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COMPUTATION OF FREE-SURFACE FLOWS
DUE TO PRESSURE DISTRIBUTION

JACK ASAVANANT, MONTRI MALEEWONG, AND JEONGWHAN CHOI

ABSTRACT. Steady two-dimensional flows due to an applied pressure
distribution in water of finite depth are considered. Gravity is included
in the dynamic boundary condition. The problem is solved numerically
by using the boundary integral equation technique. It is shown that,
for both supercritical and subcritical flows, solutions depend on three
parameters; (i) the Froude number, {ii} the magnitude of applied pres-
sure distribution, and (jit} the span length of pressure distribution. For
supercritical flows, there exist up to two solutions corresponding to the
same value of Froude number for positive pressures and a unique solu-
tion for negative pressures. For suberitical flows, there are solutions with
waves behind the applied pressure distribution. As the Froude number
decreases, these waves diminish when the Froude numbers approach the
critical values.

1. Introduction

Efforts to analyze the hydrodynamical characteristics of free-surface flow
with surface-disturbance have been divided primarily between theoretical
and experimental congiderations. In ship hydrodynamics, the concerns are
mostly on the understandings of wave resistance corresponding to the mov-
ing vehicles,

In the paper, we consider a steady nonlinear flow due to an applied
pressure distribution over a portion of the free surface. The assumption of
steadiness is based upon the fact that we can always choose the appropriate
moving frame of reference with the flow. This flow configuration can be
served as a model of moving vehicles such as hovercraft in a canal. It may
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also be viewed as an inverse method of solution to the classical ship-wave
problem.

The classical linearized version of two-dimensional model in water of in-
finite depth was discussed in detail by Lamb [1]. He showed that for certain
span length of pressure distribution (in relation with the Froude number)
the motion possesses no drag and the free surface profile is symmetric.
Schwartz [2] reformulated the problem as a nonlinear integral equation and
solved it numerically. His numerical results show that, for certain values of
the Froude number, nonlinear theory produces a drag-free solution while
linear theory does not. In the case of water of finite depth, Von-Kerczek
and Salvesen [3] investigated the problem by using finite difference tech-
niques. They calculated by placing a network of mesh points all over the
fluid domain. Asavanant and Vanden-Broeck [4] proposed a model for flows
past a surface-piercing object in water of finite depth and formulated the
problem as an system of nonlinear integrodifferential equations.

Here we consider the fluid domain of finite depth. The conditions of
incompressibility and irrotationality of the fluid motion imply the exis-
tence of the potential function and the stream function. The fluid domain
in the physical plane is transformed onto the complex plane. Bernoulli
equation is applied on the free surface while we assume no flow across the
bottom boundary. We satisfy the bottom condition by using Schwartz re-
flection principle. The problem is solved numerically by boundary integral
equation method based on Cauchy’s integral formula. It is found that so-
lutions depend on three parameters: the Froude number F', the magnitude
of pressure distribution ¢, and the span length of pressure distribution. For
supercritical flows, there exists up to two solutions when ¢ > 0 and only
one solution when € < 0. For subcritical flows, the solutions are character-
ized by a train of nonlinear waves on the downstream free surface. These
waves vanish as the Froude numbers approach their critical values. This
behavior of subcritical solutions is found to be different from the case of
surface-piercing object (Asavanant and Vanden-Broeck, [4]).

In section 2, we formulate the problem by using the complex function
theory and construct an integral equation involving the flow variables on
the free surface. Numerical procedure is introduced in section 3. In section
4, we present and discuss the results for both supercritical and subcritical
flows. Concluding remarks and further suggestions are given in section 5.

2. Mathematical Formulation

We consider the steady two-dimensional irrotational flow of an inviscid
and incompressible fluid in the domain bounded below by a rigid bottom
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and above by a free surface as shown in Figure 1. We choose Cartesian
coordinates with the z-axis along the undisturbed free surface at infinity
and the y-axis directed vertically upwards through the symmetry line of the
applied pressure distribution. Gravity is acting in the negative y-direction.
Let the velocity components in the z- and y- directions be denoted by
and v respectively. The flow approaches a uniform velocity U/ and uniform
depth H as x — —oco.

