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CORRELATION DIMENSIONS OF
CANTOR SETS WITH OVERLAPS

M1 RYEONG LEE

ABSTRACT. We consider a Cantor set with overlaps A in R!. We cal-
culate its correlation dimension with respect to the push-down measure
on A comparing with its similarity dimension.

1. Introduction

Recently, in order to characterize fractal sets, we sometimes have used
the correlation dimension instead of the Hausdorff dimension because of ad-
vantages of calculation. It is well-known that the Hausdaorff dimension on a
self-similar set is equal to the similarity dimension([3]) and the correlation
dimension with respect to the specified probability measure on it([2]). Also,
we can see that the Hausdorff dimension on a loosely self-similar set([4])
which is a generalization of self-similar sets is equal to the similarity dimen-
sion and the correlation dimension with respect to the push-down measure
on it([5]}). In general, the Hausdorff dimension on a set is greater than or
equal to any correlation dimension([5], {7]).

In this paper, we define a Cantor set with overlaps A in R'. In general,
this set is neither loosely self-similar set([4]) nor self-similar Cantor set with
overlaps([7]). However, we can deal with the loosely self-similar sets in R!
and self-similar Cantor sets with overlaps as special cases of Cantor sets
with overlaps considered in this paper(see Remark 2.1).

For the set A, it is not easy to find the Hausdorff dimension of A. In
stead of the Hausdorff dimension of A, we apply delicate methods in (7] to
calculations of the correlation dimension of A with respect to the defined
push-down measure v on A and compare its correlation dimension with its
similarity dimension.
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2. Preliminaries

We define Cantor sets with overlaps in R!. Consider 7 = [0, 1]. Fix an
integer number {(> 2). Suppose that a sequence of mappings {fi, i,.... i, :
(11,82, - ,in) € {1,2, -+, {}* for n = 1,2,---} and numbers 0 < ry, ry,
-+-, r; < 1 are given such that
() fiyin,in 2 L — I is defined as f;, 4, ... ;. () = 1, T + i, 40, i, fOT
some t;, i, ... i, € R and each i; € {1,2,--- ,i}{(7 =1,2,--- ,n),

(ii) for any n > 1, a basic set I, 5, ... i, = fi, © fiiiz © 0 0 fiyigeein (1)
contains l-intervals Iy, ;, ... i1, Liy iy, i 2 80d I 5, o i1, SO that the left-
hand ends of [, 4, ... 4, and I, i, ... ;.1 and the right-hand endsof I;, ;, .. ;,
and 1;, i, ... 5, 1 coincide, and

(iii) there exists 0 < ¢ < 1 such that fi, s, . ;. (J) Cle,1—cforalln>1
whenever i, # 1,1,

Set
A = n U Ii‘,'iz,... dint

n=1 (ilsi2=”' !iﬂ)€{1}2l“' rl}n

We call this A a Cantor set with overlaps.

REMARK 2.1. (1) We notice that locations of basic sets of the set A
are free except for the first and last locations. That is, at each stage, the
locations of basic sets of A are independent of locations of basic sets in
the previous stages. In particular, if we assume the condition f;, ... ; (I) N
firrinan,in (1) = 0 (in # 1), then A becomes a loosely self-similar set([4])
in R
(2) Moreover, we notice that basic sets of A may overlap. If we substitute
by the following conditions to (i) and (iii) in the construction of A,

1.e. fil,'",in == fin? til,...’in = tt'n for 1 S Z'j S f(j = 1,"' ,n) and ¢ = tg,
then the set A is always a self-similar Cantor set with overlaps([7]).

(3) In particular, if we add the condition f; (I) N fir (I) = @ for i, #4;, in
(2), then A becomes a Cantor set which is a perfect, compact and totally
disconnected set .

We adopt notations used in [7). Put & = {1,2,--- I}¥. For v =

(T1yT2y 3 Tny-- )y W = (wy,wa,---, Wy, ---) € %, write 7 Aw = 7,
Tay ***y Tn, Where 7 = min{k : Tp41 # wiy for £ > 1} If 7y # wy then
7 Aw = 0. Define a metric p on X as p(r,w) = r™*¥, where r™":™

=Ty TrycccTr,. Write [7],] for a cylinder set, [r, -, 7] = {w € Z:

"
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7 = w; for 1 <4 < n, 741 # wne1 ). The metric pz on £2 is defined as

pa((,w), (7', w")) = max{p(r, 7"}, p(w,w’)}.
For 7 = (1, 72,---) € £, we define an onto map I from  to K as

