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Finite Elements Adding and Removing Method for Two-
Dimensional Shape Optimal Design
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A simple procedure to add and remove marterial simultaneously along the boundary is
developed to optimize the shape of a two dimensional elastic problems and to minimize the
maximum von Mises stress. The results for the two dimensional infinite plate with a hole, are
close to the theoretical results of an elliptical boundary and the stress concentration is reduced
by half for the fillet problem. The proposed shape optimization method, when compared with
existing derivative based shape optimization methods has many features such as simplicity,
applicability, flexiblity, computational efficiency and a much better control on stresses on the

design boundary.
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1. Introduction

In an optimal shape design, the mathematical
programming method have conventionally been
used to the find optimal geometry of a structure
for the given design constraints. The usual ap-
proach is to represent the whole design boundary
in terms of one flexible curve such as cubic spline
and b-spline curves(Shyy and Fleury, 1988). This
method is based on the initial design variable of
the boundary, creating in the process of list of
new variables for each iteration, whose values are
used to indicate the points in space through which
the boundary of the structure passes.

In the traditional optimization technique, such

as mathematical programming and optimality
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criteria methods, the derivatives of the objective
and constraint functions with respect to design
variables are needed. So such methods can handle
only problems with continuous design variables.
Also the recreation of finite element mesh is
necessary for each design variable change in each
iteration.

The evolutionary optimization technique offers
much more direct approach in finding the optimal
layouts{Xie and Steven, 1993, 1997; Hinton and
Sienz, 1995). Their method is based on the con-
cept of gradually removing redundant material to
achieve the optimal design of a structure, The
stress distribution within the the structure is
found using the finite element analysis[FEA],
and the material usage in the structure may not be
effective in terms of stress distribution. This
method has been applied successfully in many
structural topology optimization problems. After
the FEA analysis the maximum von Mises stress
within the structure is multiplied by a rejection
ratio, elements with a stress below the factored
maximum are effectively removed, either by
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removing totally the elements from the analysis,
or by reducing the element’s Young's modulus
value to almost zero. The resulting structure is
then reanalysed, and the same removal criteria are
reapplied to remove more elements. This process
continues until a steady state of element removal
is archived and eventually the majority of the
structure becomes fully stressed. The simplicity of
the method and the easy implementation of the
algorithm is a major advantage of the method.
The main disadvantage of the material removal
only method is that it is impossible to find an
optimal shape outside the predetermined area.
Therefore a larger area is needed at the start of
this method.

Recently a new structural optimization
approachs called Reverse Adaptivity(RA) and
Self Designing Structure(SDS) have been
developed. In the RA method(Reynold et al,
1999), after the initial finite element is defined the
method proceeds with refinement of low stressed
regions of finite element mesh by element subdi-
vision. Following this any low stressed elements
are removed and the process is repeated. The SDS
method(Christie et al, 1998; Bull et al, 1999; Bull
and Lim, 1999) not only removes materials from
low stressed areas but also is capable of adding
materials in highly stressed areas to lower the
high stresses. In this semi-automatic method, the
designer manually redefines the boundary of the
structure along 4 chosen contour and remeshes it
for each iteration. This method will find a
topology of a structure with fully stressed in the
entire domain. The SDS Method has been suc-
cessfully applied to give the optimal topology of
a structure for given boundary conditions and
applied forces.

In this paper the, the SDS approach is used
with the simultaneous addition and removal of
material along the boundary to find an optimal
shape of the boundary within the desired stress
SDS method has
advantages over existing shape optimization

range. The significant
approaches. The most important peint is the sim-
plicity of the method. The mathematical problem
formulation for optimization which involves an
constraints and design

objective function,

variables are not required in the SDS method.
Since the SDS method does not use the conven-
tional derivative based optimization algorithm, it
is simple to understand and implement in a com-
puter program. Another important advantage of
the SDS method is simplicity of geometry defini-
tion for every iteration. Since the SDS method
deals with element removal and addition the
meshing remains the same except where the
addition and removal took place, it does not need
to remesh the whole domain for each iteration as
in conventional derivative based optimization
methods. ’

[t was found that the SDS method used in this
paper is simple and can be easily implemented
with into general FEA program. The method was
implemented using PAFEC(PAFEC Limited,
1994).

2. Shape Optimization Procedure
with Finite Elements Adding
Removing Method

A simple iterative procedure has been
developed to archive the optimal shape of a 2-D
elastic boundary to minimize the maximum von
Mises stress along the design boundary. The
developed fully automatic material adding and
removing method has advantage that it does not
require the decision concerns for the optimal
shape of the boundary in design process. The
procedure consist of following major iterative

steps.

