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WEYL SPECTRA OF THE y-CLASS OPERATORS

Young MiN HaN AND AN-HYUuN KIM

ABSTRACT. In this paper we introduce a notion of the y-class oper-
ators, which is a class including hyponormal operators and consider
their spectral properties related to Weyl spectra.

Introduction

Throughout this paper let H denote an infinite dimensional separable
Hilbert space. Let L{H) denote the algebra of bounded linear operators on
H and K(H) the closed ideal of compact operators on H.. X T € L({H) write
N(T) and R(T) for the null space and range of T; p(T) for the resolvent
set of T ; o(T') for the spectrum of T'; 7o (T") for the set of eigenvalues of T
mo¢ (1) for the eigenvalues of finite multiplicity; mo;(1") for the eigenvalues
of infinite multiplicity. Recall ([12],[13]) that T' € L(H) is called regular if
there is an operator TV € L(H) for which T = TT'T. It is familiar that if
T € L(H) then T is regular if and only if T has closed range. An operator
T € L(H) is called upper semi-Fredholm if it has closed range with finite-
dimensional null space and lower semi-Fredholm if it has closed range with
its range of finite co-dimension. If T is either upper or lower semi-Fredholm,
we call it semi-Fredholm and if T is both upper and lower semi-Fredholm,
we call it Fredholm. The index of a semi-Fredholm operator T € L{H) is
given by

ind (T) = dim N(T) — dim R(T)"* (= dim N(7T) - dim N(T*)).

An operator T' € L£{H) is called Weyl if it is Fredholm of index zero. An
operator T € L(H) is called Browder if it is Fredholm “of finite ascent and
descent”: equivalently ([18, Theorem 7.9.3]) if T' is Fredholm and T — Al is
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invertible for sufficiently small A # 0 in C. The essential spectrum o.(7T),
the Weyl spectrum w(7") and the Browder spectrum o(T") of T € L(H} are
defined by

ao{T) = {X € C: T — A is not Fredholm};
W(T)={Ae C:T — Al is not Weyl};
op(T) = {A € C: T — X is not Browder} :

then ([13])
(0.1} 0o(TY Cw(T) C ap(T) = 0.(T) Jacco(T) and w(T) C no.(T),

where we write acc K and 5 K for the accumulation points and the polynomially-
convez hull, respectively, of K C C. If we write iso K = K \ acc K, and
0 K for the topological boundary of K, and

(0.2) 7oo(T) := {\ € isoc(T) : 0 < dim (T — A} 1(0) < o0}
for the isolated eigenvalues of finite multiplicity, and ([13])
(0.3) poo(T) := o(T) \ ou(T)

for the Riesz points of o(T'), then by the punctured neighborhood theorem,
i.e., 0a(T)\ 0.(T) Cisoo(T) ([13], [14]),

(04)  isoo(T)\ ou(T) = is0o(T) \ w(T) = peolT) € moo(T).
We say that Weyl's theorern holds for T € L{H) if there is equality
(0.5) o(T) \w(T) = moo{T)-

If T € £{(H), write r(T) for the spectral radius of T. It is familiar
that #(T) < ||T]!. An operator T is called normaloid if r(T) = ||T|| and
isoloid if iso o(T) C mg(T). An operator T is said to satisfy condition {(G1)
if (T — AI)~! is normaloid for all A ¢ o(T). If T € L(H), write W(T)
for the numerical range of 7. It is also familiar that W(T") is convex and
convo(T) C AW (T). An operator T' is called convezoid if conveo(T) =
clW(T). Let P be a property of operators. We say that an operator T is
restriction-P if the restriction of T to every invariant subspace has property
P and that T is reduction-P if every direct summand of T has property F.
Evidently, restriction- P = reduction-P. It is known ([3]) that if T € L(H)
then we have:
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EO.G% (G1) = convexoid and isoloid;

0.7 seminormal = reduction-(G;) = reduction-isoloid;

(0.8) hyponormal = restriction-convexoid = reduction-isoloid.
Note that seminormal operators are reduction-convexoid, but they may not
be restriction-convexoid: for example consider the backward shift U* on £,
where U is the unilateral shift ([4]). Thus the replacement of “reduction-
" by “restriction-” is very stringent. Now we shall say that an operator
T € L(H) is in the x-class if T is restriction-convexoid and is reduced by
each of its eigenspaces corresponding to isolated eigenvalues. Evidently, T'
hyponormal = T € y.