Let ¢ and # denote the velocity potential and the stream function. The
complex potential function is defined by f = ¢(z,y) + ivp(z,y). Without
loss of generality, we choose ¢ = 0 at the point on the free surface where
maximum pressure is applied. Free surface is a streamline on which we
require 3 = 0. The bottom boundary defines another streamline on which
¥ = —UH. On the free surface, the Bernoulli equation yields

(1) a*/2+ gy +p/p=U/2+ po/p.
Here q, g, p, p, and pp represent the magnitude of the velocity, the acceler-
ation of gravity, the fluid density, the applied pressure on the free surface,
and the atmospheric pressure respectively.

We choose U as the unit of velocity and H as the unit of length. Then
(1) becomes, in dimensionless form,

(2) ¢+ (2/FPy-p=1
where § = 2(p — pg)/pU? and F is the Froude number defined by
(3) F=U/\/gH.

By the choice of our dimensionless variables, the free surface and the bottom
define the streamline ¢ = 0 and 3 = —1 respectively. In the plane of
complex potential f, the flow domain is D = {(¢,¥})| —cc < ¢p < 00, -1 <
Y < 0}. Let us introduce the complex velocity ¢ = % = u — ww where

z = = + iy. The kinematic boundary condition on the bottom can be
described by

(4) Im{ =0 on % =-1.

We now define an analytic function £ = v — 4v — 1 in the fluid domain.
Here £ is real on the bottom ¢ = —1. We satisfy (4) by reflecting the flow
field in the physical z-plane about the line y=-1 (also in the complex
f-plane about the line 3y = —1). Let © and € denote the fluid domain in
the z-plane and its reflection. The function £ can be extended to a function
=, which is analytic in QU Q and is defined by

_[&r , z€Q
(z)_{ £z) , zefl

(11
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The overbar represents the complex conjugation of the function. The ex-
tended fluid domain in the complex f-plane is now a strip -2 < ¢ < 0.
Using the Cauchy’s integral formula to the function =, we get

E—u—dv—1=— df’.

L fulr)its)
2mi bl

Here I' is the negatively oriented contour consisting of the free surface, the
reflection of the free surface, and the lines £ = —o0 and & = 400 joining

the free surface and its reflection. Upon letting f approach the boundary
1 = 0 and taking the real part of the resulting expression, we obtain

d¢’.

®) ue-1-= [ —(;j,(f’;d¢’+% f”(¢"(¢'(;,f)$ffj‘f')‘l)

-0

We denote by u(¢) and v(¢) the velocity components in the z- and y-
directions on the free surface ¢y = 0. Using the identity

dr oy 1
(6) a—qb-i-%%——um?:v,

the Bernoulli equation (2} can be written in terms of u(¢) and v(¢) as

v(¢')

Wd¢'+ﬁ:l,—oo<¢<oo.

o
@ W)+ o)+ 75 [

—C0

In this study, we consider the pressure distribution in the form of

(8) ;5:{ eel/IP/%11) 9] < gy

0 , otherwise.

Here ¢p denotes the value of the potential function that determines the
span length of the applied pressure distribution in the complex f-plane.
The problem becomes of that finding u(¢) and v(¢) satisfying (5) and
{(6). This completes the formulation of our problem. Once u(¢) and v(¢)
are determined, the shape of the unknown free surface can be found by
numerically integrating the identity (6).
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3. Numerical Procedure

The numerical procedure used in this paper essentially follows the one
used by Asavanant and Vanden-Broeck [4]. 'To solve the system of equations
(5) and (6), we truncate the domain of integration in (3) at a finite value. .
Thus we introduce the M mesh points

bi=0GE-1DE, i=12,..M

where E is the discretization interval. The values of u{¢) and v(¢) are
computed at the mid points

QIS.H_]/Q:%, ?.:].,2,,M*1
The truncation of fluid domain is done subject to the requirement that the
pressure distribution is applied on the free surface sufficiently far from the
end points. The error due to this truncation c¢an be estimated by comparing
the solutions for different values of M and FE.

We approximate the integral in (5) by using the trapezoidal rule with
sumration over ¢;. The singularity of the Cauchy principal value can be
ignored, since it occurs symmetrically between the mesh points. We satisfy
(5) at the midpoints

(9)

Pt D

1 1 1 [ ol — dipage) + 2(u; — 1)
Uy —lz—f'ui——————d.qﬁ’—l-—/ dg'.
s l=g [l T @ — b prd ?

1 1

The Bernoulli equation (6) is satisfied at mesh points
2

(10) wi ol b hi=1 i=1,23,., M.