I(r) = n Jroofrnmo o fo e (1)

n=1
The number s > 0 with 22:1 r§ = 1 is called the similarity dimen-
sion([3]). Consider the probability measure & on £ with weights (r{,r3,
ey i)y ie p([Tln]) =l or3, ---rZ for any n > 1. Define the push-down
measure v = goll~! on A and let 1 = px p. Then v and pg are probability
measures on A and £2 = ¥ x ¥ respectively.
We recall the following definition of the correlation dimension({{5], [7]) of

A(C R?) with respect to a probability measure n on A ;
Da(A,m) =sup{a = 0: I,(n) < oo},

where I () = [, [, |z — y|~*dn(z)dn(y) is the a-energy of A with respect
to 7. In particular, if A is a Cantor set with overlaps and » is the push-
down probability measure on A, we write D;(A) for Do(A,v) and I, (v) for
Io(v) = fga | TI(r) = TI(w) |~ dps.

Denote the diameter of a set A by |A|. For any € > 0, we say that [7],,]
is an e-cylinder if {[7],]} < € < |[T|n_1]l- The set [T|n, w]n] = [7]n] X [w]n]
is an e-cylinder in X2 if both [7],] and [w|,] are e-cylinders in . The set of
e-cylinders in ¥ is denoted by C.. The collection of e-cylinders C2 = C, x C,
provides a disjoint cover of £? by sets of diameter €([7}).

REMARK 2.2. (1) X is the only 1-cytinder.
(2) For an e-cylinder [7],], roe < |[7]n]| < € where rp = min{r1,--- ,r}.
(3) The measures of e-cylinders [r|,] and [7],, w|m] satisfy (ro)°¢® <
p#{ [7]n] ) < € and (r0)?*€®® < pa( [rln,wlm] ) < €.

Recall the upper box dimension({[1]) of a bounded set K in a metric space
which is denoted by dimpK. i.e., VEH_BK = limsup,_, 1051\1'0:5,6)’ where
N(K, ¢} is the smallest number of balls of diameter € needed to cover K.

From easy calculations{cf. [1]), we get the following result.

ProposITION 2.3. For A C X2, Jet N.(A) be the number of e-cylinders
intersecting A. Then

dimg(A) = limsup w—).
e—0 —loge
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On account of the Proposition 2.3 and remark 2.2, we obtain the follow-
ing results from standard arguments.

PROPOSITION 2.4, dimpX? = 2s and if A C 2 and dimpgA < 2s, then
p2(A) = 0.

3. Results

We recall the notion of thickness([6], [7]) needed in our result.
Let K C R be a compact set and let K be its convex hull. Then K VK =
Ui_, E;, I < oo, where E; are complementary intervals(gaps). Enumerate
the gaps so that |E] > |Es| > ---. For k > 1, let F}, be the componeni of
K \UF_LE; containing Ey. Then Fy = F} U Ej, U F] where F} and F] are
the closed intervals adjacent to Ej.

Define | I| | |
F Fr

) = min{ £, k }
* {|Ek| |Ex]

The thickness of K is defined as 8(K) = inf{f, : k> 1}.

Throughout this paper, let A, II, x4, v and s be as in the Section 2.
Set Z = {(r, w) € £ : I(r) = N(w)} and H, = {[r]n, w|m] € C2 :
[T|ns W|m] N Z # 0}. Denote by N, = N.(Z) the cardinality of H..
Write Ar ryoorn = fr 0 frime © 0 0 frigaye e (A) for T = (7,712, -,
Ty r-)€Xandn > 1.

PROPOSITION 3.1. Dy(A) < 25 —dimgZ

PROOF. Supposea > 2s—dimpZ. Let [7|n, w|m] € He. Then [7|,, wly]
NZ #0, and 50 As, 7o N Ay wpn a0, 7 0. Hence for any 7 € [7],] and
w € [w]m],

| I{7) = IHw) | < JApy oo ion| + A e 0|
= (7 4 i) 1A
< Ze,

Therefore, by Remark 2.2,

[ T = TG) 2 iy 2 20 ([ wl)

—a .25 2s—a
227 € .
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We have
L) = / | TI(r) — () | dizo
>3 / | 1) - TL(w) |~ dp

[T)n.w|m]

2 C’1Ne EZs—a

where C) = 2-%(r¢)?¢. Thus, if dimpZ = limsup,_,, -9%0‘:—‘ > 2s — a, then

I4(v) = 00. Hence Dy(A) < 25 — dimpZ. a

LEMMA 3.2. ([6] Gap Lemma) Let K and K, be Cantor sets with
thickness m; and 7 respectively. If my - 2 > 1, then one of the following
three alternatives occurs: K, is contained in a gap of Ky; K, is contained
in a gap of Ky; Ky N Ky # 0.

