WEYL SPECTRA OF THE χ-CLASS OPERATORS

YOUNG MIN HAN AND AN-HYUN KIM

Abstract. In this paper we introduce a notion of the χ-class operators, which is a class including hyponormal operators and consider their spectral properties related to Weyl spectra.

Introduction

Throughout this paper let \mathcal{H} denote an infinite dimensional separable Hilbert space. Let $\mathcal{L}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H} and $\mathcal{K}(\mathcal{H})$ the closed ideal of compact operators on \mathcal{H}. If $T \in \mathcal{L}(\mathcal{H})$ write $N(T)$ and $R(T)$ for the null space and range of T; $\rho(T)$ for the resolvent set of T; $\sigma(T)$ for the spectrum of T; $\pi_0(T)$ for the set of eigenvalues of T; $\pi_{0f}(T)$ for the eigenvalues of finite multiplicity; $\pi_{0i}(T)$ for the eigenvalues of infinite multiplicity. Recall ([12],[13]) that $T \in \mathcal{L}(\mathcal{H})$ is called regular if there is an operator $T' \in \mathcal{L}(\mathcal{H})$ for which $T = TT'T$. It is familiar that if $T \in \mathcal{L}(\mathcal{H})$ then T is regular if and only if T has closed range. An operator $T \in \mathcal{L}(\mathcal{H})$ is called upper semi-Fredholm if it has closed range with finite-dimensional null space and lower semi-Fredholm if it has closed range with its range of finite co-dimension. If T is either upper or lower semi-Fredholm, we call it semi-Fredholm and if T is both upper and lower semi-Fredholm, we call it Fredholm. The index of a semi-Fredholm operator $T \in \mathcal{L}(\mathcal{H})$ is given by

$$\text{ind}(T) = \dim N(T) - \dim R(T)^\perp = (\dim N(T) - \dim N(T^*))$$

An operator $T \in \mathcal{L}(\mathcal{H})$ is called Weyl if it is Fredholm of index zero. An operator $T \in \mathcal{L}(\mathcal{H})$ is called Browder if it is Fredholm "of finite ascent and descent": equivalently ([13, Theorem 7.9.3]) if T is Fredholm and $T - \lambda I$ is

Received April 10, 2000.
2000 Mathematics Subject Classification: Primary 47A10, 47A53; Secondary 47B06, 47B07.

Key words and phrases: χ-class operators, convexoid operators, commutators.

This research is financially supported by Changwon National University in 2000.
invertible for sufficiently small $\lambda \neq 0$ in \mathbb{C}. The essential spectrum $\sigma_e(T)$, the Weyl spectrum $\omega(T)$ and the Browder spectrum $\sigma_b(T)$ of $T \in \mathcal{L}(\mathcal{H})$ are defined by

$$\sigma_e(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Fredholm} \};$$

$$\omega(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl} \};$$

$$\sigma_b(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder} \};$$

then ([13])

(0.1) \quad \sigma_e(T) \subseteq \omega(T) \subseteq \sigma_b(T) = \sigma_e(T) \cup \text{acc } \sigma(T) \quad \text{and} \quad \omega(T) \subseteq \eta \sigma_e(T),

where we write acc K and ηK for the accumulation points and the polynomially-convex hull, respectively, of $K \subseteq \mathbb{C}$. If we write iso $K = K \setminus \text{acc } K$, and ∂K for the topological boundary of K, and

(0.2) \quad \pi_{00}(T) := \{ \lambda \in \text{iso } \sigma(T) : 0 < \dim (T - \lambda I)^{-1}(0) < \infty \}

for the isolated eigenvalues of finite multiplicity, and ([13])

(0.3) \quad p_{00}(T) := \sigma(T) \setminus \sigma_b(T)

for the Riesz points of $\sigma(T)$, then by the punctured neighborhood theorem, i.e., $\partial \sigma(T) \setminus \sigma_e(T) \subseteq \text{iso } \sigma(T)$ ([13], [14]),

(0.4) \quad \text{iso } \sigma(T) \setminus \sigma_e(T) = \text{iso } \sigma(T) \setminus \omega(T) = p_{00}(T) \subseteq \pi_{00}(T).

