WEYL SPECTRA OF THE χ -CLASS OPERATORS

Young Min Han and An-Hyun Kim

ABSTRACT. In this paper we introduce a notion of the χ -class operators, which is a class including hyponormal operators and consider their spectral properties related to Weyl spectra.

Introduction

Throughout this paper let \mathcal{H} denote an infinite dimensional separable Hilbert space. Let $\mathcal{L}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H} and $\mathcal{K}(\mathcal{H})$ the closed ideal of compact operators on \mathcal{H} . If $T \in \mathcal{L}(\mathcal{H})$ write N(T) and R(T) for the null space and range of T; $\rho(T)$ for the resolvent set of T; $\sigma(T)$ for the spectrum of T; $\pi_0(T)$ for the set of eigenvalues of T; $\pi_{0f}(T)$ for the eigenvalues of finite multiplicity; $\pi_{0i}(T)$ for the eigenvalues of infinite multiplicity. Recall ([12],[13]) that $T \in \mathcal{L}(\mathcal{H})$ is called regular if there is an operator $T' \in \mathcal{L}(\mathcal{H})$ for which T = TT'T. It is familiar that if $T \in \mathcal{L}(\mathcal{H})$ then T is regular if and only if T has closed range. An operator $T \in \mathcal{L}(\mathcal{H})$ is called upper semi-Fredholm if it has closed range with finite-dimensional null space and lower semi-Fredholm if it has closed range with its range of finite co-dimension. If T is either upper or lower semi-Fredholm, we call it semi-Fredholm and if T is both upper and lower semi-Fredholm, we call it Fredholm. The index of a semi-Fredholm operator $T \in \mathcal{L}(\mathcal{H})$ is given by

$$\operatorname{ind}(T) = \dim N(T) - \dim R(T)^{\perp} \ (= \dim N(T) - \dim N(T^*)).$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is called *Weyl* if it is Fredholm of index zero. An operator $T \in \mathcal{L}(\mathcal{H})$ is called *Browder* if it is Fredholm "of finite ascent and descent": equivalently ([13, Theorem 7.9.3]) if T is Fredholm and $T - \lambda I$ is

Received April 10, 2000.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A10, 47A53; Secondary 47B06, 47B07.

Key words and phrases: χ -class operators, convexoid operators, commutators.

This research is financially supported by Changwon National University in 2000.

invertible for sufficiently small $\lambda \neq 0$ in \mathbb{C} . The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\omega(T)$ and the Browder spectrum $\sigma_b(T)$ of $T \in \mathcal{L}(\mathcal{H})$ are defined by

$$\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm} \};$$

$$\omega(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl} \};$$

$$\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder} \} :$$

then ([13])

$$(0.1) \quad \sigma_e(T) \subseteq \omega(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \operatorname{acc} \sigma(T) \quad \text{and} \quad \omega(T) \subseteq \eta \, \sigma_e(T),$$

where we write acc K and ηK for the accumulation points and the polynomially-convex hull, respectively, of $K \subseteq \mathbb{C}$. If we write iso $K = K \setminus \operatorname{acc} K$, and ∂K for the topological boundary of K, and

(0.2)
$$\pi_{00}(T) := \{ \lambda \in \text{iso } \sigma(T) : 0 < \dim (T - \lambda I)^{-1}(0) < \infty \}$$

for the isolated eigenvalues of finite multiplicity, and ([13])

$$(0.3) p_{00}(T) := \sigma(T) \setminus \sigma_b(T)$$

for the *Riesz points* of $\sigma(T)$, then by the punctured neighborhood theorem, i.e., $\partial \sigma(T) \setminus \sigma_e(T) \subseteq \text{iso } \sigma(T)$ ([13], [14]),

(0.4)
$$\operatorname{iso} \sigma(T) \setminus \sigma_e(T) = \operatorname{iso} \sigma(T) \setminus \omega(T) = p_{00}(T) \subseteq \pi_{00}(T).$$

We say that Weyl's theorem holds for $T \in \mathcal{L}(\mathcal{H})$ if there is equality