(1) Read in the FE model data and apply the
boundary condition;

(2) Refine boundary elements and perform FE
analysis;

(3) Add or remove elements depending on the
magnitude of the average nodal von Mises
stress along the boundary;

(4) Smooth the design boundary after adding and
removing elements;

(5) Write data to the file for the next iteration and
return to step (1):

The procedure iterates through all steps until

all the nodal von Mises stresses along the
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Fig. 1 Design boundary refinement

boundary remain within the desired design range.
The desired
allowable stress or the endurance limit for a
fatigue analysis,

stress could be the maximum

2.1 Read in the FE model data and apply the
boundary conditions

The analysis model data, the boundary condi-
tien data and the elements mesh data are read in
for the finite analysis. The data file is prepared to
interface with the commercial FEA package
PAFEC. Using the PAFEC, the initial mesh with
load and boundary conditions are defined, and
after analysts the post-processing is carried out
with the package. This enables the user to incor-
porate many well developed features in the
commercial software.

2.2 Refine and FE

analysis

boundary elements

The stresses along the design boundary need
more accurate stress analysis than inside of the
structure because the addition and removal will
take place along the design boundary. After
reading in FE model data, the elements along the
design boundary are subdivided into smaller
elements by the element bisection technique in
conventional elements adaptivity as shown in Fig,
1. The size of subdivided elements can be adjusted
possible by controlling the final refined element

edge length parameter. This refinement enables
the better stress results to be obtained but also to
control the amount of adding and removal mate-
rial, by controlling the refinement element size.
The stress analysis of two dimenstonal structure is
performed using a 6 noded triangle elements. The
finite element model with finer boundary elements
is solved and the nodal stress returned. The
stresses are averaged to obtain the von Mises
stress in each elements in the structure.

2.3 FElements addition and removal

It could be said that one of the most common
purposes of structural optimization is to minimize
the weight of the structure while satisfying the
stress constraints. The minimum weight can be
achieved by removing the elements along the
design boundary where the von Mises stress is
smaller than the prescribed cut off stress, and
stress can be lowered by adding elements at the
node along the design boundary which have
greater von Mises stresses. In order to decide
addition and removal of elements, two stress
values must be set: the maximum stress threshold
and the removal stress threshold. The maximum
stress threshold is a fixed limit which stress along
the design boundary should nat exceed. If the
average von Mises stress at a boundary node is
greater than the maximum stress threshold stress
then add one or two element depending on the
angle of the two adjacent edges at the node. The
removal stress threshold is a fixed limit which,
ideally, all stress along the boundary should
greater than this threshold. If the average von

Mises stress at a boundary node is smaller than

this prescribed stress then remove all the elements

containing that node. The addition and removal
procedures are as follow:

1) Identify the design boundary edges and nodes,
store for later use. The boundary edges can be
easily identified by checking if the edge share
with other elements or not.

2} Calculate the average nodal stress from all the
elements coniaining the node along the design
boundary. The average clement stresses from
FE analysis are used to obtain an average von
Mises stress for each node along the boundary.
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The nodal
calculated by averaging the elements stress at
the element which contain the node along the
node.

3) For each nede decide whether to add or re-

average von Mises stress are

maove elements or move to next node depending
on the magnitude of the average nodal stress.
The elements are added or removed from the
physical model, and update the FEA data such
as nodal position and element connectivity. If
the angle between two adjacent edges is con-
cave and less than 120 degree then add an
element with 3 existing nodes in sequence
which has two adjacent edges. If the angle
between two adjacent edge is greater than 120
degree then a new node is generated which
divides the angle in half at the distance of the
average edge length of the adjacent two edges.
Two elements are penerated with a new node
and 3 existing nodes, and the generated new
elements data are added to the FEA data base.
The scalar and vector products of unit vectors
of the edges were used to determine the angle of
the adjacent edges. The removal of elements
can be done easily by just removal of element’s
data from the FEA data base. The proposed
method requires only one FEA per each
iteration as the adding and removal process
takes place on the boundary node sequentially.
This is one of the main advantages of the
method. In Figs. | and 2, the elements addition
and removal can be seen along the initial a
quarter circle boundary line. As shown in the
figures, materials are added in the high stressed
region and materials are removed from the low

stressed region.