LEMMA 3.3. Let 6{A) > 1 and let [7|n, w|m] € C2\ H.. Then for all
a < s, there exists a constant Cy > ( satisfying

] | Ti(r) — TI(w) | dyiz < Cae?*~2.
["'|n w|m]

PROOF. The hypothesis [ 7|,,, w|m | € C2\ H, means that [r],] and [w]m]
are e-cylinders in ¥ such that A, 7y, 7o O Ay, e wm = 0. Since 8(K) >
1, by the definition of thickness, 8(Ar, . ,7n) > L a0d 8(Ay) s ) > 1
Using the Lemma 3.2, one of the sets Ar, 7, 7, 80d Ay g, l1€8 N &
connected component of the complement of the other one.

Write T=111--- and { = lll---. We have

ITI(r) — ()] > min{|11() — T(rl,D)l, M(r) = O(rlaD]} - —(+)
for 1 € [tln], w € [w]n].
Let A = [ 7jn 15 ]\ [ 7]n 151 ], B =[7]n 5 I\ [ 7] IFT! ] for k& > 1,
and Ag = [7|a ]\ ([ 7]n1 Y[ 7lall), Bo=0. Then

o)
‘T|n U Ak U Bk

Using the condition (é¢%) in the Section 2 and the Remark 2.2, we have,
| 1I{7) — H(Tin“i) | > ¢ o (Tl)k > Ccro ET’f for 7 € Ap
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and | I{7) - (7,0} | = (1 = ¢) v ()% > (1 = &)roe(ry)* for 7 € By.
Take d = min{crg, (1 — c)rg}. Then, using the inequality (*), we get
ITI(7) — I(w)} > de r¥ for 7 € Ay, or |I{7) — [L(w)| > derf for 7 € By.
Clearly, for £ > 0,

p{Ar) < p( [r[n1¥] ) < € rf* and u(By) < € (r)*.
Hence, for o < s,

[ m) - 1) 17 due
[Tlnswlm]

. ]{w P> / ) = TiGw) 7 da(r) d)

<d™® [ | ]Z(e_arfak e’ rfs + " ’rf“k e rfs) dp{w)
wlm] =g

=d7" e / Z(r?‘“"“ + n“‘“}’“) dps(w)
[1]m] k=0

< Cp 7% f dp(w)
{w]em]

S CZ 623*0

for some Cs > 0. O

THEOREM 3.4. Let 8( A ) > 1. Then

Do(A) = 25 — dimpZ.

ProorF. Owing to the Proposition 3.1, it is sufficient only to show that
Dy(A) > 25 — dimgZ, i.e. I,(v) < oo for any a < 25 — dimpZ.

Note that Z contains {(r,7) : 7 € £}, hence dimpZ > dimg £ = s and
so @ < s. Let A, be the union of e-cylinders in £2 intersecting Z.
For 0 < 4 < 1, consider a sequence {¢,} such that ¢, = ¢ for n =
0,1,2,--. Clearly, Z =M%, A, . Since A = £, we have

o0

¥2 U (Afn \Aew) uZz.

n=0
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By the Lemma 3.3,

L(v) = / | TI(r) — T(w) |2 dps

=zf

<OzZ s €257 + [Z | TI(7) - TT(w) [~ dgo.

() — Il(w) | dpuz + ]Z | T1(r) = TH(w) | dps

En \A€n+1

We may assume that dimpZ < 2s. Then u(Z) = 0 by Proposition 2.4.
Since a < 2s —dimgZ i.e. lim SUP, o Nsn /—nlogd < 25 — «, we have for
B >0, Ngn < §nla+8-25) for al] .
Therefore, for all o < 25 ~ dimgZ,

I.(v) < Cy ZNW )

n=0

oo
<G Z §(nt+1)(o+8-25) s(n+1)(2s—a)

n=0

o0
=Cp Y ) < oo

n=0

This completes the proof of Theorem. d

REMARK 3.5. As we apply Theorem 3.4 to three cases in the Remark
2.1, we obtain the following resulis.
(1) In case of a self-similar set or loosely self-similar set A in R!, by the
disjoint property of basic sets of A, we obtain dimgZ = s. Hence Theorem
3.4 comes to the same conclusion in [5] for the push-down measure v on A,
that is,
Dy(A) = s =dimyg A

where dimy A is denoted the Hausdorff dimension of A.
(2) In case of a self-similar Cantor set with overlaps([7]), Theorem 3.4 is
also true.
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