Thus we obtain the 2M — 1 nonlinear algebralc equations for 2M unknowns
w; and v;. The last equation is obtained by imposing the radiation condition
v — 0 as ¢ — -0, ie,

(11) vy = 0.

It is convenient to write this system of nonlinear algebraic equations in the
form

(12) fi(nl:ﬂZ}“':n2M’) :0) i=1,2,..,2M

where {”i}ﬁl = {“i}?il and {7 ?i}}f'./fn = {vi}},.



142 Jack Asavanant, Montri Maleewong, and Jeongwhan Choi

We solve {12) by Newton'’s method. That is, if ng) is an approxima-
tion to the solution at the mesh point j for the £ th iteration, the next
{k+1)

approximation 7; is obtained by

(13) S N C R S W) 7
(*)

where the corrections Aj is calculated from

ad afi *) {k) (k) .
(14) Z[S}ﬂ AP = 50 =12, 0M.
3=1

The Jacobians are determined by exact differentiation of (12). Let us define
the span length L of the pressure distribution by

do
u
L:/u2+v2 d¢ on ¥ =0.
9y

Thus it is equivalent to specify the value of either L or ¢y.

4. Numerical Results and Discussions

We use the numerical scheme described in the previous section to com-
pute solutions for various values of F? ¢, and L. It is found that the
behaviors of solutions are gualitatively similar for different values of L.
Thus it is sufficient to present numerical results for a fixed value of L. The
numerical accuracy is achieved by increasing M while keeping F fixed and
vice versa. In this section, we present and discuss numerical solutions for
two different flow regimes: supercritical flows (F' > 1), and subcritical flows
(F' < 1). Tt is found that supercritical solutions are characterized by ex-
ponential decaying behaviors at infinity. This means that solutions in this
flow regime can never possess waves for downstream. On the contrary, sub-
critical solutions are characterized by a train of nonlinear waves at infinity.
As we shall see later, there are certain critical values of the Froude number
that the amplitude of these waves tends to zero. This implies that the fow
possesses no drag which is of interest in practice.

(i) Supercritical Solutions

In this subsection, we set L = 3 throughout the discussion of supererit-
ical flows. We found that the results are independent of M and F, within
graphical accuracy, for M > 129 and E < 0.2. The solutions converge
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rapidly after a few iterations. All results presented here were obtained
with M = 199 and F = 0.15. :

Following Vanden-Broeck and Keller 5], we define the amplitude pa-
rameter

(15) o= 7.
Here W is the distance from bottom to maxima or minima of the free
surface profile upon which the pressure distribution is applied.

When ¢ = 0, the pressure is everywhere equal to the atmospheric pres-
sure and uniform flow is always a solution for all values of the Froude
number greater than one. Besides uniform flow solution, we recover the
so-called ‘solitary wave’ solution. The exact expression of solitary wave
solution can be derived from the weakly nonlinear analysis (Lamb [1]) as

1/2
y = (F? ~ l)sechz[(ﬁf)) / :1:], —o0 < x < 00,
Our numerical results have a root mean square error of 0.418 % in com-
parison with this exact solution. This constitutes a check on our numerical
scheme.

The solution for € #£ 0 can be viewed as a perturbation of the solutions
for ¢ = 0. When e = 0, there are two branches of solutions: the uniform
fiow ¢« = 1 and the solitary wave solution which bifurcates from the uniform
fiow at F2 = 1. When ¢ # 0, the uniform flow is no longer a solution for
any value of F2. Therefore we can expect a perturbed bifurcation from
F?=1.

When € > 0, the solutions are characterized by @ — 1 > 0. Typical free-
surface profiles are shown in Figure 2. In Figure 3, we present numerical
values of F? versus « — 1 for various values of €. Solutions of this type
can be viewed as perturbations of the branch of solutions with € = 0 which
bhifurcate from HF(2 = 1. On these branches of solutions, there are two
critical values FZ and Fj of F? such that, for each ¢, there are no solutions
for F? < F}, two solutions for F} < F? < F?, and one solution for F° 2> F2.
They can easily be seen in Figure 3: the critical values F22 are the turning
points, and the critical values F? are on the upper dashed curve. When

F? = F?, solutions approach the limiting configuration with 1209 angle
corner at the crest (this is known as Stokes’ highest wave). These limiting
configurations are characterized by the relation;
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1 €
16 -1 = -(1--)F%

(16) o s(1--)

The height of the crest increases progressively as F? increases on the up-

per branch of the curves and ultimately the free f,urface profile reaches the
aforementioned limiting configuration as F? — F2. Figure 4 shows a com-
parison of flow profiles at the same value of F2?, on both the lower and
upper portions of the curves in Figure 3, for € = 0.1.

