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EXPONENTIAL DECAY OF C! LAGRANGE
POLYNOMIAL SPLINES WITH RESPECT TO
THE LOCAL CHEBYSHEV-GAUSS POINTS

BYEONG CHUN SHIN AND HOWAN SONG

ABSTRACT. In the course of working on the preconditioning C* poly-
nomial spline collocation method, one has to deal with the exponential
decay of C! Lagrange polynomial splines. In this paper we show the ex-
ponential decay of C? Lagrange polynomial splines using the Chebyshev-
Gauss points as the local data points.

1. Introduction

Let I := [0,1] be the unit interval. Let N > 1 be a positive integer and
h := 1/N. The knots are the points #; := kh, (k = 0,1,...,N) and &k
subinterval Iy of I is denoted by I := (t;_1,tz). Let P, be the set of all
polynomials of degree less than or equal to n and let Sy, be the space of
C! polynomial splines defined on I with knots sequence {tk}szo, ie.,

Shn = {uec C0,1), uls, €Py, k=1,2,---,N}.

Let Sp" be a particular subspace of Sy, satisfying the mixed boundary
conditions such that

P = (1€ Sha: w(0) =0, w/(1) = 0.

Denote by T;,_1 the Chebyshev polynomial of degree » — 1 and set 7; :=
cos 8; as zeros of Tj,—1 (see [3]), so-called the Chebyshev-Gauss points, where

(2 —Dm
2(n-1)"’

Setting 7, 1= —1 and 79 := 1, {n;}}_, can be ordered as

(1.1} 8, = where j=1,2,...,n— 1.

1= <P < - <m<mp:=1
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Now, let us define the local Chebyshev-Gauss points {£; as the collo-
cation points on each subinterval I;. such that
h b1+ 1
(12) G g + AL,
For convenience, set §p := 0 and &, n := 1.
For the basis of 5}, we introduce the C'! Lagrange polynomial splines

k=12...,N,i=12,...,n—1

{qbi,k}?;l;fvl with respect to the collocation points {&; k}z—l i satisfying

(1.3) binlse) = 0wy, Hi=l---,m—1, kilI=1--- N

where

5 ) UG ER) = (6,0)

CRGHZ 0 i @ k) # (D).
The existence and uniqueness of these splines can be verified by the Schoen-
berg-Whitney conditions in [8]. Then, one may easily check that {¢; x}7— 11 LN1
is a basis of 5}, and the construction of this basis can be done easily by

the help of spline package in matlab (see [1] and [2]).

Using these splines, one can apply to polynomial spline collocation me-
thod as one of h — p version of the Chebyshev spectral collocation method.
For example, we consider a simple model problem —u” + » = f in {(0,1)
with the mixed boundary conditions «(0) = 0 = u'(1). The corresponding
scheme is given by

Z [ = &7 (&x) + ¢l€in)] win = fl&ir),

where uj; = u({;,) is the coefficient vector. One may try to investigate a
preconditioner constructed by the finite element method using the continu-
ous piecewise linear functions with respect to the collocation points {£;1}.
Here, we need to show the exponential decay of the splines {¢;} in order
to prove the equivalence of the Chebyshev continuous IL?-norm and discrete
L?-norm (for more details see [3] and [7]).

The polynomial spline collocation method using the Chebyshev-Gauss
points locally has the same fashion as the Chebyshev spectral collocation
method. Many mathematicians have studied the Chebyshev spectral collo-
cation method together with the Legendre spectral collocation method and
the methods have been applied to solve various numerical problems. The
authors have studied the preconditioning C! polynomial spline collocation
method for elliptic equations using the Legendre-Gauss points in [7}. The
closed approaches of the exponential decay for C' Lagrange cubic splines
can be found in {4] and [6], and the numerical approach using C ! Lagrange
cubic splines was given in [5].
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The purpose of this paper is to show the exponential decay of C! La-
grange polynomial splines with respect to the local Chebyshev-Gauss points
{& x} which allow us to investigate the preconditioning polynomial spline
collocation method using the local Chebyshev-Gauss points.