1. The x-class operators

An operator T € L(H) is called reguloid ([15]) if T — A is regular for
each A € isoo(T}. We begin with:

LEMMA 1.1. If T € L(H) then

(1.1.1) (G1) = reguloid = isoloid
and
(1.1.2) restriction-convexoid = restriction-reguloid.

Proof. (1.1.1) is [15, Theorem 14]. For (1.1.2), suppose T is restri-
ction-convexoid and 9 is an invariant subspace of 7. Write § := T}{9M.
Then S is also restriction-convexoid. Suppose A € iso o(S5). Observe that if
T is convexoid then so is aT + bl for any a,b € C. Thus we may write S in

place of S—AI and assume A = 0. Using the spectral projection at 0 € C we
can write S = (5[;’ 52), where ¢{5;) = {0} and o{S3) = o(S) \ {0}. Since
by assumption, S is convexoid it follows that W(S;) = conva(S;} = {0},

and hence $7 = §. Thus we have
{0 0N _ o . ;{0 0
s= (2 )=sos wins=(2 L),
which says that S is regular, and therefore T is restriction-reguloid. O

It was shown in ([24]) that Weyl’s theorem holds for restriction-convexoid
operators. We can prove more:
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THEOREM 1.2. Let T' € £(H). If either T or T* is restriction-convexoid
then Weyl’s theorem holds for T.

Proof. If T is restriction-convexoid then it follows from {24, Theorem
2.1] that Weyl's theorem holds for 7. Now suppose T™ is restriction-
convexoid. Let A € moo(T). Then X € iso o(T™*). Since T* is restriction-
convexoid, it follows from Lemma 1.1 that T'— A has closed range. Therefore
it follows from the punctured neighborhood theorem that A € o(T)w(7T).
Conversely, suppose A € o(T)\w(T). Then X € o(T*)\w(T*). Since
T* is restriction-convexoid, Browder’s theorem holds for T*. Therefore
X € poo(T*). Tt follows from the fact poo(T*) = poo{T)* that A € moo (T}
This completes the proof. O

In 1970, S. Berberian ([5]) raised the following question: if T is restriction-
convexoid and o(T) is countable, is T normal? We now give a partial
answer.

THEOREM 1.3. Let T € x. If o(T) is countable then T is diagonal and
normal.

Proof. Suppose T € x and o(T) is countable. Let § be the set of all
normal eigenvalues of T, i.e.,

§={\€mo(T): N(T —AI)=N(T* - AI)}.

We first claim that § # 0. Since o(T) is countable, there exists a point
A € isoo(T), so that A € my(T) because by Lemma 1.1, T is isoloid. Using
the spectral projection at A € C we can represent 7 as the direct sum

T=R®S, whereo(R)=m(R)={\}and o(S) = a(T)\{A}.
Since by assumption R is convexoid, we have that W(R) = conv {A} = {A}
and thus A € mp(R) N AW (R). Then an argument of Bouldin [6, Lemma
1) shows that A is a normal eigenvalue of R. By assumption we can write
T* = R* @ S*. But since §* — X is invertible, it follows

N(T — M} = N(R = M) = N(R* = XI) = N(T* - XI),

which implies that § # 0. Now if 97 is the closed linear span of the
eigenspaces N (T — AI) (A € d), then 9 reduces T. Write