(0.5)
$$\sigma(T) \setminus \omega(T) = \pi_{00}(T).$$

If $T \in \mathcal{L}(\mathcal{H})$, write r(T) for the spectral radius of T. It is familiar that $r(T) \leq ||T||$. An operator T is called normaloid if r(T) = ||T|| and isoloid if iso $\sigma(T) \subseteq \pi_0(T)$. An operator T is said to satisfy condition (G_1) if $(T - \lambda I)^{-1}$ is normaloid for all $\lambda \notin \sigma(T)$. If $T \in \mathcal{L}(\mathcal{H})$, write W(T) for the numerical range of T. It is also familiar that W(T) is convex and conv $\sigma(T) \subseteq \operatorname{cl} W(T)$. An operator T is called convexoid if $\operatorname{conv} \sigma(T) = \operatorname{cl} W(T)$. Let P be a property of operators. We say that an operator T is restriction-P if the restriction of T to every invariant subspace has property P and that T is reduction-P if every direct summand of T has property P. Evidently, restriction- $P \Longrightarrow \operatorname{reduction-} P$. It is known ([3]) that if $T \in \mathcal{L}(\mathcal{H})$ then we have:

- (0.6) $(G_1) \Longrightarrow$ convexoid and isoloid;
- (0.7) seminormal \Longrightarrow reduction- $(G_1) \Longrightarrow$ reduction-isoloid;
- (0.8) hyponormal \Longrightarrow restriction-convexoid \Longrightarrow reduction-isoloid.

Note that seminormal operators are reduction-convexoid, but they may not be restriction-convexoid: for example consider the backward shift U^* on ℓ_2 , where U is the unilateral shift ([4]). Thus the replacement of "reduction" by "restriction-" is very stringent. Now we shall say that an operator $T \in \mathcal{L}(\mathcal{H})$ is in the χ -class if T is restriction-convexoid and is reduced by each of its eigenspaces corresponding to isolated eigenvalues. Evidently, T hyponormal $\Rightarrow T \in \chi$.

1. The χ -class operators

An operator $T \in \mathcal{L}(\mathcal{H})$ is called *reguloid* ([15]) if $T - \lambda I$ is regular for each $\lambda \in \text{iso } \sigma(T)$. We begin with:

LEMMA 1.1. If $T \in \mathcal{L}(\mathcal{H})$ then

$$(1.1.1) (G_1) \implies reguloid \implies isoloid$$

and

$$(1.1.2) restriction-convexoid \implies restriction-reguloid.$$

Proof. (1.1.1) is [15, Theorem 14]. For (1.1.2), suppose T is restriction-convexoid and $\mathfrak M$ is an invariant subspace of T. Write $S:=T|\mathfrak M$. Then S is also restriction-convexoid. Suppose $\lambda\in\operatorname{iso}\sigma(S)$. Observe that if T is convexoid then so is aT+bI for any $a,b\in\mathbb C$. Thus we may write S in place of $S-\lambda I$ and assume $\lambda=0$. Using the spectral projection at $0\in\mathbb C$ we can write $S=\left(\begin{smallmatrix} S_1&0\\0&S_2\end{smallmatrix}\right)$, where $\sigma(S_1)=\{0\}$ and $\sigma(S_2)=\sigma(S)\setminus\{0\}$. Since by assumption, S_1 is convexoid it follows that $W(S_1)=\operatorname{conv}\sigma(S_1)=\{0\}$, and hence $S_1=0$. Thus we have

$$S = \begin{pmatrix} 0 & 0 \\ 0 & S_2 \end{pmatrix} = SS'S \quad \text{with } S' = \begin{pmatrix} 0 & 0 \\ 0 & S_2^{-1} \end{pmatrix},$$

which says that S is regular, and therefore T is restriction-reguloid. \Box

It was shown in ([24]) that Weyl's theorem holds for restriction-convexoid operators. We can prove more:

THEOREM 1.2. Let $T \in \mathcal{L}(\mathcal{H})$. If either T or T^* is restriction-convexoid then Weyl's theorem holds for T.

