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ON AN ARRAY OF WEAKLY
DEPENDENT RANDOM VECTORS

TAE IL JEON

ABSTRACT. In this article we investigate the dependence between com-
ponents of the random vector which is given as an asymptotic limit of an
array of random vectors with interlaced mixing conditions. We discuss
the cross covariance of the limiting vector process and give a stronger
condition to have a central limit theorem for an array of random vectors
with mixing conditions.

1. Introduction

We consider a triangular array of two-dimensional random variates {£,;|1
<i <k} = {(g(l} (2))|1 < @ < ky} such that 62'),3 = 1,2 satisfy some

ni !N
interlaced mixing conditions. In this article we refer to results obtained
by Peligrad [4] and investigate the independence of the limiting bivariate
normal distribution. Mixing sequences of random variables are sequences
for which past and distant future are asymptotically independent. Let
(Q, %, P) be a probability space and let A, B be two sub o-algebras of §.
Define the strong mixing coeflicient by
alA,B)= sup |P(AB)— P(A)P(B)|
AcA,BeB

and the supremum of the coefficients of correlation by

pAB) = s leorr(f,q)l
fEL2(A),gcL3(B)

DEFINITION 1. A strictly stationary sequence {X;} is called a-mixing if
a(n) — 0, where

a(n) =supa(a(X;, i < k),0(X;,i > k+n)).
k
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Note that the mixing coefficient a(n) is a measure of dependence be-
tween two sub o-algebras o(X;, ¢ < k) and o(X;,i > k4 n). Let 7' =
o{Xn, Xnt+1, .-+, Xntm) and

p(n) = sup{Jcorr(f, 9)| : f € La(F* ), 9 € La(§55n)}-

DEFINITION 2. A strictly stationary sequence { X }icz is called p-mixing
if p(n) — 0 as n — oo.

Let §r = o(X;,¢ € T), where T is a finite family of integers and
dist(S,T) = inf{|s —t] : s € §,T" € T}, where S and 1" are two nonempty
finite subsets of Z.

DEFINITION 3. Let {X;} be a strictly stationary sequence. Then define
a*(n) = sup (§1,§s)
and
p*(n) = sup p(§r,§s),

where these supremums are taken over all pairs of nonempty finite subsets
S,T of Z such that dist(S,T) > n.

According to Bradley {2] we have, for n > 1,

(@) a*(n) < p'(n) < 27a*(n)
(8) a(n) < a*(n)

(c) p(n) < p*(n).
Consider a triangular array of bivariate random variables &,; = (f (2) 7 )
where 1 < ¢ < k, and k,, — oo. Here we refer to the definitions used in
Peligrad [4]. Define, for j = 1,2,
a9} = supa(o(€¥),i < ), 0(6¥) i 2 5 + k)

nt
s>1

and &i) = sup, & ff}

The array {£n:|1 < @ < kp} will be called strongly mixing if, for each
7 =12, limp_.eo @E ) = 0. In order to properly define the corressponding
p-mixing coefficients for the array we have the following definition

ok =3P p(o(6nt i € 1), 0 (61 € 5)),

where 7,5 ¢ {1,2,...,k,} are nonempty subsets with dist(T, S) > k and

o = sup, 3"
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2. Central limit Theorems

In this section we state some known results about CLI for an array
of random variables with mixing conditions. Since we need notations and
context in the proofs of the results we give the sketch of the proofs. The
following theorem is the Theorem 2.1 in Peligrad (4]. Here we state the
theorem,

THEOREM 1. Let {{,; = Sz), ) )|1 < ¢ < kyp} be a triangular array of
centered bzvanate random va,nables which is strongly mixing componen-

twise and E( )2 < o0, for each j = 1,2. Assume limy_. o pgc) < 1, for
each § = 1,2. Denote, for each j = 1,2, by (aif))2 = Var(Z;':l 1(131)) and
assume

kn

1 .
@)y2 2Bl < oo

(o7 i=1

sup
I

and for every € > 0

kn

1 | | |
( (j)):z ZE@'E&)FI(!&%)' > 509)) — 0 as n — oo.
On’ )" =1

Then, for each 7 = 1,2,

Z (J)

L N(0,1) asn— oo,
where d stands for the convergence in distribution.