T, :=T|M and Ty :=T|M".
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Then an argument of Berberian [3, Proposition 4.1] shows that (i) T} is
normal and diagonal; (i) wo(7h) = §; (iii) o(T1) = clé; (iv) me(Tr) =
7o(T)\6. Thus it will suffice to show that 9+ = {0}. Assume to the
contrary that M+ # {0}. Then since ¢{T%) is also countable, there exists
a point u € isoo(7>). Since by assumption T is restriction-convexoid and
hence isoloid, it follows that g € mp{T2) and u ¢ §. Thus using the spectral
projection at p € C, we can decompose T5 as the direct sum

T =T:¢1T;,

where o(13) = mo(T3) = {p} and o(Ty) = o(T2)\{p}. Since again T3
is convexoid, the same argument as the above gives that u is an isolated
normal eigenvalue of T3 and further by assumption Ty = T3 © Tf. But
since 71 — pd and Ty — pI are both one-one we have

N(T = ul) = N(Ty — pI) = N(T; — D).

Further since mo(T}) = & and & ¢ o(T}), it follows that N{T* — zl) =
N(T3 — @), and therefore N(T' — ul) = N(T* — il), which implies that
u € &8, giving a contradiction. This completes the proof. |

We have been unable to answer if restriction-convexoid operators are
reduced by each of its eigenspaces corresponding to isclated eigenvalues.
If the answer were affirmative then we would answer Berberian question
affirmatively.

We recall that an operator T € £(H) is called a Riesz operator if 6.(T) =
{0}. We then have:

COROLLARY 1.4, IfT ¢ x is Riesz then T is compact and normal.

Proof. By Theorem 1.3, T is normal with pure point spectrum. Note
that the nonzero eigenvalues are Riesz points, so that they are either finite
or form a null sequence, which implies that T is compact. O

An operator T € L{H) is said to be polynomially compact if there exists
a nonzero complex polynomial p such that p(T') is compact. S. Berberian
([3]) considered a relationship between the polynomial compactness of the
operator and the finiteness of its Weyl spectrum, and gave several sufficient
conditions for the finiteness of the Weyl spectrum; for example, if T is a
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seminormal operator then T is polynomially compact if and only if w(T) is
finite. Observe

(1.4.1) T is polynomially compact = w(T) is finite :

indeed if p(T) is compact then p(o.(T)) = o.(p(T)) = {0}, so that o,(T)
is finite, which together with (0.1) implies that 0.(T) = w(T}. Recently,
the finiteness of the Weyl spectrum was characterized in ([11]).

LEmMMA 1.5 ([11, LEMMA 3]). If w(T) is finite then T € L(H) is de-
composed into the finite direct sum

(1.5.1) T = (N + Ki + M),

i=1
where the N; are quasinilpotents, the K; are compact, and {A1, - ,An}
= w(T).

The following corollary provides a structure theorem for polynomially
compact x-calss operators (Compare with [5, Theorem 3]):

CoroLLARY 1.6. If T € y then the following statements are equiva-
lent:
(a) T is polynomially compact;
(b} w(T) is finite;
(c) T is the direct sum of finitely many thin normal operators, i.e.,

(1.6.1) T= é(Ri + M),

i=1
where the R; are compact normal operators.

Proof. (a)=(b): This comes from (1.4.1).

(bY=-{c): If w(T} is finite then (1.5.1) holds with Riesz operators R;.
Thus if T € ¥ then so is each R, and therefore it follows from Corollary
1.4 that each R; is a compact normal operator.

(c)=(a): Suppose T satisfies (1.6.1}. Then p(I) is compact, where
p(z) = (2 — A1)+ (2 — Ap), with A; as in (c). O

In [10, Solution 178], it was shown that if T is normal and if T™ is
compact for some n € N then T is compact. We can prove more:



Weyl spectra of the y-class operators 169

COROLLARY 1.7. If T € x and if T™ is compact for some n € N then T
is a diagonal compact operator.

