\epsilon} s^{[(n-1) - \frac{(n-1)}{p}]q} ds \right)^{1/q}$$ $$\leq C \epsilon^{-n/p} ||f||_{L^p_{end}}.$$ Since $r \leq 4\epsilon$, $$r^{-(n-2)/2} \ \mathcal{U} \le C (r/\epsilon)^{-n/p} ||f||_{L^p_{rad}} \epsilon^{-n/p} = C r^{-(n+1+2\delta)/2} ||f||_{L^p_{rad}}.$$ Now consider $r^{-(n-2)/2}$ \mathcal{V} . Since $r \leq 4\epsilon$ and $s > 8\epsilon$, we have s > 2r, and thus by Lemma 1, with 1/p + 1/q = 1, we have $$r^{-(n-2)/2} \mathcal{V} \leq C r^{-(n-2)/2} \int_{8\epsilon}^{\infty} |g(s)| s^{n/2} (s/\epsilon)^{-(\delta+\frac{3}{2})} \epsilon^{-2} ds$$ $$\leq C \epsilon^{(-\frac{1}{2}+\delta)} r^{-(n-2)/2} \left(\int_{8\epsilon}^{\infty} |g(s)|^p s^{n-1} ds \right)^{1/p}$$ $$\times \left(\int_{8\epsilon}^{\infty} s^{[\frac{n}{2} - (\delta+\frac{3}{2}) - \frac{(n-1)}{p}]q} ds \right)^{1/q}$$ $$\leq C (r/\epsilon)^{-(n-2)/2} \epsilon^{-(n+1+2\delta)/2} ||f||_{L^p_{red}}.$$ Since $$(r/\epsilon)^{-(n-2)/2} \le (r/\epsilon)^{-(n+1+2\delta)/2}$$, $r^{-(n-2)/2} \mathcal{V} \le C r^{-(n+1+2\delta)/2} ||f||_{L^p_{rod}}$. Thus for $r \leq 4\epsilon$, $$(2.2) |A_{\epsilon}^{\delta}g(r)| \le C r^{-(n+1+2\delta)/2} ||f||_{L_{p-1}^{p}}.$$ We now pass to the case $r > 4\epsilon$. We make a preliminary reduction. Let $g(s) = g_1(s) + g_2(s)$, where $g_1(s) = g(s) \cdot \chi_{(s < 2\epsilon)}$. Then by Lemma 2, $$(2.3) |A_{\epsilon}^{\delta}g(r)| \leq C r^{-(n+1+2\delta)/2} \left(\int |g_1(s)|^p s^{n-1} ds \right)^{1/p}.$$ We now estimate $S_{\epsilon}^{\delta}g_2(r)$. We then have $$|A_{\epsilon}^{\delta}g_{2}(r)| \leq C r^{-(n-2)/2} \left(\int_{2\epsilon}^{r/2} + \int_{r/2}^{2r} + \int_{2r}^{\infty} |g_{2}(s)| s^{n/2} |K_{\epsilon}(r,s)| ds \right)$$ $$:= C r^{-(n-2)/2} (\mathcal{X} + \mathcal{Y} + \mathcal{Z}).$$ By Lemma 1, if $2\epsilon < s < r/2$, then $|K_{\epsilon}(r,s)| \le C \epsilon^{-2} (r/\epsilon)^{-(\delta+3/2)} (s/\epsilon)^{-1/2}$. Thus with 1/p + 1/q = 1, we have $$r^{-(n-2)/2} \mathcal{X} \leq C r^{-(n-2)/2} \int_{2\epsilon}^{r/2} |g(s)| s^{n/2} (r/\epsilon)^{-(\delta+3/2)} (s/\epsilon)^{-1/2} \epsilon^{-2} ds$$ $$(2.4) \qquad \leq C (r/\epsilon)^{-(n+1+2\delta)/2} \epsilon^{-(n+1)/2} \left(\int_{0}^{\infty} |g(s)|^{p} s^{n-1} ds \right)^{1/p}$$ $$\times \left(\int_{2\epsilon}^{\infty} s^{\left[\frac{(n-1)}{2} - \frac{(n-1)}{p}\right]q} ds \right)^{1/q}$$ $$\leq C r^{-(n+1+2\delta)/2} ||f||_{L_{p,r}^{p}}.$$ For the integral \mathcal{Z} , since s > 2r, $$|K_{\epsilon}(r,s)| \le C\epsilon^{-2}(s/\epsilon)^{-(\delta+1)} \left((r/\epsilon)(s/\epsilon) \right)^{-1/2}$$ Thus with 1/p + 1/q = 1, we have $$r^{-(n-2)/2} \mathcal{Z} \leq C r^{-(n-2)/2} \int_{2r}^{\infty} |g(s)| s^{n/2} (s/\epsilon)^{-(\delta+\frac{3}{2})} (r/\epsilon)^{-1/2} \epsilon^{-2} ds$$ $$(2.5) \qquad \leq C r^{-(n-1)/2} \epsilon^{\delta} \left(\int_{0}^{\infty} |g(s)|^{p} s^{n-1} ds \right)^{1/p}$$ $$\times \left(\int_{2r}^{\infty} s^{\left[\frac{n}{2} - (\delta + \frac{3}{2}) - \frac{(n-1)}{p}\right]q} ds \right)^{1/q}$$ $$\leq C (r/\epsilon)^{-\delta} r^{-(n+1+2\delta)/2} ||f||_{L^{p}_{rad}}.