Proof. If T is restriction-convexoid then it follows from [24, Theorem 2.1] that Weyl's theorem holds for T. Now suppose T^* is restriction-convexoid. Let $\lambda \in \pi_{00}(T)$. Then $\overline{\lambda} \in \text{iso } \sigma(T^*)$. Since T^* is restriction-convexoid, it follows from Lemma 1.1 that $T-\lambda$ has closed range. Therefore it follows from the punctured neighborhood theorem that $\lambda \in \sigma(T)\omega(T)$. Conversely, suppose $\lambda \in \sigma(T)\backslash\omega(T)$. Then $\overline{\lambda} \in \sigma(T^*)\backslash\omega(T^*)$. Since T^* is restriction-convexoid, Browder's theorem holds for T^* . Therefore $\overline{\lambda} \in p_{00}(T^*)$. It follows from the fact $p_{00}(T^*) = p_{00}(T)^*$ that $\lambda \in \pi_{00}(T)$. This completes the proof.

In 1970, S. Berberian ([5]) raised the following question: if T is restriction-convexoid and $\sigma(T)$ is countable, is T normal? We now give a partial answer.

THEOREM 1.3. Let $T \in \chi$. If $\sigma(T)$ is countable then T is diagonal and normal.

Proof. Suppose $T \in \chi$ and $\sigma(T)$ is countable. Let δ be the set of all normal eigenvalues of T, i.e.,

$$\delta = \{ \lambda \in \pi_0(T) : \ N(T - \lambda I) = N(T^* - \overline{\lambda}I) \}.$$

We first claim that $\delta \neq \emptyset$. Since $\sigma(T)$ is countable, there exists a point $\lambda \in \text{iso } \sigma(T)$, so that $\lambda \in \pi_0(T)$ because by Lemma 1.1, T is isoloid. Using the spectral projection at $\lambda \in \mathbb{C}$ we can represent T as the direct sum

$$T = R \oplus S$$
, where $\sigma(R) = \pi_0(R) = {\lambda}$ and $\sigma(S) = \sigma(T) \setminus {\lambda}$.

Since by assumption R is convexoid, we have that $W(R) = \text{conv } \{\lambda\} = \{\lambda\}$ and thus $\lambda \in \pi_0(R) \cap \partial W(R)$. Then an argument of Bouldin [6, Lemma 1] shows that λ is a normal eigenvalue of R. By assumption we can write $T^* = R^* \oplus S^*$. But since $S^* - \overline{\lambda}I$ is invertible, it follows

$$N(T - \lambda I) = N(R - \lambda I) = N(R^* - \overline{\lambda}I) = N(T^* - \overline{\lambda}I),$$

which implies that $\delta \neq \emptyset$. Now if \mathfrak{M} is the closed linear span of the eigenspaces $N(T - \lambda I)$ ($\lambda \in \delta$), then \mathfrak{M} reduces T. Write

$$T_1 := T | \mathfrak{M} \quad \text{and} \quad T_2 := T | \mathfrak{M}^{\perp}.$$

Then an argument of Berberian [3, Proposition 4.1] shows that (i) T_1 is normal and diagonal; (ii) $\pi_0(T_1) = \delta$; (iii) $\sigma(T_1) = \operatorname{cl} \delta$; (iv) $\pi_0(T_2) = \pi_0(T) \setminus \delta$. Thus it will suffice to show that $\mathfrak{M}^{\perp} = \{0\}$. Assume to the contrary that $\mathfrak{M}^{\perp} \neq \{0\}$. Then since $\sigma(T_2)$ is also countable, there exists a point $\mu \in \operatorname{iso} \sigma(T_2)$. Since by assumption T_2 is restriction-convexoid and hence isoloid, it follows that $\mu \in \pi_0(T_2)$ and $\mu \notin \delta$. Thus using the spectral projection at $\mu \in \mathbb{C}$, we can decompose T_2 as the direct sum

$$T_2 = T_3 \oplus T_4$$

where $\sigma(T_3) = \pi_0(T_3) = \{\mu\}$ and $\sigma(T_4) = \sigma(T_2) \setminus \{\mu\}$. Since again T_3 is convexoid, the same argument as the above gives that μ is an isolated normal eigenvalue of T_3 and further by assumption $T_2^* = T_3^* \oplus T_4^*$. But since $T_1 - \mu I$ and $T_4 - \mu I$ are both one-one we have

$$N(T - \mu I) = N(T_3 - \mu I) = N(T_3^* - \overline{\mu}I).$$

Further since $\pi_0(T_1^*) = \overline{\delta}$ and $\overline{\mu} \notin \sigma(T_4^*)$, it follows that $N(T^* - \overline{\mu}I) = N(T_3^* - \overline{\mu}I)$, and therefore $N(T - \mu I) = N(T^* - \overline{\mu}I)$, which implies that $\mu \in \delta$, giving a contradiction. This completes the proof.