For the following sections we use the same notations. Theref-ore we need
to sketch the proof of Theorem 1.(See Peligrad [4] for the detail of the

proof.) For each j = 1,2, let C(J b = gf-ff/aif). Then we can construct a
sequence of positive numbers £n such that

ZEC )2I( C(‘?)|>En)—>0 as n — 00.

Truncating at the level &, define, for each § = 1,2,
me! = GG < en) = B¢ < en)
and

38 = D1(1¢) > e) — BCP 11D > &),
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Note that, for each § = 1,2, Q ) 4 ’y,(i) Then we can show that

m = T
(1) var(z 77({?) — 0 asn — oo.

By the argument above we can rewrite the statement in Theorem 1 into
the following:

THEOREM 2. Let {nn;|l < ¢ < kn} be an array of bivariate random
variables with zero means and finite second moments, which satisfies, for
each j = 1,2,

|T]n,;u,)E < 2611, Where En > 0

(o9))? —vaan )—+1 asn— o0

and

sup Z var( nfi)

Then, for each j = 1,2,
kn )
Zn,(fi) 4 N(0,1) as n — oo.

Here we apply the blocking procedure to divide the sequence of ran-
dom variables into big blocks and small blocks. Since we have constructed
a sequence {e,} we construct a sequence of integers {g,} such that the
following conditions satisfied;

(fn — OO a8 N —+ 00
gnen — 0 asn — oo
gn@ ([e,1]) = 0 as n — oo,
where @\ (n) = &Y. For each n ¢ N, define the integers by the following
steps:
mMp = 0
and, for p=0,1,2, ..., let

m
— mi (4 -1
Mapy1 = NN m| m > Moy, E Vaf(’?m ) 2y )
i=m2p+l

Mapr2 = Mapp1 + €,
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We classify the groups specified by the argument above. Let
I ={k| mayp <k <mopp1}, Jp={k| mops1 <k < mopya}

for p=10,1,2,.... Processing the steps above we have £, blocks of indices
I, and Jp, respectively, p =0,1,2,...,&, (See [4] for the detail). Denote

an = an‘y Znp = Z"]ﬂia 0<p<tn

icl, i€Jp

By an appropriate argument, we can show that

(2) var Zan —0 as n— o0,

which means that Ei’;l Znp 18 negligible for the convergence in distribution.
Moreover we get

€n
(3) rgizrolovar ZYW =1
=1

and there exist two constants 0 < K7 < Ko and N € N such that

£n
0< Ky < Zva,ran < K3, forn > N.
p=1
Let an = ( i’;l varYp,)'/2. Then we may assume that {¥,|0 < p < £,}

is an array of independent random variables. Finally we may show that
{a;1¥npl0 < p < £,} satisfies the CLT. Therefore the proof of Theorem 1
is completed.

3. Cross covariance of vector process and CLT

Throughout this section we assume that the conditions in Theorem 1
in section 2 hold. Note that the results stated in the previous section
guarantee the componentwise CLT for the given array of vector process
with componentwise mixing conditions. What we are interested in is to
investigate the limiting behavior of the array of vector process {£,;|1 <7 <
k»}. To investigate the limiting behavior it is necessary to see the limiting
behavior of the cross covariance of the sum of sequence of normalized vector
process {(ni|l <@ < k,}. It is natural to compute the cross covariance of
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the vector process {(ni|l < i < kn}. We study whether the sequence of
vector process

(4) (Z ¢t ,Z (2’)

i=1

converges in distribution to a bivariate normal vector process (21, Z2),
where Z; ~ N(0,1),Z ~ AN(0,1). As mentioned in the proof of Theo-
rem 1 in section 2, we have known how the big blocks are constructed and
that they act like an array of independent random variables. We will see
what the big blocks say about the dependence between the components
in the limiting distribution. So it is worth investigating the limit of the
following sequence of cross covariances

kn kn
(5) Cov (Z Y ci?)
i=1 i=1

for the given array of random vectors {£,; = ( by ,5(2))|1 <i<kp}. Bya
simple argument we have the following fact, which states the given mixing
conditions on each component of the sequence of vector process give at least
the uniform boundedness of the sequence of cross covariances.