$$ Since $r > 4\epsilon$, $$r^{-(n-2)/2} \ \mathcal{Z} \le C \, r^{-(n+1+2\delta)/2} ||f||_{L^p_{rod}}.$$ We now consider $r^{-(n-2)/2}\mathcal{Y}$. We first break up the range of the integration for the integral \mathcal{Y} as follows: $$r^{-(n-2)/2} \mathcal{Y} \leq r^{-(n-2)/2} \int_{\{r/2 < s < 2r\} \cap \{|r-s| \le 2\epsilon\}} |g(s)| s^{n/2} |K_{\epsilon}(r,s)| ds$$ $$+ r^{-(n-2)/2} \int_{\{r/2 < s < 2r\} \cap \{|r-s| > 2\epsilon\}} |g(s)| s^{n/2} |K_{\epsilon}(r,s)| ds.$$ By Lemma 1, when $|r-s| \le 2\epsilon$, $|K_{\epsilon}(r,s)| \le C \epsilon^{-2} ((r/\epsilon)(s/\epsilon))^{-1/2}$. Thus, $$(2.6) r^{-(n-2)/2} \int_{\{r/2 < s < 2r\} \cap \{|r-s| \le 2\epsilon\}} |g(s)| s^{n/2} |K_{\epsilon}(r,s)| ds$$ $$\leq C \epsilon^{-1} \int_{|r-s| \le 2\epsilon} |g(s)| \chi_{\{r/2 < s < 2r\}} ds.$$ Moreover, by Lemma 1, when $|r - s| > 2\epsilon$, we thus have $$(2.7) r^{-(n-2)/2} \int_{\{r/2 < s < 2r\} \cap \{|r-s| > 2\epsilon\}} |g(s)| s^{n/2} |K_{\epsilon}(r,s)| ds$$ $$\leq C \epsilon^{-1} (r/\epsilon)^{-(n-1)/2}$$ $$\int_{|r-s| > 2\epsilon} |g(s)| (s/\epsilon)^{(n-1)/2} |r/\epsilon - s/\epsilon|^{-(\delta+1)} \chi_{\{r/2 < s < 2r\}} ds$$ $$\leq C \epsilon^{-1} \int_{|r-s| > 2\epsilon} |g(s)| \chi_{\{r/2 < s < 2r\}} |r/\epsilon - s/\epsilon|^{-(\delta+1)} ds$$ $$\leq C \sum_{k>0} 2^{-k\delta} \left(2^{-k} \epsilon^{-1} \int_{|r-s| \sim 2^k \epsilon} |g(s)| \chi_{\{r/2 < s < 2r\}} ds \right).$$ Hence from (2.6) and (2.7), $$r^{-(n-2)/2} \mathcal{Y} \leq C \epsilon^{-1} \int_{|r-s| \leq 2\epsilon} |g(s)| \chi_{\{r/2 < s < 2r\}} ds$$ $$(2.8) + C \sum_{k>0} 2^{-k\delta} \left(2^{-k} \epsilon^{-1} \int_{|r-s| \sim 2^k \epsilon} |g(s)| \chi_{\{r/2 < s < 2r\}} ds \right).$$ Together with (2.2) - (2.5) and (2.8), we obtain $$A_{*}^{\delta}g(r) = \sup_{\epsilon > 0} |A_{\epsilon}^{\delta}g(r)|$$ $$\leq C r^{-(n+1+2\delta)/2} ||f||_{L_{r-\epsilon}^{p}} + C \mathcal{M}[g\chi_{D_{r}}](r),$$ where \mathcal{M} is the Hardy-Littlewood operator and $D_r = \{s : r/2 < s < 2r\}$. Thus, letting $I_k = \{r : 2^{k-1} \le r < 2^k\}$ and $D_k = \{s : 2^{k-2} \le s < 2^{k+1}\}$, we have $$\int_{\{r: |A_{\star}^{\delta}g(r)| > \alpha\}} r^{n-1} dr \leq \int_{\{r: |r^{-(n+1+2\delta)/2}||f||_{L_{rad}^{p}} > \alpha/2C\}} r^{n-1} dr + \int_{\{r: |\mathcal{M}[g\chi_{D_{r}}](r) > \alpha/2C\}} r^{n-1} dr \leq C \alpha^{-p} ||f||_{L_{rad}^{p}}^{p} + \sum_{k=-\infty}^{\infty} \int_{\{r \in I_{k}: |\mathcal{M}[g\chi_{D_{k}}](r) > \alpha/2C\}} r^{n-1} dr \leq C \alpha^{-p} ||f||_{L_{rad}^{p}}^{p} + \sum_{k=-\infty}^{\infty} 2^{k(n-1)} \int_{\{r \in I_{k}: |\mathcal{M}[g\chi_{D_{k}}](r) > \alpha/2C\}} dr.$$ By the weak type (p,p) estimates for the Hardy-Littlewood operator, we can majorize the expression above by $$C \alpha^{-p} \left(||f||_{L^{p}_{rad}}^{p} + \sum_{k=-\infty}^{\infty} 2^{k(n-1)} \int_{D_{k}} |g(s)|^{p} ds \right)$$ $$\leq C \alpha^{-p} ||f||_{L^{p}_{rad}}^{p}.