We have been unable to answer if restriction-convexoid operators are reduced by each of its eigenspaces corresponding to isolated eigenvalues. If the answer were affirmative then we would answer Berberian question affirmatively.

We recall that an operator $T \in \mathcal{L}(\mathcal{H})$ is called a *Riesz* operator if $\sigma_e(T) = \{0\}$. We then have:

COROLLARY 1.4. If $T \in \chi$ is Riesz then T is compact and normal.

Proof. By Theorem 1.3, T is normal with pure point spectrum. Note that the nonzero eigenvalues are Riesz points, so that they are either finite or form a null sequence, which implies that T is compact.

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be polynomially compact if there exists a nonzero complex polynomial p such that p(T) is compact. S. Berberian ([3]) considered a relationship between the polynomial compactness of the operator and the finiteness of its Weyl spectrum, and gave several sufficient conditions for the finiteness of the Weyl spectrum; for example, if T is a

seminormal operator then T is polynomially compact if and only if $\omega(T)$ is finite. Observe

(1.4.1) T is polynomially compact
$$\implies \omega(T)$$
 is finite:

indeed if p(T) is compact then $p(\sigma_e(T)) = \sigma_e(p(T)) = \{0\}$, so that $\sigma_e(T)$ is finite, which together with (0.1) implies that $\sigma_e(T) = \omega(T)$. Recently, the finiteness of the Weyl spectrum was characterized in ([11]).

LEMMA 1.5 ([11, LEMMA 3]). If $\omega(T)$ is finite then $T \in \mathcal{L}(\mathcal{H})$ is decomposed into the finite direct sum

(1.5.1)
$$T = \bigoplus_{i=1}^{n} (N_i + K_i + \lambda_i I),$$

where the N_i are quasinilpotents, the K_i are compact, and $\{\lambda_1, \dots, \lambda_n\}$ = $\omega(T)$.

The following corollary provides a structure theorem for polynomially compact χ -calss operators (Compare with [5, Theorem 3]):

Corollary 1.6. If $T \in \chi$ then the following statements are equivalent:

- (a) T is polynomially compact;
- (b) $\omega(T)$ is finite;
- (c) T is the direct sum of finitely many thin normal operators, i.e.,

(1.6.1)
$$T = \bigoplus_{i=1}^{n} (R_i + \lambda_i I),$$

where the R_i are compact normal operators.

Proof. (a) \Rightarrow (b): This comes from (1.4.1).

(b) \Rightarrow (c): If $\omega(T)$ is finite then (1.5.1) holds with Riesz operators R_i . Thus if $T \in \chi$ then so is each R_i , and therefore it follows from Corollary 1.4 that each R_i is a compact normal operator.

 $(c)\Rightarrow$ (a): Suppose T satisfies (1.6.1). Then p(T) is compact, where $p(z)=(z-\lambda_1)\cdots(z-\lambda_n)$, with λ_i as in (c).

In [10, Solution 178], it was shown that if T is normal and if T^n is compact for some $n \in \mathbb{N}$ then T is compact. We can prove more:

COROLLARY 1.7. If $T \in \chi$ and if T^n is compact for some $n \in \mathbb{N}$ then T is a diagonal compact operator.

Proof. If $T \in \chi$ and if T^n is compact for some $n \in \mathbb{N}$ then it follows from Corollary 1.6 that $\sigma(T)$ is countable. Thus by Theorem 1.3, T is a diagonal normal operator with diagonal $\{\alpha_m\}_{m=1}^{\infty}$. But since T^n is a diagonal compact operator with diagonal $\{\alpha_m^n\}_{m=1}^{\infty}$, we can see that $\alpha_m^n \xrightarrow{m} 0$, so that $\alpha_m \xrightarrow{m} 0$. Therefore T is a diagonal compact operator.