We say that Weyl's theorem holds for $T \in \mathcal{L}(\mathcal{H})$ if there is equality

(0.5) \quad \sigma(T) \setminus \omega(T) = \pi_{00}(T).

If $T \in \mathcal{L}(\mathcal{H})$, write $r(T)$ for the spectral radius of T. It is familiar that $r(T) \leq ||T||$. An operator T is called normaloid if $r(T) = ||T||$ and isoloid if $\sigma(T) \subseteq \pi_0(T)$. An operator T is said to satisfy condition (G_1) if $(T - \lambda I)^{-1}$ is normaloid for all $\lambda \notin \sigma(T)$. If $T \in \mathcal{L}(\mathcal{H})$, write $W(T)$ for the numerical range of T. It is also familiar that $W(T)$ is convex and $\sigma(T) \subseteq \text{cl } W(T)$. An operator T is called convexoid if $\text{conv } \sigma(T) = \text{cl } W(T)$. Let P be a property of operators. We say that an operator T is restriction-P if the restriction of T to every invariant subspace has property P and that T is reduction-P if every direct summand of T has property P. Evidently, restriction-$P \implies$ reduction-P. It is known ([3]) that if $T \in \mathcal{L}(\mathcal{H})$ then we have:
(0.6) \((G_1) \implies\) convexoid and isoloid;
(0.7) seminormal \(\implies\) reduction-(\(G_1\)) \(\implies\) reduction-isoloid;
(0.8) hyponormal \(\implies\) restriction-convexoid \(\implies\) reduction-isoloid.

Note that seminormal operators are reduction-convexoid, but they may not be restriction-convexoid: for example consider the backward shift \(U^*\) on \(\ell_2\), where \(U\) is the unilateral shift ([4]). Thus the replacement of "reduction-
" by "restriction-" is very stringent. Now we shall say that an operator \(T \in \mathcal{L}(\mathcal{H})\) is in the \(\chi\)-class if \(T\) is restriction-convexoid and is reduced by each of its eigenspaces corresponding to isolated eigenvalues. Evidently, \(T\) hyponormal \(\implies\) \(T \in \chi\).

1. The \(\chi\)-class operators

An operator \(T \in \mathcal{L}(\mathcal{H})\) is called reguloid ([15]) if \(T - \lambda I\) is regular for each \(\lambda \in \text{iso} \sigma(T)\). We begin with:

Lemma 1.1. If \(T \in \mathcal{L}(\mathcal{H})\) then

\[(G_1) \implies \text{reguloid} \implies \text{isoloid} \]

and

\[(1.1.2) \text{restriction-convexoid} \implies \text{restriction-reguloid}.
\]

Proof. (1.1.1) is [15, Theorem 14]. For (1.1.2), suppose \(T\) is restriction-convexoid and \(\mathcal{M}\) is an invariant subspace of \(T\). Write \(S := T|\mathcal{M}\). Then \(S\) is also restriction-convexoid. Suppose \(\lambda \in \text{iso} \sigma(S)\). Observe that if \(T\) is convexoid then so is \(aT + bI\) for any \(a, b \in \mathbb{C}\). Thus we may write \(S\) in place of \(S - \lambda I\) and assume \(\lambda = 0\). Using the spectral projection at \(0 \in \mathbb{C}\) we can write \(S = \begin{pmatrix} S_1 & 0 \\ 0 & S_2 \end{pmatrix}\), where \(\sigma(S_1) = \{0\}\) and \(\sigma(S_2) = \sigma(S) \setminus \{0\}\). Since by assumption, \(S_1\) is convexoid it follows that \(W(S_1) = \text{conv} \sigma(S_1) = \{0\}\), and hence \(S_1 = 0\). Thus we have

\[S = \begin{pmatrix} 0 & 0 \\ 0 & S_2 \end{pmatrix} = SS'S \text{ with } S' = \begin{pmatrix} 0 & 0 \\ 0 & S_2^{-1} \end{pmatrix},\]

which says that \(S\) is regular, and therefore \(T\) is restriction-reguloid. \(\square\)

It was shown in ([24]) that Weyl's theorem holds for restriction-convexoid operators. We can prove more:
Theorem 1.2. Let $T \in \mathcal{L}(\mathcal{H})$. If either T or T^* is restriction-convexoid then Weyl’s theorem holds for T.

