SPECTRAL PROPERTIES OF
BIPARTITE TOURNAMENT MATRICES

YOUNGMEE KOH AND SANGWOOK Ree

ABSTRACT. In this paper, we look at the spectral bounds of a bipartite tournament matrix \(M \) with arbitrary team size. Also we find the condition for the variance of the Perron vector of \(M \) to vanish.

1. Introduction

Let \(p \) and \(q \) be positive integers. A digraph obtained by orienting each edge of the complete bipartite graph \(K_{p,q} \) is called a bipartite tournament with team size \(p \) and \(q \), and the associated adjacency \((0,1)\)-matrix is called a bipartite tournament matrix. It is interpreted as the result of a round-robin competition between two teams in which each player in a team competes every player in the other team.

We assume that two teams respectively consist of players in the sets \(\{1, 2, \ldots, p\} \) and \(\{p+1, p+2, \ldots, p+q\} \). Let \(p + q = n \). Then a bipartite tournament matrix of order \(n \) with team size \(p \) and \(q \) is written \(M = \begin{bmatrix} O_p & A \\ B & O_q \end{bmatrix} \), where \(O_p \) is the zero matrix of order \(p \), \(A \) is a \(p \times q \) \((0,1)\)-matrix, and \(B = J_{q,p} - A^t \), where \(J_{q,p} \) is the \(q \times p \) matrix with 1’s for all entries. The matrix \(M \) satisfies

\[
M + M^t = J_n - \begin{bmatrix} J_p & O_{p,q} \\ O_{q,p} & J_q \end{bmatrix} = \begin{bmatrix} O_p & J_{p,q} \\ J_{q,p} & O_q \end{bmatrix},
\]

where \(O_{p,q} \) is the \(p \times q \) zero matrix and \(J_n = J_{n,n} \).

A matrix \(M \) is called reducible if \(P M P^t = \begin{bmatrix} M_1 & O \\ * & M_2 \end{bmatrix} \) for some permutation matrix \(P \), where \(M_1 \) and \(M_2 \) are nonvacuous square matrices, and irreducible otherwise. If a bipartite tournament matrix \(M \) is reducible,
then the submatrices M_1 and M_2 of PMP^t are again bipartite tournament matrices. To study the spectral properties of M, it is enough to look at its irreducible components.

It is well known by Perron-Frobenius theorem [1] that a nonnegative irreducible matrix M has its spectral radius ρ as a positive eigenvalue, called the Perron value, and a corresponding eigenvector consists of all positive coordinates, and the eigenvector the sum of whose coordinates is 1 is called the Perron vector of M.

We find the spectral bounds of an irreducible bipartite tournament matrix M with arbitrary team size p and q. Especially, when M is normal, M has two nonzero real eigenvalues $\pm \sqrt{pq}/2$, and the variance of the Perron vector of M vanishes if and only if $M1 = \frac{n}{q}1$, where $n = p + q$.

2. Spectral Properties

Let M be a bipartite tournament matrix with team size $p \leq q$, $p+q = n$ and let λ be an eigenvalue of M and v an eigenvector such that $Mv = \lambda v$.

Pre- and post-multiplying v to equality (1) and applying Schwartz inequality, we obtain

$$
(2 \Re \lambda) v^* v = v^* (M + M^t) v
$$

$$
= v^* J_n v - \begin{bmatrix} \bar{v}_1, \ldots, \bar{v}_n \end{bmatrix} \begin{bmatrix} J_p & O_{p,q} \\ O_{q,p} & J_q \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}
$$

$$
= |v^* 1|^2 - \sum_{i=1}^{p} v_i \cdot \sum_{i=p+1}^{n} v_i - \sum_{i=1}^{n} \bar{v}_i \cdot \sum_{i=p+1}^{n} v_i
$$

$$
\geq |v^* 1|^2 - p (|v_1|^2 + \cdots + |v_p|^2) - q (|v_{p+1}|^2 + \cdots + |v_n|^2)
$$

$$
\geq |v^* 1|^2 - q v^* v,
$$

where $1 = (1, \ldots, 1)^t$.