2.4 Smoothing the boundary

The shape of the boundary changes for cach
iteration, and the stress distribution along the
decided by the shape of the
boundary. The shape of the boundary is the most

boundary s

critical factor for the accurate stress analysis
along the boundary. The shape of the boundary
line changes to a saw-tooth type shape after
elements adding and removing procedure at a
node for each iteration. Figure 3 shows a typical
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Fig. 2 Adding and removing of elements along the
boundary with initial circular boundary

Element generation
by plastering

Element removal
by planning

Fig. 3 Boundary smoothing with plastering and

planning
saw-tooth shape of boundary line during
iteration without boundary smoothing. This saw-
tooth type shape along the boundary yields local
stress concentrations and uneven stress distribu-
tion which vields
analysis. Therefore it is necessary that a smooth
boundary must be kept throughout the iteration.
Figure 2 ualso

inaccurate finite element

shows the
during the

typical smoothed

boundary curve iteration. The
boundary smoothing procedure has the following
steps.
1) Plastering and planning the boundary

Figure 3 shows the plastering and planning

operation for boundary smoothing. If the angle
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between the adjacent edge is concave and acute
then an element with 3 nodes is generated. This is
similar to filling the gap of crack. The boundary
planning is done by cut off the element, if the
boundary shape at a node is projected out from
the boundary curve.
2) Averaging the boundary node

The position of nodes along the boundary can
be modified by averaging the adjacent two node.
This simple reposition of nodes can smoothing
the peaks and wvalleys effectively along the
boundary.
3) Smoothing by bspline curve

Final smoothing of the boundary curve is done
by a bspline curve which goes through all the
nodes along the boundary.

3. Examples of the Application
of the Method

Two classical boundary shape optimal design
problems are used to demonstrate the effectiveness
of the proposed shape optimal design approach.
A plate problem with a central hole and a fillet
problem are the examples used for minimize the
maximum stress along the design boundary.

3.1 Example 1: Optimization of a plate with
a hele in biaxial tension
A classical example problem in shape
optimization is to find the optimal shape of a hole
in an infinite isolropic homogeneous elastic plate
under biaxial traction(Shyy and Fleury, 1988;
Kim and Kwak, 1996). Because of symmetry, a
quarter of the plate is modeled as shown in Fig. 1.
In conventional parametric shape optimization
design of this example, the design variables have
same restraintg such as direction of movements
and tangency requirements at the end of the curve.
In the proposed approach there are no design
variables, and no constraints on the design
shape

optimization design problems. The problem is to

variables as in the conventional
minimize the maximum von Mises stress in the
plate along the boundary. The theoretical solu-
tion of the hole shape which minimize the
stress

maximum von Mises along the hole

2 MPa

Fig. 4 [Initial quarter model with a circular hole
—_
T Initial  —-
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er. 7 —-
lter.15 ——

Fig. 5

Iteration history of hole shape

btoundary is an ellipse with an axis ratio of the
same as the traction ratio in the orthogonal di-
rection{Wheeler and Kunin, 1982). In an infinite
biaxial tension field, the stress along the ellipse
boundary is always the same regardless of the size
of the ellipse thus the solution of the problem is
an ellipse of undetermined size.

For each iteration, the von Mises stresses are
calculated along the boundary, and at each node
10 find the average suress of each element which
contains the node along the boundary curve. The
applied biaxial tension is 2 MPa in x-direction
and | MPa in y-direction as shown in Fig. 4. The
von Mises stress along the ellipse boundary is 3
MPa for the give biaxial tension field. [f the stress
at a node along the boundary is greater than 3.4
MPa then elements are added at that node, and if
the stress is less than 2.6 MPa, removal of all the
elements which contain that node along the
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Ellipse --—.
Final —

Fig. 6 Final shape of hole

Fig. 7

von Mises stress contour after optimization

boundary. A typical result of an addition and
removing iteration can be seen in the Fig. 2. In
the figure, the initial circular boundary has
changed to new boundary with boundary element
refinement. Note the smooth curve along the
boundary by boundary smoothing procedure can
pbe seen in the figure. In Fig. §, going from the
initial circular boundary to the final boundary
curve shape during the iteration is shown. The
final shape of the boundary has reached after 27
iterations and final curve is very close to the
analytical curve of ellipse as shown in the Fig. 6.

The von Mises stress distribution in the plate
with the optimal shape is shown in Fig. 7. As
shown in the figure, the stress distribution along
the boundary is in the same range and those
results are same as the analytical solution.

Figure 8 shows that magnitude of the von Mises
stresses along the boundary verses iteration

The maximum and minimum stresses are the

—e— Max

—&— Min
Avg

—e— 5id Dev

von Mises stress{MPa)

leration No.

Fig. 8 The von Mises stresses along the boundary
verses iteration number
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Fig. 9 Initial shape and model of a fillet (unit : mm)
two extreme values at the nodes along the
boundary. and the average is average von Mises
stress of the nodes. The standard deviation is
calculated from the nodal stresses along the
boundary for cach iteration. Tt can be seen that
the maximum and the minimum stresses go to
close to the average stress for convergence. The
average stress is almost constant to analytical
value of 3 MPa. As the curve approaches the final
optimal shape the stress distribution along the
boundary curve is in a reduced stress range of
stress band as the standard deviation is close to
Zero.