THEOREM 3. Let {nn:|1 < i < k,} be an array of bivariate random
variables with zero means and finite second moments, which satisfies, for
each j = 1,2,

{n | < 2g, where e, >0,

ka
(O’%j))2 = var(z 7]?2-)) — 1 asn — 0o
i=1
and
k

Then there is a number M such that

Cov (}: i), Zn(‘*))

< M, for all n.
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If the sequence in (5) converges to a number p, then we have that the ar-
ray of random vectors in (4) converges in distribution to a bivariate normal
distribution (Z), Z5) with covariance matrix

()

To investigate the convergence of (5), for j = 1,2, let AY = 2121
Then AY) = o¥¢{? j = 1,2. Consider the following sequence

(J)'

© (z 4,99) P <,a?)} -
i—1 =1
Then
S (1) (2) 9 O (2)
i=1 =1 =1
= 1 —— E(AD 4D _1 E(AD 42
= o,@ Pt )@ (Am Az')
1
(1) 4(2) (1) A(2)
S (Q)E(A Ayl) — aff)a,(,f)E(An Ax)
(7)
1 1) 4(2 1 1) 4(2
+ WE(AT(I )AR) — WE(A%)AQ)
T m m m

(2) (2) (1) (1)
L plaw (A Al 1 p) e (A An 3L
e O J?(ll) R

Consider the variance of terms in the last line in (7). For each j = 1,2, the
variance. is

Ag(f) A(J) 2
®) 2 ((_') -5

oy o
Then (8) is equal to the following

(9)(07(;))2}3 (Af,f))z - m(zj)zoriﬂ) E { (A’(’j)) (A’(%))} * (U,(;))?E (Ag))z .

Note that the first and the third term in (9) tends to 1, respectively, as
n — oo, If the mid term in (9) approaches to 2 as n, m — oo, then (6) is a
Cauchy sequence and hence converges. We state the result as the following;
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PRroOPOSITION 1. Suppose that, for each j = 1,2,

kn N\ [km
(zg,gp) (Zggg)} 1 asmm— co.
i=1 =1

Then there is a number p such that

ka
[(5) )] e
=1

This indicates that the limiting behavior of the auto covariance of the
sum of each array of {d{?ﬂ < i < kn},j = 1,2 determines the limiting
behavior of the cross covariance of the normalized vector process {(n;|1 <
i< kn}.

(10)

THEOREM 4. The necessary and sufficient condition for which (10) holds
is, for each j = 1,2,

I~
(11) (ZY”) (Z Y,%)) — 1 asn,m — cc.

p=1

PRrOOF. Since, for each 7 = 1,2, (T(:? = 77,(31) + ’71(131)?

B[(5%) ()]
B[S o) (o8]
[(inmx;nm)]+E[<_"z"‘:niﬁz><z:m
B (S (S + 2[5 (304

By (1) and Hélder’s inequality, the last three terms in (12) tend to 0 as
n — o0o. Therefore it is sufficient to show that, for each j = 1,2,

kn bn I
i 2 ()] - i E[(09) (%)
i= i=1 i=1

(12)
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Since, for each j = 1,2,

S =55 (1 2), S - 35 (v + 29)
i=1 =1 i=1 =1
we ha:'e | ’
bno o km
£[($302) ()
t=1 i=

) =[S (S n)] +£l(50) (5 24)
() (S )] £l( £ 28) (3 )

By (2), the last three terms in (13) tend to 0 as n,m — co. Thus we have
completed the proof. d

