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ANOTHER METHOD OF CONSTRUCTION OF
RIESZ BASES FOR MUTIRESOLUTION ANALYSES

JonG AN Park, Cul MINGEN, AND RAK JoonG KM

ABSTRACT. We discuss some conditions about the existence of the so-
lution ¢ of the following integral equation

Mﬂ=AfM%—wa@

and prove that the solution ¢ under certain conditions generates a
multiresolution analysis.

1. Introduction

Multiresolution analysis starts the construction from an appropriate
choice of the scaling function ¢ satisfying the following dilation equation

$(z) =D hid(2z — k).
keZ
Then the closed subspace V;,j € Z spanned by the ¢;,k € Z with
¢;. k() = 20/2p(2 g — k) satisfies the well-known properties (1, 3].
In oder to ensure the existence of the scaling function we must give some
conditions on the filter function

1 :
Hw) = 3 Z ek,
keZ

For example Daubeachies [2] studied polynomial filter and Zheng and Min-
gen [4] introduced some rational filters and constructed a large family of
the wavelets.

Instead of the above dilation equation we starts from the following inte-
gral equation

) mm=x/mw—www@.
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In this paper we discuss some conditions about the existence of the solution
¢ of the above integral equation and prove that the solution ¢ under certain
conditions generates a multiresolution analysis.

2. Main results

We denote the Fourier transform of ¢ by $. By taking the Fourier
transform on both sides of (2) we obtain

@) Bw) = H(5)8(3),

where Hj(w) = 2h(w).

[

THEOREM 1. If in (3) h,h” € L(R) and ||hllee < |A(0)(# 0), then
TTie1 Ha(5%) converges to ¢ uniformly on compact subsets of R and for
A= ﬁ, and its inverse Fourier transformation ¢ € L?(R) is a nontrivial
solution of (1).

Proor. For any a > 0, we get the following Fourier series of hon (—a,a)

= the_iw%,w € (—a,a).

keZ
Since
HA(0) = th,H,\(o) _;;,(0) =
keZ
we have
H)—1= 5 Y hele™ % 1)
keZ.
Therefore
|Hx(w) -1} < —Zlhkl sin( &)
h( kez
| kl ik-rw 3.
h((} k%

Since k" € L2(R), |h| < O(p) and
|H(w) — 1] < Clw]z.

Therefore 1

(V2)r

w 1
() = 1] < Clol
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So [Tx—, Hx(3%) converges to a continuous function #(w) uniformly on com-
pact subsets of R and since Hy(0) = 1, ¢(0) = 1. On the other hand

h{w) < |R(0)} shows that
B = 15l < 1
Hence . "
3w < 1)

and ¢ € L2?(R) and its inverse Fourier tramsformation ¢ € L%*R) is a
nontrivial solution of (1). O

In the following we show that a nontrivial solution ¢ of the integral
equation (1) with ¢ € LYR),#(0) # 0 will constitute a multiresolution
analysis under the following conditions on k,

Supp h = [, 7, h#0on (—m, 7).
Let us denote V; = span{¢(2/ — k)|k € Z},j € Z.

THEOREM 2 (Monotonicity).
Vi € Vit
PROOF. From the Fourier series of h(w/2) on (—2x,27),

h(w/2) thekzz w € {—2m,2m).
kel
From (2) we have

$(w) = (W/2 ¢( )=3 thek" )

keZ
Taking the Fourier transform we obtain
(3) (z) =2} heg(2z — k).
keZ
Therefore
HPx—1) =2 hpp(20 g — 2l — k).

keZ
So

Vi C Vi =

THEOREM 3 (Completeness). {¢(27z—k)|j,k € Z} is a complete system.
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PrOOF. From (%) we have

H(Pz — %) =AY hp(20t g — 1 —k).
keZ

Hence to prove that {¢(2/z—k)|j, k € Z} is a complete system, it is sufficient
to prove that {¢(2/x — %)l 7,1 € Z} is a complete system. Suppose that
f € L?(R) satisfies

k

($(27 - ~3)f() =0, forall jkeZ

Then
) . k
(82 - =3), £0)
— A f <h(@ k), £() > ¢ly) dy
Y
— A / < 97U =2 P Gt o= ) ) >, Bly) dy
R
= 226+ f B2+ Fwo)e— 2 9Tk | f S(y)e™ Y dy] dw
R R

= Var2 U f (270 Vw) fw)d(2m 0 Dw)e 2 0k 4y,
R

= \/ﬂg—(j-ﬂ)/\/h(g(j+1)w)?(w)q"5(2(j+1)w)eiw2—(j+1)k d
R
= \/ﬂ)\f ﬁ(w)?(z(j+l)w)q3(w)e—iwk duw
R
- \/Q_Tr,\/7r fl(w)—f(g(j+l)w)q§(w)eﬁiwk du
=10

Therefore all the Fourier coefficients of fz(-)?{Q(j +1.364(-) is 0, so

m

~

(4) Aw) f(2U VW) (w) = 0,w € (=7, ) a.e.

On the other hand we have

(5) H(w) # 0, for all w € |-, 7).

Indeed suppose that ¢(w’) = 0 for some w’ € |-, 7]. Then by (3) qﬁ(%’) =
0. Inductively for any natural number, n QB(;—,:) = 0. Since ¢ € L'(R),

& is continuous and <;3(0) = 0 which is a contradiction to the assumption
¢(0) # 0. From (4) for all j € Z,

f(2(j+l)w) =0, we (—7,7) a.e.
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Hence f =0aqe and f=0a.e. |

THEOREM 4 (Approximation).
- 1] v 72
ﬂ V; = {0} and Ujezv; = L%(R).
JEL
PROOF. Since {¢(27x ~k)|j,k € Z} is a complete system, (J;cz Vj is
dense in L?(R). If f € M,ez V;, then

(6) fl@) =) aud(@z—k), for all j € Z.
keZ
On the other hand by taking the Fourier transform on (6)
(7) fw) = Hi(w)$(2w),
where .
Hj(w) =277 Z C\:jke_iw2_3k.
keZ
§i1_1ce Supp 43 C [~2w,27ﬂ by (2), for w # 0 there exists j € Z such that
#(277w) = 0. By (7) we f(w) =0, for w # 0. Hence f =0, a

THEOREM 5 (Riesz basis). {¢(x — k)|k € Z} constitutes a Riesz basis
for V.

PROOF. For any f € W such that

fl@) =) oxd(z — k),

kEZ
we take the Fourier transform and obtain

flw) = Hw)é(w),

where H(w) = 3,z are™™*. Therefore

e = /{R H ()P 3(w)]? dw

(2A+1)m i
-3 [( H(w)P13(w)]? do

iEZ gt—l}ﬂ'

= 3 [ I H@P + 2

IeZ

- [ @6 @,

-
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where G(w) = > ez |é(w + 2im)[2. Since Supp ¢ C [—2m,27] by (2) and ¢
Is continuous, for any w € R G{w) is computed at most two sums and

G(w) < 2M,

where M is an bound of ¢. On the other hand by (4) and the continuity of

®,
Gw) = 1¢)* = m® > 0,w € [~m,,
where m is the minimum of ¢ on [, 7). Moreover since @ is a 2n-periodic
function,
G(w) > m?, for all w € R.
From the above equality we have constants A, B > 0 such that

A [ P << s [ HEP d

—x -

So the proof is completed. O
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