We consider here a relationship between convexoid operators and their spectral sets. Recall that a compact set σ in \mathbb{C} is called a *spectral set* for $T \in \mathcal{L}(\mathcal{H})$ if $\sigma(T) \subseteq \sigma$ and if $||f(T)|| \leq ||f||_{\sigma} := \max_{z \in \sigma} |f(z)|$ for every rational function f with poles off σ . The following results are well-known:

- (i) The closed unit disk \mathbb{D} is a spectral set for every contraction operator ([26]).
- (ii) The spectrum of a subnormal operator is a spectral set ([1], [18]).
- (iii) There exists a hyponormal operator whose spectrum contains a disk and is not a spectral set ([27]).

We now have:

THEOREM 1.8. If $conv \sigma(T)$ is a spectral set for $T \in \mathcal{L}(\mathcal{H})$ then T is convexoid.

Proof. Suppose $\operatorname{conv} \sigma(T)$ is a spectral set for T. Thus $||f(T)|| \leq ||f||_{\operatorname{conv}\sigma(T)}$ for every rational function f with poles off $\operatorname{conv} \sigma(T)$. If K is a convex subset of $\mathbb C$, write $\operatorname{Ext} K$ for the set of extreme points of K. Observe that if K is a compact convex set in $\mathbb C$, then $||z||_K$ occurs on $\operatorname{Ext} K$. But by the Krein-Milman theorem,

$$\operatorname{conv} \sigma(T) = \overline{\operatorname{conv}} \left(\operatorname{Ext} \operatorname{conv} \sigma(T) \right)$$
 and $\operatorname{Ext} \left(\operatorname{conv} \sigma(T) \right) \subseteq \sigma(T)$,

where $\overline{\operatorname{conv}}$ denotes the closed convex-hull. Thus for every $\lambda \in \mathbb{C}$,

$$\begin{split} r(T-\lambda I) &\leq ||T-\lambda I|| \leq ||z-\lambda||_{\operatorname{conv}\sigma(T)} = ||z||_{\operatorname{conv}\sigma(T-\lambda I)} \\ &= ||z||_{\operatorname{Ext}\operatorname{conv}\sigma(T-\lambda I)} = ||z||_{\sigma(T-\lambda I)} = r(T-\lambda I), \end{split}$$

which implies that $r(T - \lambda I) = ||T - \lambda I||$ for every $\lambda \in \mathbb{C}$. This says that $T - \lambda I$ is normaloid for every $\lambda \in \mathbb{C}$. It therefore follows that T is convexoid ([4]).

Note that $\sigma(T)$ need not be a spectral set for T even though conv $\sigma(T)$ is. For example if S is the bilateral shift on $L^2(\mathbb{T})$ of the unit circle \mathbb{T} , take

$$(1.8.1) T = S \oplus \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

where the second summand is a two-dimensional operator. Then $\sigma(T) = \mathbb{T} \cup \{0\}$. Choose $f(z) = (z - \frac{1}{2})^{-1}$. Then $||f||_{\sigma(T)} = 2$, but $||f(T)|| \ge ||f(T)|| \le ||f(T$

2. Commutators

A commutator is an operator of the form AB-BA. Then Brown-Pearcy theorem [7, Theorem 3] says that $T \in \mathcal{L}(\mathcal{H})$ is a noncommutator if and only if T is of the form $K + \lambda I$, where $\lambda \neq 0$ and K is compact. Thus we have that

(2.0.1)
$$T$$
 is a noncommutator $\Longrightarrow \omega(T) = {\lambda}, \ \lambda \neq 0.$

But the converse of (2.0.1) is, in general, not true. We however have:

THEOREM 2.1. If $T \in \chi$ and $\omega(T) = {\lambda}$, $\lambda \neq 0$, then T is a noncommutator.

Proof. Suppose $\omega(T) = \{\lambda\}$, $\lambda \neq 0$. Then $\sigma_e(T) = \{\lambda\}$, and hence $\sigma_e(T - \lambda I) = \{0\}$. Thus if $T \in \chi$ and hence so is $T - \lambda I$, then it follows from Corollary 1.4 that $T - \lambda I$ is a compact operator. Therefore by the Brown-Pearcy theorem, T is a noncommutator.