The variance of a vector $v = (v_1, \ldots, v_n)^t$ is defined by

$$
\text{var } v = \sum_{1 \leq i < j \leq n} |v_i - v_j|^2.
$$

Let M be an irreducible bipartite tournament matrix with team size $p \leq q$, $p+q = n$, ρ the Perron value of the matrix, and $v = (v_1, \ldots, v_n)^t$
the corresponding eigenvector. Denote
\[v^{(1)} = (v_1, \ldots, v_p)^t, \quad v^{(2)} = (v_{p+1}, \ldots, v_n)^t \]
\[w = (w_1, w_2)^t, \quad w_1 = \sum_{i=1}^{p} v_i, \quad w_2 = \sum_{i=p+1}^{n} v_i. \]

Pre- and post-multiplying \(v \) to equality (1), we have
\[
v^*(M + M^t)v = [\bar{v}_1, \ldots, \bar{v}_n] \begin{bmatrix} O_p & J_{p,q} \\ J_{q,p} & O_q \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = w^*w - |w_1 - w_2|^2.
\]

Since
\[
w^*w = |v_1 + \cdots + v_p|^2 + |v_{p+1} + \cdots + v_n|^2
\]
\[= p(|v_1|^2 + \cdots + |v_p|^2) - \sum_{1 \leq i < j \leq p} |v_i - v_j|^2
\]
\[+ q(|v_{p+1}|^2 + \cdots + |v_n|^2) - \sum_{p+1 \leq i < j \leq n} |v_i - v_j|^2
\]
\[= p v^{(1)*}v^{(1)} + q v^{(2)*}v^{(2)} - \text{var} v^{(1)} - \text{var} v^{(2)},
\]
we have
\[2\rho v^*v = p v^{(1)*}v^{(1)} + q v^{(2)*}v^{(2)} - \text{var} v^{(1)} - \text{var} v^{(2)} - \text{var} w
\]
or
\[0 \leq \text{var} v^{(1)} + \text{var} v^{(2)} + \text{var} w
\]
\[= (p - 2\rho) v^{(1)*}v^{(1)} + (q - 2\rho) v^{(2)*}v^{(2)}
\]
\[\leq (q - 2\rho) v^*v.
\]

Theorem 1. Let \(M \) be an irreducible bipartite tournament matrix with team size \(p \leq q, p + q = n \), and \(\rho \) the Perron value of \(M \). Then, for an eigenvalue \(\lambda \) of \(M \),

(i) \[-\frac{n}{2} \leq \text{Re} \lambda \leq \frac{n}{2}. \]

(ii) \(\text{Re} \lambda = -\frac{n}{2} \) if and only if \(p = q = \frac{n}{2}, \lambda = -\rho = -\frac{n}{4} \) and the corresponding eigenvector is \(v = (1, \ldots, 1, -1, \ldots, -1)^t \).

(iii) \(\text{Re} \lambda = \frac{n}{2} \) if and only if \(p = q = \frac{n}{2}, \lambda = \rho = \frac{n}{4} \) and the corresponding eigenvector is \(1 = (1, \ldots, 1)^t \).
Since \(M = \begin{bmatrix} O_p & A \\ B & O_q \end{bmatrix} \), when \(p = q = \frac{n}{2} \), \(M1 = \frac{n}{4}1 \) if and only if \(Mv = -\frac{n}{4}v \), where \(v = (1, \ldots, 1, -1, \ldots, -1)^t \). In other words, \(M \) has either both eigenvalues \(\frac{n}{2} \) and \(-\frac{n}{2} \) or for any eigenvalue \(\lambda \), \(|\lambda| \leq \rho < \frac{n}{2} \). Note here that \(\frac{n}{4} \) is the row sum of \(M \) and so \(n \) is a multiple of 4.

Proof. From inequality (2), \((2 \Re \lambda + q) v^*v \geq 0 \) implies \(\Re \lambda \geq -\frac{q}{2} \), where the equality holds if and only if \(p = q = \frac{n}{2} \), \(v_1 = \cdots = v_p = v_{p+1} = \cdots = v_n \), and \(v^*1 = \sum_{i=1}^n v_i = 0 \). So \(\Re \lambda = -\frac{q}{2} \) if and only if \(p = q = \frac{n}{2} \) and the corresponding eigenvector is \(v = (1, \ldots, 1, -1, \ldots, -1)^t \).

On the other hand, using inequality (3), we have \(\Re \lambda \leq \rho \leq \frac{n}{2} \). And \(\Re \lambda = \rho = \frac{q}{2} \) if and only if \(p = q \) and \(\var v^{(1)} = \var v^{(2)} = \var w = 0 \), i.e., the corresponding eigenvector is 1.

Corollary 2. Let \(p = q = \frac{n}{2} \), and let \(u = (u_1, \ldots, u_n)^t \) be an eigenvector of \(M \), whose Perron value is \(\frac{n}{4} \), corresponding to an eigenvalue \(\mu \) with \(\Re \mu \neq -\frac{n}{4} \). Then \(u_1 + \cdots + u_p = u_{p+1} + \cdots + u_n \).