$$ We now prove the case p=1, that is $\delta=(n-1)/2$. The only expressions we treat differently for this case are the integrals \mathcal{V} , \mathcal{X} , and \mathcal{Z} . The other parts are similar to the case p>1. Thus if p=1, since $r\leq 4\epsilon$ and $s>8\epsilon$, $$r^{-(n-2)/2} \mathcal{V} \leq C r^{-(n-2)/2} \int_{8\epsilon}^{\infty} |g(s)| s^{n/2} (s/\epsilon)^{-(\delta+3/2)} \epsilon^{-2} ds$$ $$\leq C r^{-(n-2)/2} \epsilon^{(n-2)/2} \int_{8\epsilon}^{\infty} |g(s)| s^{-1} ds$$ $$\leq C (r/\epsilon)^{-n} \int_{8\epsilon}^{\infty} |g(s)| (s/\epsilon)^n s^{-1} ds$$ $$\leq C r^{-n} \int_{8\epsilon}^{\infty} |g(s)| s^{n-1} ds = C r^{-n} ||f||_{L^1_{rad}}.$$ Now, since $r > 4\epsilon$ and s < r/2, $$r^{-(n-2)/2} \mathcal{X} \leq C r^{-(n-2)/2} \int_{2\epsilon}^{r/2} |g(s)| s^{n/2} (r/\epsilon)^{-(\delta+3/2)} (s/\epsilon)^{-1/2} \epsilon^{-2} ds$$ $$\leq C (r/\epsilon)^{-n} \int_{2\epsilon}^{r/2} |g(s)| (s/\epsilon)^{(n-1)/2} \epsilon^{-1} ds$$ $$\leq C (r/\epsilon)^{-n} \int_{2\epsilon}^{\infty} |g(s)| (s/\epsilon)^{(n-1)} \epsilon^{-1} ds \leq C r^{-n} ||f||_{L^{1}_{rad}}.$$ Likewise, since $r > 4\epsilon$ and s > 2r, $$r^{-(n-2)/2} \mathcal{Z} \leq C r^{-(n-2)/2} \int_{2r}^{\infty} |g(s)| s^{n/2} (s/\epsilon)^{-(\delta+3/2)} (r/\epsilon)^{-1/2} \epsilon^{-2} ds$$ $$\leq C (r/\epsilon)^{-(n-1)/2} \int_{2r}^{\infty} |g(s)| (s/\epsilon)^{-1} \epsilon^{-1} ds$$ $$\leq C (r/\epsilon)^{-(n-1)/2} \left(\int_{2r}^{\infty} |g(s)| (s/\epsilon)^{n-1} ds \right) (r/\epsilon)^{-n} \epsilon^{-1}$$ $$\leq C r^{-n} ||f||_{L^{1}_{rad}}.$$ We may proceed as in the case p > 1. This proves Theorem 1. #### References - [1] S. Chanillo, The multiplier for the ball and radial functions, J. Funct. Anal. 55 (1984), 18-24. - [2] Chanillo and Muckenhoupt, Weak type estimates for Bochner-Riesz spherical summation multipliers, Trans. Amer. Math. Soc. 294 (1986), 693-703. - [3] ______, Weak type estimates for Cesaro sums of Jacobi polynomial series, Mem. Amer. Math. Soc. 102 (1993), no. 487. - [4] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330-336. - [5] C. Herz, On the mean inversion Fourier Hankel transforms, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 996-999. - [6] Y. Kanjin, Convergence almost everywhere of Bochner-Riesz means for radial functions, Ann. Sci Kanazawa Univ. 25 (1988), 11-25. - [7] ______, Convergence and divergence almost everywhere of spherical means for radial functions, Proc. Amer. Math. Soc. 103 (1988), 1063-1069. - [8] C. Kenig and P. Tomas, The weak behavior of spherical means, Proc. Amer. Math. Soc. 78 (1980), 48-50. - [9] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. GLOBAL ANALYSIS RESEARCH CENTER, DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA CURRENT ADDRESS: SCHOOL OF MATHEMATICAL SCIENCES, SEOUL NATIONAL UNIVERSITY, SEOUL 151-742, KOREA E-mail: shong@math.snu.ac.kr