In Theorem 2.1, "restriction-convexoid in the definition of χ " cannot be replaced by "convexoid". To see this, let on ℓ_2

$$T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \oplus \left[\begin{pmatrix} \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix} \otimes 1_{\infty} \right].$$

Then we have that (i) $\omega(T) = \{\frac{1}{3}\}$; (ii) T is convexoid because $\operatorname{conv} \sigma(T) = W(T)$, which is the equilateral triangle whose vertices are the three cube roots of 1; (iii) T is a commutator because T has a "large" kernel (see [10, Problem 234]); (iv) T is not reduction-convexoid because $\begin{pmatrix} \frac{1}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} \end{pmatrix}$ is not convexoid.

THEOREM 2.2. If either $\sigma(A)$ or $\sigma(B)$ is not a singleton set then $A \otimes B$ is a commutator. In particular if either A or B is a nonconstant convexoid operator then $A \otimes B$ is a commutator.

Proof. Suppose either $\sigma(A)$ or $\sigma(B)$ is not a singleton set. Since [16, Theorem 4.2]

$$\omega(A \otimes B) = \omega(A) \cdot \sigma(B) \cup \sigma(A) \cdot \omega(B),$$

it follows that either $\omega(A \otimes B) = \{0\}$ or $\omega(A \otimes B)$ has at least two elements. Thus by (2.0.1), $A \otimes B$ is a commutator. This proves the first assertion. For the second assertion we suppose that A is nonconstant and convexoid. In view of the first assertion it suffices to show that $\sigma(A)$ is not a singleton set. Assume to the contrary that $\sigma(A) = \{\lambda\}$, $\lambda \in \mathbb{C}$. Then $A - \lambda I$ is convexoid and quasinilpotent. But since the only convexoid quasinilpotent is 0, it follows that $A = \lambda I$, giving a contradiction. This completes the proof.

A self-commutator is an operator of the form $A^*A - AA^*$. Then Radjavi's theorem ([25]) says that a self-adjoint operator $T \in \mathcal{L}(\mathcal{H})$ is a self-commutator if and only if $0 \in \text{conv } \omega(T)$. Thus the Radjavi's theorem gives the following:

THEOREM 2.3. If $T \in \mathcal{L}(\mathcal{H})$ is a self-adjoint operator whose direct summands are nonconstant then T is a self-commutator if and only if either $0 \in \omega(T)$ or T is not semi-definite.

Proof. If $0 \in \omega(T)$, then evidently T is a self-commutator. If instead T is not semi-definite, then there exist $\lambda, \mu \in \sigma(T)$ such that $\lambda > 0$ and $\mu < 0$. We now claim that $\lambda, \mu \in \omega(T)$. Assume to the contrary that $\lambda \notin \omega(T)$. Then it follows from Weyl's theorem that $\lambda \in \text{iso } \sigma(T)$. Thus T should be of the form $T = \lambda I \oplus S$, which contradicts to our assumption. Therefore we have that $0 \in \text{conv } \omega(T)$, and hence by the Radjavi's theorem, T is a self-commutator. The converse is evident.

Theorem 2.3 is readily applicable for self-adjoint operators with no eigenvalues (e.g., Toeplitz operators with real-valued symbols).

An invertible operator $T \in \mathcal{L}(\mathcal{H})$ is called a multiplicative commutator if it is of the form $ABA^{-1}B^{-1}$. By contrast, a commutator AB - BA is often called an additive commutator. It is known that if T is a multiplicative commutator of the form $K + \lambda I$, where K is compact and $\lambda \in \mathbb{C}$, then $|\lambda| = 1$ ([8, Theorem 1], [10, Problem 238]). It remains open whether a multiplicative commutator is not of the form $K + \lambda I$, where $|\lambda| \neq 1$ and K is compact. But another argument of Brown and Pearcy [8, Theorem 5] shows that an invertible normal operator $T \in \mathcal{L}(\mathcal{H})$ is a multiplicative commutator if and only if T is not of the form $K + \lambda I$, where $|\lambda| \neq 1$ and K is compact. Thus if $T \in \mathcal{L}(\mathcal{H})$ is invertible and normal then

(2.3.1) T is not a multiplicative commutator
$$\implies \omega(T) = \{\lambda\}, |\lambda| \neq 1.$$

The following theorem shows that the converse of (2.3.1) is also true with a weaker condition:

THEOREM 2.4. If $T \in \chi$ is invertible and $\omega(T) = {\lambda}$, then

T is a multiplicative commutator $\iff |\lambda| = 1$.