Proof. If T is restriction-convexoid then it follows from [24, Theorem 2.1] that Weyl’s theorem holds for T. Now suppose T^* is restriction-convexoid. Let $\lambda \in \pi_{00}(T)$. Then $\bar{\lambda} \in \text{iso } \sigma(T^*)$. Since T^* is restriction-convexoid, it follows from Lemma 1.1 that $T - \lambda$ has closed range. Therefore it follows from the punctured neighborhood theorem that $\lambda \in \sigma(T)\omega(T)$. Conversely, suppose $\lambda \in \sigma(T)\setminus \omega(T)$. Then $\bar{\lambda} \in \sigma(T^*)\setminus \omega(T^*)$. Since T^* is restriction-convexoid, Browder’s theorem holds for T^*. Therefore $\bar{\lambda} \in p_{00}(T^*)$. It follows from the fact $p_{00}(T^*) = p_{00}(T)^*$ that $\lambda \in \pi_{00}(T)$. This completes the proof. \qed

In 1970, S. Berberian ([5]) raised the following question: if T is restriction-convexoid and $\sigma(T)$ is countable, is T normal? We now give a partial answer.

Theorem 1.3. Let $T \in \chi$. If $\sigma(T)$ is countable then T is diagonal and normal.

Proof. Suppose $T \in \chi$ and $\sigma(T)$ is countable. Let δ be the set of all normal eigenvalues of T, i.e.,

$$\delta = \{ \lambda \in \pi_0(T) : N(T - \lambda I) = N(T^* - \bar{\lambda}I) \}.$$

We first claim that $\delta \neq \emptyset$. Since $\sigma(T)$ is countable, there exists a point $\lambda \in \text{iso } \sigma(T)$, so that $\lambda \in \pi_0(T)$ because by Lemma 1.1, T is isoloid. Using the spectral projection at $\lambda \in \mathbb{C}$ we can represent T as the direct sum

$$T = R \oplus S,$$

where $\sigma(R) = \pi_0(R) = \{ \lambda \}$ and $\sigma(S) = \sigma(T)\setminus \{ \lambda \}$.

Since by assumption R is convexoid, we have that $W(R) = \text{conv } \{ \lambda \} = \{ \lambda \}$ and thus $\lambda \in \pi_0(R) \cap \partial W(R)$. Then an argument of Bouldin [6, Lemma 1] shows that λ is a normal eigenvalue of R. By assumption we can write $T^* = R^* \oplus S^*$. But since $S^* - \bar{\lambda}I$ is invertible, it follows

$$N(T - \lambda I) = N(R - \lambda I) = N(R^* - \bar{\lambda}I) = N(T^* - \bar{\lambda}I),$$

which implies that $\delta \neq \emptyset$. Now if \mathfrak{M} is the closed linear span of the eigenspaces $N(T - \lambda I)$ ($\lambda \in \delta$), then \mathfrak{M} reduces T. Write

$$T_1 := T|\mathfrak{M} \quad \text{and} \quad T_2 := T|\mathfrak{M}^\perp.$$
Then an argument of Berberian [3, Proposition 4.1] shows that (i) T_1 is normal and diagonal; (ii) $\pi_0(T_1) = \delta$; (iii) $\sigma(T_1) = \text{cl} \delta$; (iv) $\pi_0(T_2) = \pi_0(T) \setminus \delta$. Thus it will suffice to show that $\mathfrak{M}^\perp = \{0\}$. Assume to the contrary that $\mathfrak{M}^\perp \neq \{0\}$. Then since $\sigma(T_2)$ is also countable, there exists a point $\mu \in \text{iso} \sigma(T_2)$. Since by assumption T_2 is restriction-convexoid and hence isoloid, it follows that $\mu \in \pi_0(T_2)$ and $\mu \notin \delta$. Thus using the spectral projection at $\mu \in \mathbb{C}$, we can decompose T_2 as the direct sum

