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COUNTING SELF-CONVERSE ORIENTED TREES

SUuJEONG CHOI AND CHANGWOO LEE

ABSTRACT. We classify self-converse oriented trees into two types,
namely, bicentral self-converse oriented trees and central ones, accord-
ing to their centers and characterize these two types. Using charac-
terizations and Pélya enumeration theorem, we derive the ordinary
generating function for self-converse oriented trees.

1. Introduction

A graph G consists of a finite nonempty set V' = V(G) of p vertices
together with a set £ = E(G) of ¢ unordered pairs of distinct vertices of
V. We say that the graph G has order p and size q. A pair e = {u,v} of
vertices in E is called an edge of the graph G. Perhaps the most important
type of graph is a tree, because of its applications to many different fields.
A tree is a connected graph with no cycles. An oriented free is a tree in
which each edge is assigned a unique direction, and a self-converse oriented
tree is an oriented tree 7' whose converse T’ obtained from T by reversing
the direction of all edges is isomorphic to 7. For definitions and notation
not given here, see (1] and [2].

The object of this paper is to count the number of self-converse oriented
trees. In particular, we show that the ordinary generating function s(x) for
self-converse oriented trees is

s(z) = ¢+ z° + % + 22 +32° + 72 + 1027 + 2628
+ 397 + 1072 + 160z} + 45822 + 702213
+ 2058z + 31772'% + 9498216 + 1483027
+ 4494728 4 70678z'° + 216598z 1. - .
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2. Characterization

We want to characterize self-converse oriented trees. To do this, we need
the following definitions. Let G be a connected graph and let v be a vertex
of G. The eccentricity e(v) of v is the distance from v to a vertex farthest
from v. Thus e(v) = maz{d(u,v) : v € V}, where d{u,v) is the length
of a shortest path from u to v. The radius r(G) of G is the minimum
eccentricity of the vertices. Now v is a central vertez if e(v) = 7(G), and
the center C(G) of G is the set of all central vertices. Thus, the center:
consists of all vertices having minimum eccentricity.

THEOREM 1. [4, p. 55] The center of a tree consists of either a single
vertex or a pair of adjacent vertices.

A tree is called centrol or bicentral depending on whether its center
consists of a single vertex or two adjacent vertices. An oriented tree is called
central or bicentral according as its underlying tree is central or bicentral.

Using the centers of oriented trees, we characterize self-converse oriented
trees as follows:

THEOREM 2. Let T be an oriented tree.

(1) If T is bicentral, then T Is self-converse if and only if T' corresponds
to an ordered pair (A, A’) of two rooted oriented trees A and A’ such that
A’ is the converse of A. Moreover, the order of a bicentral self-converse
oriented tree T' must be even.

(2) If T is central, then T is self-converse if and only if T corresponds
to a combination with repetition of n ordered pairs (A, A]), (Ag, A%), -+ -,
(An, A},) of rooted oriented trees A; and A} such that A] is the converse of
A; fori=1,2,...,n. Moreover, the order of a central self-converse oriented
tree T must be odd.

PROOF. (1) Let T be a bicentral self-converse oriented tree, and let both
r and 7’ be the adjacent central vertices of T" with the direction from 7 to
r’. Remove the arc rr’ from T and designate v and r’ as roots. Then we
have an ordered pair (A, A") of two rooted oriented trees A and A’ with
roots + and 7’ respectively. Clearly, A’ is the converse of A.

Now, suppose that we have an ordered pair (A, A’) of two oriented trees
A and A’ with roots r and +’ respectively such that A’ is the converse of A.
To construct a bicentral self-converse oriented tree T from this pair, just
add a new arc rr'.

It is straightforward to see that the order of T is even in this case.

(2) Let T' be a central self-converse oriented tree and consider the center
r of T as a root. Delete this root r from T and introduce new roots for the
resulting trees as components. These roots are vertices adjacent from or to
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r. Then, the rooted branches come in pairs A; and A} that are converses
each other. Now we form ordered pairs (A4;, A}) in such a way that the root
of A; is adjacent to v and the root of A] is adjacent from r.

Suppose that we have ordered pairs (A;, A}), (A2, 45), ---, (An, A)
of rooted oriented trees A; and A} such that A; is the converse of A; for
i =1,2,...,n. We want to construct a central self-converse oriented tree

T from these pairs as follows. Add one new vertex and make it adjacent
from or to each of the roots of the n given rooted oriented trees A; or A,
respectively.

It is straightforward to see that the order of T is odd in this case. O

3. Main Result

In this section, we count the number of self-converse oriented trees. Let
s(z) be the ordinary generating function for self-converse oriented trees.
First of all, we find the first 7 coefficients of s(z) by checking the diagrams
of self-converse oriented trees. See Figure 1. Therefore, we know

S(:L‘)=z+m2+$3+2$4+3$5+7$6+101‘7—i—---.

Let R(x) be the ordinary generating function for rooted oriented trees.
Then R(x) satisfies

R(z)==z (ewp {Z R(:r:k)/k})
k=1
and

(3.1) R(z) = = + 22° + T2% + 262* + 1072° + 45845
+ 2058z7 + 9498z% + 449472° + 216598z0 + .- .

This, of course, is a well-known result [3, p. 139].