Proof. If T € x and if T™ is compact for some n € N then it follows
from Corollary 1.6 that o(7") is countable. Thus by Theorem 1.3, T is
a diagonal normal operator with diagonal {@,,}5_;. But since T" is a
diagonal compact operator with diagonal {a® }%_,, we can see that o, —

0, so that a,, — 0. Therefore T is a diagonal compact operator. O

We consider here a relationship between convexoid operators and their
spectral sets. Recall that a compact set ¢ in C is called a spectral set for
T € L(H) if o(T) C o and if [[f(T)}| < ||flls := max.eo [ f(2)] for every
rational function f with poles off o. The following results are well-known:

(i) The closed unit disk I is a spectral set for every contraction oper-
ator ([26]).
(i) The spectrum of a subnormal operator is a spectral set ([1], [18]).

(ili) There exists a hyponormal operator whose spectrum contains a disk

and is not a spectral set ([27]).

We now have:

THEOREM 1.8. If convo(T) is a spectral set for T € L{H) then T is
convexoid.

Proof. Suppose convo(T') is a spectral set for T. Thus ||f(T)] <
{|f||convary for every rational function f with poles off conveo(T). If K
is a convex subset of C, write Ext K for the set of extreme points of K.
Observe that if K is a compact convex set in C, then ||z{|x occurs on Ext K.
But by the Krein-Milman theorem,

conv o(T") = conv (Extconve(T)) and Ext (convo(T)) C o(T),
where conv denotes the closed convex-hull. Thus for every A € C,

T(T_ AI) S ||T - '\I” S ”z - )\”COHVU(T) = Hz”corwo(T—,\I)
= ||z||Extconva'(T—AI) = HZHU(_T_,\]) = T(T*” /\I),

which implies that (7" — AI) = ||T — Al|| for every A € C. This says that
T — Al is normaloid for every A € C. It therefore follows that T is convexoid

([4]). O
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Note that o(T) need not be a spectral set for T even though conv o(T')
is. For example if S is the bilateral shift on L?(T) of the unit circle T, take

(1.8.1) T=SEB(8$),

where the second summand is a two-dimensional operator. Then o(T) =
T U {0}. Choose f(z) = (2 — 3)7". Then ||f|lo¢ry = 2, but ||f(T)I] =

I (_02 :;) [| > 2, which implies that o(T") is not a spectral set for T

But since conv (T} = D and T is a contraction operator it follows from
the statement (i) in the remark above Theorem 1.8 that conve(T) is a
spectral set for T. Also note that the conclusion of Theorem 1.8 cannot be
strengthened by “reduction-convexoid”: for example consider the operator
T defined by (1.8.1). :

2. Commutators

A commutator is an operator of the form AB — BA. Then Brown-Pearcy
theorem [7, Theorem 3] says that T € £(H) is a noncommutator if and only
if T is of the form K + AJ, where X # 0 and K is compact. Thus we have
that

(2.0.1) T is a noncommutator = w(T) = {A}, A # 0.
But the converse of (2.0.1) is, in general, not true. We however have:

THEOREM 2.1. If T € x and w(T) = {A\}, A # 0, then T is a noncom-
mutator.

Proof. Suppose w(T) = {A}, A # 0. Then o.(T) = {A}, and hence
oo(T — AT} = {0}. Thus if T € x and hence so is T' — I, then it follows
from Corollary 1.4 that 7' — AT is a compact operator. Therefore by the
Brown-Pearcy theorem, T is a noncommutator. O

In Theorem 2.1, “restriction-convexoid in the definition of x” cannot be
replaced by “convexoid”. To see this, let on €3

00 1 0
T={1 0 0 @[( 1)@100].
0 1 0 3

=g —
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Then we have that (i) w(T) = {}}; (ii) T is convexoid because conv o (T")
= W(T'), which is the equilateral triangle whose vertices are the three cube
roots of 1; (iii) T is a commutator because T has a “large” kernel (see

110, Problem 234]}; (iv) T is not reduction-convexoid because ( E) is
3

(M

not convexoid.