$$T_2 = T_3 \oplus T_4,$$

where $\sigma(T_3) = \pi_0(T_3) = \{\mu\}$ and $\sigma(T_4) = \sigma(T_2) \setminus \{\mu\}$. Since again T_3 is convexoid, the same argument as the above gives that μ is an isolated normal eigenvalue of T_3 and further by assumption $T_2 = T_3^* \oplus T_4^*$. But since $T_1 - \mu I$ and $T_4 - \mu I$ are both one-one we have

$$N(T - \mu I) = N(T_3 - \mu I) = N(T_3^* - \mu I).$$

Further since $\pi_0(T_4^*) = \delta$ and $\bar{\mu} \notin \sigma(T_3^*)$, it follows that $N(T^* - \bar{\mu} I) = N(T_3^* - \bar{\mu} I)$, and therefore $N(T - \mu I) = N(T^* - \bar{\mu} I)$, which implies that $\mu \in \delta$, giving a contradiction. This completes the proof. \hfill \Box

We have been unable to answer if restriction-convexoid operators are reduced by each of its eigenspaces corresponding to isolated eigenvalues. If the answer were affirmative then we would answer Berberian question affirmatively.

We recall that an operator $T \in \mathcal{L(H)}$ is called a Riesz operator if $\sigma_e(T) = \{0\}$. We then have:

Corollary 1.4. *If $T \in \chi$ is Riesz then T is compact and normal.*

Proof. By Theorem 1.3, T is normal with pure point spectrum. Note that the nonzero eigenvalues are Riesz points, so that they are either finite or form a null sequence, which implies that T is compact. \hfill \Box

An operator $T \in \mathcal{L(H)}$ is said to be *polynomially compact* if there exists a nonzero complex polynomial p such that $p(T)$ is compact. S. Berberian ([3]) considered a relationship between the polynomial compactness of the operator and the finiteness of its Weyl spectrum, and gave several sufficient conditions for the finiteness of the Weyl spectrum; for example, if T is a
semisnormal operator then T is polynomiably compact if and only if $\omega(T)$ is finite. Observe

(1.4.1) \hspace{1em} T \text{ is polynomiably compact} \implies \omega(T) \text{ is finite:}

indeed if $p(T)$ is compact then $p(\sigma_c(T)) = \sigma_c(p(T)) = \{0\}$, so that $\sigma_c(T)$ is finite, which together with (0.1) implies that $\sigma_c(T) = \omega(T)$. Recently, the finiteness of the Weyl spectrum was characterized in ([11]).

Lemma 1.5 ([11, Lemma 3]). If $\omega(T)$ is finite then $T \in \mathcal{L}(\mathcal{H})$ is decomposed into the finite direct sum

(1.5.1) \hspace{1em} T = \bigoplus_{i=1}^{n} (N_i + K_i + \lambda_i I),

where the N_i are quasinilpotents, the K_i are compact, and $\{\lambda_1, \cdots, \lambda_n\} = \omega(T)$.

The following corollary provides a structure theorem for polynomiably compact χ-class operators (Compare with [5, Theorem 3]):

Corollary 1.6. If $T \in \chi$ then the following statements are equivalent:

(a) T is polynomiably compact;
(b) $\omega(T)$ is finite;
(c) T is the direct sum of finitely many thin normal operators, i.e.,

(1.6.1) \hspace{1em} T = \bigoplus_{i=1}^{n} (R_i + \lambda_i I),

where the R_i are compact normal operators.