The solutions for the case ¢ < 0 can be viewed as perturbations of a
uniform flow (i.e. they approach the uniform stream as ¢ — 0 for a fixed
value of F2). These branches of solutions extend from F2 =1 to F? = o
(see Figure 5). We expect that these branches can be extended to the
subcritical regime (F2? < 1) by allowing waves downstream. Solutions with
waves will be considered in the next subsection.

(ii) Subcritical Solutions

Unlike supercritical solutions, subcritical solutions have a train of waves
behind the applied pressure distribution and a net horizontal drag force
exerted on that portion of the free surface. Due to the presence of waves,
numerical solutions for the subcritical case are more difficult to obtain than
those in the previous subsection. In this case, the results were obtained with
M =199 and F = 0.065. The occurrence of nonphysical small amplitude
periodic disturbance had been detected on the upstream free surface when
¢o (position of the pressure distribution) was chosen inappropriately inspite
of the radiation condition. This can be avoided if ¢y was slightly adjusted.
An important physical quantity of interest is the wave drag defined by

D= /;mxds.

Here n, is the z-component of the outward unit normal vector to the free
surface. Typical profiles for I = 0.39 and L = .65 are shown in Figure 6
for € > 0 and in Figure 7 for ¢ < 0 when F? = 0.25.

When € = 0, uniform flow is always the solution in this case. Figure 8
shows that the amplitude A of the waves, defined as the difference between
the levels of the successive crest and trough, decreases as F decreases.
The wave amplitude ultimately becomes zero when the critical value Fy;
of F is reached. If we decrease F' further, the wave amplitude increases
to its maximum value and then decreases monotonically to zero again at
F = F.5. In addition, the free surface, upon which the pressure distribution
is applied, deforms into “two humps” as depicted in Figure 9. This cycle of
behavior repeatedly occurs as the Froude number F' reaches other critical
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values. We conjectire that there are finitely many critical Froude numbers
0 < ... < Fia < Fy1 < 1 such that drag-free solutions exist. In addition,
there are “n humps” on the free surface for solutions with F.,, < F < F,,,_,.
Some of these critical values F,; of the Froude number for L = 0.39 and
€ = 0.1 are presented in Table 1. Similar behavior can be found for the
steepness of the waves, defined as the difference of heights between a crest
and a trough divided by the wavelength, and the wave drag as shown in
Figures 10(a) and (b) respectively. In order to obtain numerical solutions
for ' < F.3, it is necessary to have a finer mesh to resolve the smaller
wavelengths. This requires an extensive use of computer time.

Free surface profiles for the case of ¢ < 0 are found to be similar to
those of € > 0. Except the reverse signs of the wave amplitude A, overall
behaviors of the solutions are qualitatively similar to the case of € < 0. We
therefore omit the presentation of these results.

5. Concluding Remarks

In this paper, we have investigated the problem of free-surface flows
due to pressure distributions. It is discovered that, for supercritical flows,
the solutions exhibit similar behaviors to those obtained by Asavanant and
Vanden-Broeck [4] for flows past a surface-piercing object. However, fewer
solutions are found in our problem since the free surface is not partially
replaced by a rigid obstacle. For subcritical flows, there are finitely many
critical values of the Froude number such that the amplitudes of the wave
train vanish. These imply that the motion possesses no drag and is of
interest to architectural design of the moving vehicle on the free surface. It
is worthwhile noting that these subcritical solutions never possess limiting
configurations in the form of Stokes’ highest waves, which are in contrast
to the results found by Asavanant and Vanden-Broeck [4].

When the effect of surface tension is considered in the problem in con-
junction with gravity, the flow behaviors become more complicated and
require further investigation. The authors are now studying the problem
of gravity-capillary waves subject to the applied pressure distribution in
the fluid of finite depth. Preliminary results [6] show that limiting config-
urations in the form of “trapped bubbles” occur on the free surface. This
phenomenon was first discovered by Kinnersly [7].
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For 0.1897
Fey 0.1414
Fo 0.1204
Feq 0.1025

Table 1. Critical values F'* of Froude number for L = 0.39 and € = 0.1
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