Theorem 4 indicates that the limiting behavior of the auto covariance
of the sequence of sum of big blocks determines the limiting behavior of
the cross covariance of the normalized vector process {Grill € i < Ky}
Note that we have only the uniform boundedness of the sequence in (10) or
(11). But it does not guarantee the convergence of the sequence in (11). It
does not seem to be easy to find some sufficient conditions for convergence
of (10). It might help finding sufficient conditions if we add some mixing
conditions between components of an array of vector process. We leave
it as an open question. To have the convergence we may assume a strong
condition; for instance, convergence in probability. Here we assume that for
each j = 1,2, {Zf;l (ﬁ) } is Cauchy in probability. Then (10) holds true
since the sequence of second moments of each component converges to the
second moment of the normal distribution, that is, 1. By those arguments
we have the following.

THEOREM 5. Suppose, for each j = 1,2, {Zf;l (fi)} is Cauchy in prob-
ability. Then there exists a number 0 < p < 1 such that

kn kn
lim Cov (Z 4,2?,24,2?) =p
i=1 i=1
and hence

kn kn
(Z cﬁ?,ch?) 4 (2, zy),

i=1 i=1
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where (Z7, Z2) is a bivariate normal distribution No{u, ). Here the expec-
tation and the covariance matrix are

p=(EZi,EZ5) = (0,0) and & = (; i’) .

4. Independence between components

In this section we state the independence between the limiting vector
processes when each componentwise sequence is independent of the other.
We have known that a central limit theorem holds for a centered strictly
stationary strong mixing sequence of random variables which has the poly-
nomial mixing rate a(n) < Kn=%0 > 0 and EX?' < 00,8 > 0. Bradley
[2] showed a CLT for a centered strictly stationary sequence with mixing
condition a*{n) — 0. Note that there are no other moment conditions. We
state the theorem.

THEOREM 6. If (Xi, &k € Z) is a strictly stationary sequence of real cen-
tered square integrable random variables such that o2 = var(}1 | X;) —
oo, and a*(n) — 0 as n — co, then

n
i=1 X

—d~+N(O,1) as n — 0.
On

Peligrad [4] has shown the following theorem:

THEOREM 7. Suppose { Xk, k € N} is a strongly mixing strictly station-
ary sequence of random variables which are centered and have finite second
moments. Assume that lim, .o p*(n) < 1 and 02 — co. Then

2
. .0
liminf -* > 0
n

and

n
Zk_ﬂ‘&i_‘i;N(O’l) a5 N — 00.
Tn

Consider a centered stationary random vectors X, = (X,(ll),X,(f)) with
independence between {XT(IU} and {X,{f)}. Define the partial sums st =
b1 X ,(cl), S& = Yoper X ,(62). Analogous to the definitions {1) and (3) of
mixing rates a(n) and a*(n) we can define a,(n), a2(n), oi(n), as(n) for
the sequences of random variables {X,gl)} and {XT(LQ}}, respectively. Then

we have the following theorem. The proof of componentwise CLT is quite
similar to that of [1]. But to have CLT for vector process and independence
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between the resulting normal processes we have to use the method of mo-
ments in Gaussian process. Since the computation of the limiting behavior
of the cross covariance is lengthy but routine we skip the computation and
state the result only. So we have CLT for vector process and independence
between the components of the limiting vector process (Zy, Z3).

THEOREM 8. Let X,, = (X,(,]), ,(12)) be a centered stationary random
vectors with independence between {X,(ll)} and {X,(lg)}. Suppose }_']‘[X,{,l)]2 <
00, E[XI)? < oo, B(SE? = E[Ti_ X2 = o2 — oo, E(S2)? =
EXr X2 =02 - o0, at(n) — 0, and as(n) — 0 asn — oco. Then

(1) (2
(_’1_, SL) A (Z1, Za),

Oln 0O2n

where Z1 ~ N(0,1) and Zy ~ N(0,1). Moreover Z; and Z, are indepen-
dent, that is, the expectation and covariance matrix satisfy

p=(EZy,EZ3) =(0,0) and ¥ = (é (1]) .
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