Proof. (a)\(\Rightarrow\)(b): This comes from (1.4.1).
(b)\(\Rightarrow\)(c): If $\omega(T)$ is finite then (1.5.1) holds with Riesz operators R_i. Thus if $T \in \chi$ then so is each R_i, and therefore it follows from Corollary 1.4 that each R_i is a compact normal operator.
(c)\(\Rightarrow\)(a): Suppose T satisfies (1.6.1). Then $p(T)$ is compact, where $p(z) = (z - \lambda_1) \cdots (z - \lambda_n)$, with λ_i as in (c).

In [10, Solution 178], it was shown that if T is normal and if T^n is compact for some $n \in \mathbb{N}$ then T is compact. We can prove more:
COROLLARY 1.7. If $T \in \chi$ and if T^n is compact for some $n \in \mathbb{N}$ then T is a diagonal compact operator.

Proof. If $T \in \chi$ and if T^n is compact for some $n \in \mathbb{N}$ then it follows from Corollary 1.6 that $\sigma(T)$ is countable. Thus by Theorem 1.3, T is a diagonal normal operator with diagonal $\{\alpha_m\}_{m=1}^{\infty}$. But since T^n is a diagonal compact operator with diagonal $\{\alpha_m^n\}_{m=1}^{\infty}$, we can see that $\alpha_m^n \to 0$, so that $\alpha_m \to 0$. Therefore T is a diagonal compact operator. \hfill \Box

We consider here a relationship between convexoid operators and their spectral sets. Recall that a compact set σ in \mathbb{C} is called a *spectral set* for $T \in \mathcal{L}(\mathcal{H})$ if $\sigma(T) \subseteq \sigma$ and if $\|f(T)\| \leq \|f\|_\sigma := \max_{z \in \sigma} |f(z)|$ for every rational function f with poles off σ. The following results are well-known:

(i) The closed unit disk \mathbb{D} is a spectral set for every contraction operator ([26]).

(ii) The spectrum of a subnormal operator is a spectral set ([1], [18]).

(iii) There exists a hyponormal operator whose spectrum contains a disk and is not a spectral set ([27]).

We now have:

THEOREM 1.8. If $\text{conv} \sigma(T)$ is a spectral set for $T \in \mathcal{L}(\mathcal{H})$ then T is convexoid.

Proof. Suppose $\text{conv} \sigma(T)$ is a spectral set for T. Thus $\|f(T)\| \leq \|f\|_{\text{conv} \sigma(T)}$ for every rational function f with poles off $\text{conv} \sigma(T)$. If K is a convex subset of \mathbb{C}, write $\text{Ext} K$ for the set of extreme points of K. Observe that if K is a compact convex set in \mathbb{C}, then $\|z\|_K$ occurs on $\text{Ext} K$. But by the Krein-Milman theorem,

$$\text{conv} \sigma(T) = \overline{\text{conv}} \left(\text{Ext} \sigma(T) \right) \quad \text{and} \quad \text{Ext} \left(\text{conv} \sigma(T) \right) \subseteq \sigma(T),$$

where $\overline{\text{conv}}$ denotes the closed convex-hull. Thus for every $\lambda \in \mathbb{C},$

$$r(T - \lambda I) \leq \|T - \lambda I\| \leq \|z - \lambda\|_{\text{conv} \sigma(T)} = \|z\|_{\text{conv} \sigma(T - \lambda I)} = \|z\|_{\text{Ext} \text{conv} \sigma(T - \lambda I)} = \|z\|_{\sigma(T - \lambda I)} = r(T - \lambda I),$$

which implies that $r(T - \lambda I) = \|T - \lambda I\|$ for every $\lambda \in \mathbb{C}$. This says that $T - \lambda I$ is normaloid for every $\lambda \in \mathbb{C}$. It therefore follows that T is convexoid ([4]). \hfill \Box
Note that $\sigma(T)$ need not be a spectral set for T even though $\text{conv } \sigma(T)$ is. For example if S is the bilateral shift on $L^2(\mathbb{T})$ of the unit circle \mathbb{T}, take

$$(1.8.1) \quad T = S \oplus \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