THEOREM 2.2. If either o(A) or o(B) is not a singleton set then AQ B
Is a commutator. In particular if either A or B is a nonconstant convexoid
operator then A ® B is a commutator.

Proof. Suppose either 6(A) or ¢(B) is not a singleton set. Since [16,
Theorem 4.2]

W(A® B) = w(4) - 0(B)Uo(A) - w(B),

it follows that either w(A® B} = {0} or w(A& B) has at least two elements.
Thus by (2.0.1), A ® B is a commutator. This proves the first assertion.
For the second assertion we suppose that A is nonconstant and convexoid.
In view of the first assertion it suffices to show that ¢(A) is not a singleton
set. Assume to the contrary that o(A) = {A}, A € C. Then A — A is
convexoid and quasinilpotent. But since the only convexoid quasinilpotent
is 0, it follows that A = Al, giving a contradiction. This completes the
proof. U

A self-commutator is an operator of the form A*A — AA*. Then Rad-
javi’s theorem ([25]) says that a self-adjoint operator T € £(H) is a self-
commutator if and only if 0 € convw(T). Thus the Radjavi’s theorem gives
the following:

THEOREM 2.3. IfT € L(H) is a self-adjoint operator whose direct sum-
mands are nonconstant then T is a self-commutator if and only if either
0 € w(T) or T Is not semi-definite.

Proof. If 0 € w(T), then evidently T is a self-commutator. If instead T
is not semi-definite, then there exist A, # € o(7') such that A > Q0 and < 0.
We now claim that A, p € w(T). Assume to the contrary that A ¢ w(T).
Then it follows from Weyl’s theorem that A € isoo(7"). Thus T should be
of the form T' = A & 8§, which contradicts to our assumption. Therefore
we have that 0 € convw(T), and hence by the Radjavi’s theorem, T is a
self-commutator. The converse is evident. O
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Theorem 2.3 is readily applicable for self-adjoint operators with no eigen-
values (e.g., Toeplitz operators with real-valued symbols).

An invertible operator T € L{H) is called a multiplicative commutatorif
it is of the form ABA~1B~!. By contrast, a commutator AB — BA is often
called an additive commutator. It is known that if T is a multiplicative
commutator of the form K + A, where & is compact and A € C, then
|A] = 1 ([8, Theorem 1], [10, Problem 238]). It remains open whether a
multiplicative commutator is not of the form K + AI, where [A] # 1 and
K is compact. But another argument of Brown and Pearcy (8, Theorem
5] shows that an invertible normal operator T' € £(H) is a multiplicative
commutator if and only if T is not of the form K + AI, where |A| # 1 and
K is compact. Thus if T' € L(H) is invertible and normal then

(2.3.1) T is not a multiplicative commutator = w(T} = {A}, |Al # 1.

The following theorem shows that the converse of (2.3.1) is also true with
a weaker condition:

THEOREM 2.4. IfT € x is invertible and w(T) = {A}, then

T is a multiplicative commutator <= [\ = 1.

Proof. If w(T) = {A}, then ¢.(T — AI) = {0}. By Corollary 1.4, T — AI
is a compact normal operator, say K. But then T = K + A is invertible
and normal. Therefore by the Brown-Pearcy characterization [8, Theorem
5], T is a multiplicative commutator if and only if |A| = 1. ]

Theorems 2.1 and 2.4 show that if T is an invertible y-class operator and
w(T) = {A}, it is impossible that T' is both a multiplicative and an additive
commutator: for if |[A| = 1, then T is a multiplicative commutator but not
an additive commutator, and if |A] # 1, then T is neither a multiplicative
nor an additive commutator.
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