2. Exponential decay

Let

n
at) .= [] ¢-mn.
JFLI=0
Then the i* Lagrange interpolating polynomial ri(t) with knots at {1}
can be written as

(4 _ 2
ri{t) = ;z((n)) and 7;(t) = 11_—;27*1(3&) for 1 # 0,n,
where
n—1 $— i
rty= [1 —7
jtig=t T
LEMMA 2.1. The followings hold.
(2.1) o) <1, ()l 1, (1<t <1),
(2.2) ro(1) = (n—1)* + %
(2.3) JJax i) <2 (n - 1),
and
! 1 —n - 132
ey maee {0l |2 o} <4 -0

Proor. Since T,,_1(t) = kg H;:ll(t —7;) where k,_1 = 2" %(n-1>
1) is the leading coefficient of T},_;, we have
(2.5) Kn-19o(t) = (E+ 1)T01(2), ko1 gult) = (t — 1) T (2),
and
ro = l"ﬁn—lq()(t) — (t+ l)Tn—l(t) ry = Nn—lqn(t) _ (t - l)j—;l—l(t).
Kn--190(70) 2 ’ Kn-1Gn(7n) 2(=1)"
These yield the conclusions (2.1}, (2.2), and (2.3).
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Applying Chebyshev polynomial expansion to #;{t), we have
n—2

I 1 ‘2 ..
it = —7 + ;T;‘-(.I,T)T;‘.(t).

Using the fact that [T;(¢)] < 1, we have
[7:(8)] < 2.

Since %9 <sin# for 0 < 6 < 5, we have

(0= =0 < 217

Andsince for+ =1,2,--- ,n —1,
Fn—t (t =)@ (t) = (¢ = (¢ + 1)L (2),
by differentiating and using the fact 75, {7;) = 0, it follows that

(1) = =2
T (= m) (L= )T ()
Using
, _ sin{n—1)0 B
T () = —end where § = arccost,
we have

IT=m\ _ 2(_1)2
ri(l) = - :
b4y (n —1)(1 — cos(m — 8;)) sin(m — 8;)
Applying %9 <sinfl for 0 < 8 < 5 to get

_ 1/26,\° 1
(1 — cos(m — ;) sin{m — 6;) > = (—ﬂ_l) = m’

[av]

we have the conclusion (2.4}.

Throughout this section we use the notation B(x) = (B(z), '(z))".

LEMMA 2.2. Let ®,and ¥, ; be polynomials of degree n such that

{(2.6) O, (2) := B, (Dro(t) + P (—1)rp(t),
vanishes at knots {n; ;1;11 and
(2.7) T, () = T, (Drg(t) + (= D) (t) + 7i(t)

satisfies W, ;(r;) = &;; for 4,7 =1,2,.-- ,n — 1. Then we have
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-

(28) q)’n(l) - Dn(i;n(_l); \i}n,z‘(l) = Dn‘i}n,z‘(““l) + En,i
where D), := (d;;) Is the matrix whose entries are

diy = dop = 27’6(1)(—1)72_1

dip = 2(-1)"" dy = (=3 + 2rh(1)P) -1

1= g ( )
Enyi= 1~;n ! ' .
| ((1 = zrou)) n(l))

PROOF. Since
@, (1) = Pa(1)7p(1) + En(—1)7,(1),

(1) = To(L)rg(—1) + La(—1)r (1),
the conclusion (2.8) follows from (2.5). d

Let p = p(n) := |Dy(1,1)| = 2rf(1) =2(n— 1)’ + 1 >3 (n>2).

LEMMA 2.3. (i) For a function ¢, on the interval I, (I # k), there is a
2 X 2 matrix E,; satisfying

(2.9) (ﬂ:gﬁ;) = Dna (‘b’igiig)
where | L

— Tk P h
Do = (1™ [1(;92— 1) p] '

(i) For ¢; x, satisfying ¢; x(&x) = 1 and ¢; 1 (&%) =0 1f7 # j on the interval
I, = [ty—1,tk], we have

(2.10) ("52:83) = D (i?’;gt 3) + i

where
=g g (1)
- 1+77
Frat ( (1 - 1m )7‘ (1))

PrOOF. The linear change of variables ¢ — (.s + 1+t (-1 <s< 1)
applied to (2.8) yields the conclusion. |
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COROLLARY 2.4, Forr =0, |, we have

-1
{r) 1)2
ey < | =
d’i‘,g_( l)’ > (P
and

e o< (1)

(2.11)

S|, (0<1<j<h)

¢5_’2(t1)}- (k<j<l<N)

PRrROOF. We may have
din(t)di(t) 20, (0T <k),
Giu(t)di(h) <0, (k<L<N),
hence, with r = 0, 1, it follows from (2.9) that

r 1 r
(2.13) sl < Slolew],  asi<n

(2.14) ) < Sjeldoe]. w<i<A)

Then this complete the proof.