where the second summand is a two-dimensional operator. Then $\sigma(T) = \mathbb{T} \cup \{0\}$. Choose $f(z) = (z - \frac{1}{2})^{-1}$. Then $\|f\|_{\sigma(T)} = 2$, but $\|f(T)\| \geq \|\begin{pmatrix} -2 & -4 \\ 0 & -2 \end{pmatrix}\| > 2$, which implies that $\sigma(T)$ is not a spectral set for T. But since $\text{conv } \sigma(T) = \mathbb{D}$ and T is a contraction operator it follows from the statement (i) in the remark above Theorem 1.8 that $\text{conv } \sigma(T)$ is a spectral set for T. Also note that the conclusion of Theorem 1.8 cannot be strengthened by "reduction-convexoid": for example consider the operator T defined by (1.8.1).

2. Commutators

A commutator is an operator of the form $AB - BA$. Then Brown-Pearcy theorem [7, Theorem 3] says that $T \in \mathcal{L}(\mathcal{H})$ is a noncommutator if and only if T is of the form $K + \lambda I$, where $\lambda \neq 0$ and K is compact. Thus we have that

$$(2.0.1) \quad T \text{ is a noncommutator } \implies \omega(T) = \{\lambda\}, \; \lambda \neq 0.$$

But the converse of (2.0.1) is, in general, not true. We however have:

THEOREM 2.1. If $T \in \chi$ and $\omega(T) = \{\lambda\}, \; \lambda \neq 0$, then T is a noncommutator.

Proof. Suppose $\omega(T) = \{\lambda\}, \; \lambda \neq 0$. Then $\sigma_{e}(T) = \{\lambda\}$, and hence $\sigma_{e}(T - \lambda I) = \{0\}$. Thus if $T \in \chi$ and hence so is $T - \lambda I$, then it follows from Corollary 1.4 that $T - \lambda I$ is a compact operator. Therefore by the Brown-Pearcy theorem, T is a noncommutator. \square

In Theorem 2.1, "restriction-convexoid in the definition of χ" cannot be replaced by "convexoid". To see this, let on ℓ_2

$$T = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \oplus \left[\left(\frac{1}{3} \right) 0 \right] \otimes 1_\infty \right].$$
Then we have that (i) \(\omega(T) = \{ \frac{1}{3} \} \); (ii) \(T \) is convexoid because \(\text{conv } \sigma(T) = W(T) \), which is the equilateral triangle whose vertices are the three cube roots of 1; (iii) \(T \) is a commutator because \(T \) has a "large" kernel (see [10, Problem 234]); (iv) \(T \) is not reduction-convexoid because \(\left(\begin{array}{ccc} 1 & 0 \\ \frac{1}{3} & \frac{1}{3} \end{array} \right) \) is not convexoid.

Theorem 2.2. If either \(\sigma(A) \) or \(\sigma(B) \) is not a singleton set then \(A \otimes B \) is a commutator. In particular if either \(A \) or \(B \) is a nonconstant convexoid operator then \(A \otimes B \) is a commutator.

Proof. Suppose either \(\sigma(A) \) or \(\sigma(B) \) is not a singleton set. Since [16, Theorem 4.2]

\[
\omega(A \otimes B) = \omega(A) \cdot \sigma(B) \cup \sigma(A) \cdot \omega(B),
\]

it follows that either \(\omega(A \otimes B) = \{0\} \) or \(\omega(A \otimes B) \) has at least two elements. Thus by (2.0.1), \(A \otimes B \) is a commutator. This proves the first assertion. For the second assertion we suppose that \(A \) is nonconstant and convexoid. In view of the first assertion it suffices to show that \(\sigma(A) \) is not a singleton set. Assume to the contrary that \(\sigma(A) = \{ \lambda \} \), \(\lambda \in \mathbb{C} \). Then \(A - \lambda I \) is convexoid and quasinilpotent. But since the only convexoid quasinilpotent is 0, it follows that \(A = \lambda I \), giving a contradiction. This completes the proof.