Proof. From theorem 1, \(v = (1, \ldots, 1, -1, \ldots, -1)^t \) is the eigenvector of \(M \) corresponding to \(-\frac{n}{4} \). Pre- and post-multiplying \(v \) and \(u \) to equality (1), we obtain

\[
\left(-\frac{n}{4} + \mu\right)v^*u = v^*(M + M^t)u \\
= v^*J_nu - v^* \begin{bmatrix} \frac{n}{2} & O_{\frac{n}{2}} \\ O_{\frac{n}{2}} & \frac{n}{2} \end{bmatrix} u \\
= 0 - \frac{n}{2} v^*u
\]

So we have \(v^*u = 0 \). \(\square \)

3. Eigenvalues for normal bipartite tournament matrices

Now, we assume that \(M \) is an irreducible normal bipartite tournament matrix with team size \(p \leq q, p + q = n \). Then \(M \) satisfies \(MM^t = M^tM \).

We have shown [5] that \(M \) is normal if and only if the row sums of \(A \) = the column sums of \(B = \frac{n}{2} \) and the row sums of \(B \) = the column sums of \(A = \frac{n}{2} \). \(A \) and \(B \) have the same number of 1's, in other words, in a normal bipartite tournament, the total numbers of winning games of the two teams are equal.
Since M, M^t, and $M + M^t$ all commute, they are simultaneously diagonalizable by a unitary matrix P. Let $\lambda_1, \ldots, \lambda_n$ and μ_1, \ldots, μ_n be the eigenvalues of M and $M + M^t = \begin{bmatrix} O_p & J_{p,q} \\ J_{q,p} & O_q \end{bmatrix}$, respectively. Then we have

$$\begin{bmatrix} 2 \text{Re} \lambda_1 & 0 \\ \vdots & \ddots \\ 0 & 2 \text{Re} \lambda_n \end{bmatrix} = P^*MP + (P^*MP)^*$$

(4)

$$= P^*(M + M^t)P = \begin{bmatrix} \mu_1 & 0 \\ \vdots & \ddots \\ 0 & \mu_n \end{bmatrix}.$$

Since the eigenvalues of J_k are 0 (mult. $k - 1$) and k, the eigenvalues of $(M + M^t)^2 = \begin{bmatrix} qJ_p & O_{p,q} \\ O_{q,p} & pJ_q \end{bmatrix}$ are 0 (mult. $n - 2$) and pq (mult. 2). From tr$(M + M^t) = 0$, we can see that the eigenvalues of $M + M^t$ should be 0 (mult. $n - 2$), \sqrt{pq}, and $-\sqrt{pq}$. Hence, by (4), the eigenvalues of M are $\rho = \frac{1}{2} \sqrt{pq}$, $-\rho = -\frac{1}{2} \sqrt{pq}$ and $n - 2$ purely imaginaries including 0.

Note that M can have 0 as an eigenvalue with multiplicity at most $n - 4$, since tr$M^2 = 0$. In fact, a bipartite irreducible tournament matrix M has at least 4 distinct eigenvalues [4], which means that M has at least two nonzero purely imaginary eigenvalues.

Theorem 3. An irreducible normal bipartite tournament matrix M has eigenvalues two nonzero real $\rho = \frac{\sqrt{pq}}{2}$, $-\rho = -\frac{\sqrt{pq}}{2}$, 2k purely imaginaries, and 0 of multiplicity $n - 2k - 2$, for some $k \geq 1$.

Remark that in the above theorem when $p = q = \frac{n}{2}$, a normal tournament matrix is also a regular matrix where the row sums of M are all constant $\frac{n}{2}$, and vice versa [5]. So when team sizes are equal, the eigenvalues of a regular bipartite tournament matrix M are two nonzero integer $\rho = \frac{n}{4}, -\frac{n}{4}$, 2k purely imaginaries, and 0(mult. $n - 2k - 2$), for some $k \geq 1$.

4. The variance of the Perron vector

We have seen that $-\frac{q}{2} \leq \text{Re} \lambda \leq \frac{q}{2}$ and $\text{Re} \lambda = \frac{q}{2}$ is achieved when $p = q, \lambda = \rho$ for a regular bipartite tournament matrix M, that is, when M satisfies $M1 = \rho1, \rho = \frac{n}{4}$. In this case, the Perron vector v satisfies $\text{var} v^{(1)} = \text{var} v^{(2)} = \text{var} w = 0$, which implies that the players in the first
and the second teams are evenly ranked and two teams get the same ranking according to Kendall-Wei scheme [3,7].

Now, we assume that

\[
\text{var } v^{(1)} = \text{var } v^{(2)} = \text{var } w = 0,
\]

for an eigenvector \(v \) corresponding to an eigenvalue \(\lambda \) of an irreducible bipartite tournament matrix \(M \) with team size \(p \leq q, p + q = n \).

Equation (5) holds if and only if \(v_1 = \cdots = v_p, v_{p+1} = \cdots = v_n, \) and \(v_1 + \cdots + v_p = v_{p+1} + \cdots + v_n \), equivalently, if and only if \(v = (q, q, \ldots, q, p, \ldots, p)^t \)

\[
p \text{ times } q \text{ times}
\]

is an eigenvector corresponding to \(\lambda \).