The eigenvalues of D,, ; are given by

A= (D" o+ VPP =1) and A= (=1)" T (p— V2 = 1)
which satisfy

Al 2 3+2v2, Mde=1 and (—1)"7'A > (=)' >0
Let, for integer & > 1,

=AM =21 +0%) and p= A =M= A (1 = by

where
Az 1 1

MM T (B 2v2)
Then it is easy to verify that, for any A =1,2,--- | N,

0<a,=

(215) 0 < ON—kks  UN=kPhk,  Pe—1PN—&y  Ph—UIN-k < Gf]z\’r

where (' is an absolute constant independent of = and #.
From Lemma 2.3 with ¢;;(t0) =0 = ¢, . (tv),

¢ (/)i,k(t.‘:—]) Y 0
(216) ((/)E,k(t-‘f—])) - Du,h (d’;,g(t(]))
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and
bialtx) b  bisltn)
1 ' =D ) .
(2 7) ( :A(tl\) n.h 0
We combine (2.10), (2.16), and (2.17) to obtain
kN [ Giklin) : Y
(2.18) Dn.h ( : 0 ) = Df‘z.h (Qggl\(fo)) + Epine

Note that, for positive integer m, since Dz D, _y = 1.

h

mo l Im \/ﬁpm

wh 2 P ,02)1
— T i
and
q —_p
D—m _ i m \/p—-‘—_l m
n.k 2 Pin v/ ﬁﬂ—l ’
- Gm

LEMMA 2.5. Let ¢;x(t),(z = 1,--- ,n— 1,k = 1,--- ,N) be the basis
function for S,’I’fﬂ. Then there is a constant C, independent of n, h, i, and
k, such that

(2.19) ¢ii(ti) <C (m—1)7 and |¢x(tio)l € C (n— 1)

ProOOF. The system of equations (2.18) yields

—h

an-k 75 ,
7l k @'g;,l;(t‘\’) =2FEyih

PN/ PP -1 & ,.(to) -

5 Gk
Combining (2.17), (2.13), and (2.16) with the above system of equations,
one can estimate at @ = £ or 15
) .

The conclusions come from combining Lemma 2.1 with (2.20). 0

i L—m
(2.20) |$in(a)| < C (1 + lm

COROLLARY 2.6. For the basis function ¢;(t) for ;"' . we have the
upper bounds such that

(2.21)

16 k()] < ldint D+ Bt )+ Cn -1 < C (n -1 on I,
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and
(222) l(f’)i,k(t}l =< Hlaﬁ{l(ﬂ’”i.k("ﬂhl)la |(/'};"A‘(tm)|} on [,

where (' is a constant independent of n, i, ki, and h.

ProoOF. The linear change of variables s = 2(1‘ —1p—1) — 1 converts ¢;
on I; to a polynomial ¥, ;(s) on [—1, 1] defined in (2.7), and on £, (. # &)
to a polynomial ¢, defined in (2.6). Using Lemma 2.1, (2.6), and (2.7),we
have

IP,(s)] < max{|®,(-1)],]®,(1}|} on [-1,1],

and

m’::.&(-’*)' < |‘1’n.' )l + m,nf )l +C ( = 1) on [_11 1]

where ' is a constant independent of n and i. Applying a transformation
t = %(s + 1) + ti—1 to ¥,,; on the interval [, and to ®,, on each interval [,
with m #£ & and then using (2.19), we have the conclusion. g

THEOREM 2.7. For the basis functions ¢;,(t), there exists a positive
constant C, independent of h, i and k, such that

1 [lk—m)
| a(t)] < C (*) on I,.

g

ProoOF. For the case of m = k, using (2.21) and the fact that (n—1)* <
p < 47 yield the conclusion. On the other hand, if yn > k, then using (2.22),
(2.12), and (2.19) yields

1 Jan—k| -1 . 1 lm—4]
G54 (D) < lbualtmo)] < (7) 6ia(t)] < ¢ p? (7) ,

which implies the conclusion. For the case m < £, it can be similarly
shown. O

This theorem shows that ¢, satisfying (1.3) decays exponentially as
moves toward end points of [0, 1] with the exponential decay factor p(n) =
p=2(n—1)?+1 for a fixed n.
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