32 Example 2 : A fillet problem

The fillet design problem is another commonly
used example of finding an optimal shape of an
uniaxial tension fillet with the transition zone
connecting the two different widths{Shyy and
Fleury, 1988; Kim and Kwak, 1996) . A quarter of
fillet is modelled due to symmetry. The initial
shape and model of the fillet is as shown Fig. 9.
A constant tension of 130 MPa is applied along
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the extreme right hand edge and symmetric dis-
placement boundary conditions are applied on
the extreme left hand edge and the bottom.

This problem does not
analytical solution as in example 1.

have an unique
The stress
distribution along the design boundary can not be
constant, and the stress distribution and shape of
boundary depends on the design criteria and
constraints imposed on the design variables in the
conventional shape optimization design.

The design boundary starts at 90 mm from right
edge, and ends at 45 mm to the left of the right
hand edge. The total horizontal length of the fillet
is 200 mm. Along the design boundary, elements
are meshed with smaller elements using the
boundary refinement scheme. The shape optimize
design problem is te find the boundary shape
which has the minimum stress concentration. The
maximum stress is at the corner with stress con-
centration factor of 2.31 at the initial iteration.
Along the design boundary the elements are
added or removed depending on the magnitude of
the average element stress at the boundary nodes.
In this problem elements are added if the average
element nodal stress is greater than 190 Mpa,
elements are removed if the average element nodal
stress is less than 120 MPa. A constraint on the
geometry is imposed on the vertical edge of design
boundary, since the stresses along the edge is
much lower than 120 MPa at the edge will
disappear if there is no constraint, The constraint
is that the design boundary edge can not cross the
vertical line 90 mm from the left hand edge.

Figure
boundary during the iteration. One of the typical
boundary and mesh shapes after iteration 15, the
final shape can be seen in Fig. 10(a) and Fig. 10
{0y respectively. Figure 10{c) shows design history

10 shows the shape of the design

of the boundary from the initial shape to the final
shape. The finer elements along the boundary and
the smooth boundary curve can be found in Fig.
10(a) and {b). As the stress is almost zero near the
top corner and highest at the lower corner region
in Fig. 9,
corner and added to the lower corner as in Fig. 10
(a). The final boundary shape of Fig. 10(c)
converged after 29 iterations.

the materials are removed from top

(a) Boundary shape of fillet after 15 iterations
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(c) Shape of the design boundary history

Fig. 10 The shape and mesh of the filet during
iteration

Fig. 11

Stress contours of final design

The stress contour of final design can be seen in
Fig. 11. The stress in the final design is not evenly
distributed since the stress along the boundary
varies from a lower value close to zero to the
maximum value. The maximum stress exists at the
location where the narrower width begins.
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Fig. 12 The stress history during iteration

From Fig. 12, the change in the maximum and
the minimum stresses can be seen. The stress
concentration can be reduced almost by a half
with the final boundary curve.

It can be seen that the minimum stresses
remains close to zero since the minimum stress is
always found at the upper corner. As the curve
approaches the final optimal shape the maximum
stress along the boundary curve converges to a
constant value of 152 MPa.

4, Conclusions

A simple SDS based procedure to add and
material along the
boundary is developed to optimize the shape of a

remove simultaneously
two dimensional problem and applied successful-
ly to the two example problems. The previous
application of the method to structural design is
focused mainly on the topology design of
structures. 1n this paper, the shape optimization
was conducted to find the exact boundary curve
for a two dimensional elastic problem for
The

shows that the results for the two dimensional

minimising the maximum stress, results
infinite plate with a hole is close to the theoretical
result of an elliptical boundary, and the stress
concentration being reduced by a half for the fillet
Also  the developed boundary
smoothing and boundary refinement technique

problem.

are successfully applied to find optimal shape of
boundary.

The advantages of the method used in this
paper are as follows. The most important part of
the proposed method is its simplicity. It does not
need to be developed into a formal optimization

problem, then calculate derivatives, remeshing the
whole domain. The lack of the conventional
derivative based optimization enables the method
to be easily understood and implemented. Because
the scheme adds and removes material along the
boundary node simultanecusly, it performs only
one finite element analysis for each iteration. This
reduces the computational
requirements significantlly. The final stress along
the boundary can be controlled by setting differ-
ent values for the maximum and the minimum
stress thresholds. Therefore a different optimal
shape is possible for different stresses thresholds,

again overall

In summary, the proposed shape optimization
method, when compared to existing derivative
based shape optimization methods, has a many
such as simplicity, applicability,
flexiblity, computational efficiency and much
better control on stresses on the design boundary.
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