From \(Mv = \lambda v \), we obtain

\[
\begin{bmatrix}
ps_1 \\
\vdots \\
ps_p \\
qt_1 \\
\vdots \\
qt_q
\end{bmatrix} = \begin{bmatrix}
O_p & A \\
B & O_q
\end{bmatrix} \begin{bmatrix}
q \\
\vdots \\
p
\end{bmatrix} = \lambda \begin{bmatrix}
q \\
\vdots \\
p
\end{bmatrix},
\]

where \((s_1, \ldots, s_p)^t \) and \((t_1, \ldots, t_q)^t \) are the row sum vectors of \(A \) and \(B \), respectively. So we have \(s_1 = \cdots = s_p = s, t_1 = \cdots = t_q = t \), and

\[
\text{(6) } ps = \lambda q, \quad qt = \lambda p.
\]

Since \(M \) satisfies (1), the number of 1's in \(M \) is \(pq \), and so \(s \) and \(t \) should satisfy \(ps + qt = pq \). Then using (6), we obtain \(\lambda = \frac{ps + qt}{p + q} = \frac{pq}{p + q} = \frac{pq}{n} \), and the row sums of \(A \) and \(B \) are \(s = \frac{q^2}{n} \) and \(t = \frac{p^2}{n} \), respectively.

Here we see that \(n = p + q \) is of the form \(n = a^2b \) for an integer \(a \geq 2 \) and a square free integer \(b \geq 1 \), and \(p \) and \(q \) have \(ab \) as a common divisor. For, if \(n \) is not divisible by a square, \(n \) can be written \(n = \prod_{i=1}^{m} p_i \), for some distinct primes \(p_i, i = 1, \ldots, m \). Then \(n|p^2 \) implies each \(p_i|p \) and so \(n|p \), which is a contradiction. Now, the fact that \(n = a^2b \) divides both \(p^2 \) and \(q^2 \) implies \(a|p, a|q \) and \(b|p, b|q \). Hence we have \(p = abk \) and \(q = ab(a - k) \), where \(1 \leq k \leq \lfloor \frac{q}{p} \rfloor \), and \(\lambda = \frac{pq}{n} = bk(a - k) \) is a positive integer. We summarize these results in the following theorem.

Theorem 4. Let \(M \) be an irreducible bipartite tournament matrix with team size \(p \leq q, p + q = n \). Suppose an eigenvector \(v \) of \(M \) satisfies (5).
Then there exist an integer \(a \geq 2 \), a square free integer \(b \geq 1 \), and an integer \(k \) with \(1 \leq k \leq \left[\frac{a}{2} \right] \) such that the team sizes of this tournament are \(p = abk \) and \(q = ab(a - k) \); the corresponding eigenvalue is \(\lambda = bk(a - k) \), which is a positive integer; the row sums of \(A \) and \(B \) are constants \(s = b(a - k)^2 \) and \(t = bk^2 \), respectively.

In particular, when \(a \) is even and \(k = \frac{a}{2} \), we have a regular bipartite tournament matrix \(M \) with team size \(p = q = \frac{a}{2} \), that is, row sums of \(M \) are all constant \(\frac{n}{4} \).

Corollary 5. Let \(M \) in theorem 4 be normal. Equation (5) holds for the Perron vector \(v \) if and only if \(M \) is regular, that is, \(M1 = \frac{n}{4}1 \).

Proof. It suffices to prove the necessity. Since \(M \) is normal, the row sums of \(A \) = the column sums of \(B = s = \frac{n}{2} \) and the row sums of \(B = \) the column sums of \(A = t = \frac{n}{2} \) [5]. The Perron value is \(\rho = \frac{\sqrt{pt}}{2} \) by theorem 3. On the other hand, from equation (6) with \(\lambda = \rho \), we have \(\rho = \frac{p}{q} \cdot \frac{n}{2} = \frac{n}{2} \). Hence, we obtain \(p = q = \frac{n}{2} \) and \(\rho = \frac{n}{4} \), which means \(M1 = \frac{n}{4}1 \), by theorem 1. \(\square \)

Note that we can rewrite corollary 5 as equation (5) holds for the Perron vector \(v \) if and only if \(p = q = \frac{n}{2} \); for when \(p = q \), \(M \) is normal if and only if it is regular [5].

Acknowledgement. The authors would like to thank the referee whose careful reading this paper has led to some corrections and the clarification of the last section.

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SUWON, SUWON P. O. BOX 77,
KYUNGI-DO 440-600, KOREA
E-mail: ymkoh@mail.suwon.ac.kr
swree@mail.suwon.ac.kr