We shall first find the ordinary generating function for bicentral self-
converse oriented trees. Let T be a bicentral self-converse oriented tree of
order 2p. We observed in Theorem 2 that T corresponds in a natural way
to an ordered pair (A4, A”) of two rooted oriented trees A and A’ such that
A’ is the converse of A. Note that two rooted oriented trees A and A" have
the same order p. More specifically, given an ordered pair (A, A’) of two
rooted oriented trees of order p such that A’ is the converse of A, a new
bicentral self-converse oriented tree T of order 2p is formed by adding a
new arc from the root of A to that of A’. Clearly all bicentral self-converse
oriented trees of order 2p can be formed in this manner. Therefore the
number of bicentral self-converse criented trees of order 2p is the same as
the number of ordered pairs (A4, A") of two rooted oriented trees A and A’
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10

F1GUuRE 1. Self-converse oriented trees up to order p < 7

such that A" is the converse of A, which is exactly the number of rooted
oriented trees of order p. Hence, from the counting series (3.1) for rooted
oriented trees, the ordinary generating function for bicentral self-converse
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oriented trees is

(3.2) R(z?) = 2% + 22* + 72% + 262° + 1072
+ 458212 + 2058z1% + 9498216
+ 4494771 1 216508220 + .- .

To find the generating function for central self-converse oriented trees,
we need some preliminaries. Let A be a permutation group with object
set X = {1,2,...,n}. It is well known that each permutation a in A can
be written uniquely as a product of disjoint cycles and so for each integer
k from 1 to n we let ji(a) be the number of cycles of length k in the
disjoint cycle decomposition of . Then the cycle indez of A, denoted by
Z(A) = Z(A;s1,82,...,8n), is the polynomial in the variables s1,32,...,58n
defined by

2() = 41 Y ] 4,

acA k=1

Let S, be the symmetric group on X. Define Z(Sp) = 1. Then we have a
recursive formula

Z(Sn) = = 3" sk Z(Sn )
k=1

Let Z{S,, R(z?)) denote the cycle index of S, in which the variable si is
replaced by R(z%*) for k from 1 to n. For details, see [2].

Now, let T be a central self-converse oriented tree and consider the
center r of T' as a root. Note that the root r is incident with even number
of arcs. By Theorem 2, central self-converse oriented trees in which the
root is incident with 2n arcs correspond to combinations with repetition of
n ordered pairs (41, A]), (A2, 4), - -+, (An, A}) of rooted oriented trees A;
and A; such that A} is the converse of A4; for ¢ = 1,2,...,n. On applying
Pélya’s Enumeration Theorem to the symmetric group 5, with R(3:2) as
the figure counting series, we have Z(S,, R(z?)) as the function counting
series, and the coefficient of z7 in Z(S,,, R(z?)) is the number of central self-
converse oriented trees of order p 4+ 1 whose centers (or roots) are incident
with 2n arcs. Multiplication of Z(S,, R(z?)) by x corrects the weights so
that the coefficient of zP in £Z(S,, R(z?)) is the number of these trees of
order p. Then summing over all possible values of n, we obtain the ordinary
generating function for central self-converse oriented trees:

(33 2 Z(5n, R(s?)).
n=0
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We want, to find the first few terms of this generating function. To do
this, we evaluate (3.3) for small n;

$Z(So,R($2)) =z,
zZ(S1, R(z*)) = zR(z?)
= 2% 4+ 22% + 727 + 262° + 107" + 4582
+ 205820 + 9498217 + 449472 + .- |
22(S2, R(a%)) = 5{R(*) + R(z")}
= 2% + 207 4+ 102° + 40z + 18721 4 854215
+ 407427 + 19602z'% + ... |
©Z(S3, R(z2)) = %{R(ﬁ)‘& + 3R(z))R(z*) + 2R(z%)}
= a:% +22% + 102" + 442" + 20821 4 988z 17
+ 48432 + - -+
22(S4, R(z?)) = %{R(sﬂ)‘* +6R(z%)2R(z") + 8R(z?)R(z®)
+ 3R(z*)? + 6R(z%)}
22 + 2211 41021 + 442 + 213217
+10162 4 -,
1Z(S5, R(z?)) = 2! + 2213 + 1021° + 4427 + 2132 + -,
zZ(S¢, R(z?)) = 2 + 22 + 1027 + 442 + . |
zZ(S7, R(z?)) = =% + 22" + 102 + - |
mZ(Sg,R(mz)) =z 4294 ..
2Z(Se, R(z®)) = 219 +---,

Summing these up, we have

s}
(3.4) T Z Z(Sn, R(z?) = = + 2° + 32% + 102" + 392°
n={0

+ 160z + 7022 + 317721
+ 14830217 + 70678z + - -- .

We have checked this computation using the program Mathematica.
Combining (3.2) and (3.4), we obtain the generating function desired:
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THEOREM 3. The ordinary generating function s(z) for self-converse
oriented trees is given by

s(x) = z+2® + 2% + 22% + 32° + 725 4+ 1027 + 2628
+392° + 1072 + 16021 + 458212 4 702413
+ 2058z + 3177z!® + 949826 + 14830217
+ 4494728 4 706782° + 21659822 + ... . C
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