A **self-commutator** is an operator of the form \(A^* A - AA^* \). Then Radjavi's theorem ([25]) says that a self-adjoint operator \(T \in \mathcal{L}(\mathcal{H}) \) is a self-commutator if and only if \(0 \in \text{conv } \omega(T) \). Thus the Radjavi's theorem gives the following:

Theorem 2.3. If \(T \in \mathcal{L}(\mathcal{H}) \) is a self-adjoint operator whose direct summands are nonconstant then \(T \) is a self-commutator if and only if either \(0 \in \omega(T) \) or \(T \) is not semi-definite.

Proof. If \(0 \in \omega(T) \), then evidently \(T \) is a self-commutator. If instead \(T \) is not semi-definite, then there exist \(\lambda, \mu \in \sigma(T) \) such that \(\lambda > 0 \) and \(\mu < 0 \). We now claim that \(\lambda, \mu \in \omega(T) \). Assume to the contrary that \(\lambda \notin \omega(T) \). Then it follows from Weyl's theorem that \(\lambda \in \text{iso } \sigma(T) \). Thus \(T \) should be of the form \(T = \lambda I \oplus S \), which contradicts to our assumption. Therefore we have that \(0 \in \text{conv } \omega(T) \), and hence by the Radjavi's theorem, \(T \) is a self-commutator. The converse is evident.

\(\square \)
Theorem 2.3 is readily applicable for self-adjoint operators with no eigenvalues (e.g., Toeplitz operators with real-valued symbols).

An invertible operator $T \in \mathcal{L}(\mathcal{H})$ is called a multiplicative commutator if it is of the form $ABA^{-1}B^{-1}$. By contrast, a commutator $AB - BA$ is often called an additive commutator. It is known that if T is a multiplicative commutator of the form $K + \lambda I$, where K is compact and $\lambda \in \mathbb{C}$, then $|\lambda| = 1$ ([8, Theorem 1], [10, Problem 238]). It remains open whether a multiplicative commutator is not of the form $K + \lambda I$, where $|\lambda| \neq 1$ and K is compact. But another argument of Brown and Pearcy [8, Theorem 5] shows that an invertible normal operator $T \in \mathcal{L}(\mathcal{H})$ is a multiplicative commutator if and only if T is not of the form $K + \lambda I$, where $|\lambda| \neq 1$ and K is compact. Thus if $T \in \mathcal{L}(\mathcal{H})$ is invertible and normal then

\begin{equation}
(2.3.1) \quad T \text{ is not a multiplicative commutator } \implies \omega(T) = \{\lambda\}, \quad |\lambda| \neq 1.
\end{equation}

The following theorem shows that the converse of (2.3.1) is also true with a weaker condition:

Theorem 2.4. If $T \in \chi$ is invertible and $\omega(T) = \{\lambda\}$, then

$$T \text{ is a multiplicative commutator } \iff |\lambda| = 1.$$

Proof. If $\omega(T) = \{\lambda\}$, then $\sigma_\omega(T - \lambda I) = \{0\}$. By Corollary 1.4, $T - \lambda I$ is a compact normal operator, say K. But then $T = K + \lambda I$ is invertible and normal. Therefore by the Brown-Pearcy characterization [8, Theorem 5], T is a multiplicative commutator if and only if $|\lambda| = 1$. \qed

Theorems 2.1 and 2.4 show that if T is an invertible χ-class operator and $\omega(T) = \{\lambda\}$, it is impossible that T is both a multiplicative and an additive commutator: for if $|\lambda| = 1$, then T is a multiplicative commutator but not an additive commutator, and if $|\lambda| \neq 1$, then T is neither a multiplicative nor an additive commutator.

Acknowledgement. We are grateful to Professor Woo Young Lee for helpful suggestions and conversations concerning the paper.

References

Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea
E-mail: ymhan@math.skku.ac.kr

Department of Mathematics, Changwon National University, Changwon 641-773, Korea
E-mail: ahkim@sarim.changwon.ac.kr