Proof. If $\omega(T) = \{\lambda\}$, then $\sigma_e(T - \lambda I) = \{0\}$. By Corollary 1.4, $T - \lambda I$ is a compact normal operator, say K. But then $T = K + \lambda I$ is invertible and normal. Therefore by the Brown-Pearcy characterization [8, Theorem 5], T is a multiplicative commutator if and only if $|\lambda| = 1$.

Theorems 2.1 and 2.4 show that if T is an invertible χ -class operator and $\omega(T) = \{\lambda\}$, it is impossible that T is both a multiplicative and an additive commutator: for if $|\lambda| = 1$, then T is a multiplicative commutator but not an additive commutator, and if $|\lambda| \neq 1$, then T is neither a multiplicative nor an additive commutator.

ACKNOWLEDGEMENT. We are grateful to Professor Woo Young Lee for helpful suggestions and conversations concerning the paper.

References

 S. K. Berberian, A note on operators whose spectrum is a spectral set, Acta Sci. Math. (Szeged) 27 (1966), 201-203.

- [2] _____, An extension of Weyl's theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273-279.
- [3] _____, The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529-544.
- [4] _____, Some conditions on an operator implying normality, Math. Ann. 184 (1970), 188-192.
- [5] ______, Some conditions on an operator implying normality II, Proc. Amer. Math. Soc 26 (1970), 277-281.
- [6] R. Bouldin, Numerical range for certain classes of operators, Proc. Amer. Math. Soc. 34 (1972), 203-206.
- [7] A. Brown and C. Pearcy, Structure of commutators, Ann. Math. 82 (1965), 112-127.
- [8] _____, Multiplicative commutators of operators, Can. J. Math. 18 (1966), 737-749.
- [9] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
- [10] P. R. Halmos, A Hilbert Space Problem Book, Springer, New York, 1982.
- [11] Y. M. Han, S. H. Lee, and W. Y. Lee, On the structure of polynomially compact operators, Math. Z. 232 (1999), 257-263.
- [12] R. E. Harte, Fredholm, Weyl and Browder theory, Proc. Royal Irish Acad. 85A (1985), no. 2, 151-176.
- [13] ______, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
- [14] R. E. Harte and W. Y. Lee, The punctured neighbourhood theorem for incomplete spaces, J. Operator Theory 30 (1993), 217-226.
- [15] ______, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), 2115-2124.
- [16] T. Ichinose, Spectral properties of tensor products of linear operators. I, Trans. Amer. Math. Soc. 235 (1978), 75–113.
- [17] V. I. Istrătescu, On Weyl's spectrum of an operator. I, Rev. Roum. Math. Pures Appl. 17 (1972), 1049–1059.
- [18] A. Lebow, On von Neumann's theory of spectral sets, J. Math. Anal. Appl. 7 (1963), 64–90.
- [19] W. Y. Lee and H. Y. Lee, On Weyl's theorem, Math. Japo. 39 (1994), 545-548.
- [20] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61–64.
- [21] K. K. Oberai, On the Weyl spectrum, Illinois J. Math. 18 (1974), 208-212.
- [22] _____, On the Weyl spectrum (II), Illinois J. Math. 21 (1977), 84-90.
- [23] C. M. Pearcy, Some Recent Developments in Operator Theory, CBMS 36, Providence: AMS, 1978.
- [24] S. Prasanna, Weyl's theorem and thin spectra, Indian Acad. Sci. (Math. Sci.) 91 (1982), 59-63.
- [25] H. Radjavi, Structure of $A^*A AA^*$, J. Math. Mech. 16 (1966), 19–26.
- [26] J. von Neumann, Eine Spektraltheorie für allegemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281.
- [27] B. L. Wadhwa, A hyponormal operator whose spectrum is not a spectral set, Proc. Amer. Math. Soc. 38 (1973), 83–85.
- [28] H. Weyl, Über beschränkte quadratische Formen, deren Differenz vollsteig ist, Rend. Circ. Mat. Palermo 27 (1909), 373-392.

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea E-mail: ymhan@math.skku.ac.kr

DEPARTMENT OF MATHEMATICS, CHANGWON NATIONAL UNIVERSITY, CHANGWON 641-773, KOREA

E-mail: ahkim@sarim.changwon.ac.kr