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A Global Optimal Sliding-Mode Control for the Minimum Time
Trajectory Tracking with Bounded Inputs

Choi, Hyeung-sik*
Department of Mechanical and Information Engineering, Korea Maritime University

A new design of the sliding mode control is proposed for the uncertain linear time-varying

second order system. The proposed control drives system states to the target peoint in the

minimum time with specified ranges of parametric uncertainties and disturbances, One of the

advantages of the proposed control scheme is that the control inputs do not go beyond

saturation limits of the actuators. The other advantage is that the minimum arrival time and the

acceleration of the second order actuators system can be estimated with given parametric bounds
and can be expressed in the closed form; conversely, the designer can select actuators based on
the condition of the minimum arrival time to the rarget point. The superior performance of the
proposed control scheme to other sliding mode controllers is validated by computer simulations.
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1. Introduction

Sliding mode control(SMC) originated from

the wvariable structure control system was
proposed and elaborated in the early 1960°s in the
Soviet Union by Emelyanov (1967) and Ikis
(1976). SMC has been extensively studied due to
invariance properties and the robustness against
uncertain system parameters and disturbances. An
extensive survey on the sliding mode control was
performed. Fundamental theory, main results,
and practical applications of variable structure
control was introduced by Hung (1993). Recently,
Kim and Lee (2000} devised a SMC with per-
turbation compensation to reduce the low-fre-
quency tracking errors.

To achieve fast path tracking, an improved
sliding mode control employing an optimal
sliding surface was proposed by Ashchepkov
(1983). The optimal sliding surface was decided

by minimizing error performance index for a
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given initial condition. To improve the tracking
behavior of the nonlingar second order dynamical
systems, a moving sliding surface was proposed
by Choi and Park (1994). The surface is initially
designed to pass
subsequentially is moved toward a fixed sliding

given initial errors and
surface.

Despite of the invariance properties and the
robustness, Slotine (1991) presented that the con-
ventional SMC had important drawbacks limiting
its applicability, such as chattering or large con-
trol input requirement. Also, response of conven-
tional SMC is sensitive to system perturbation
during the reaching phase. The condition of the
robustness of the conventional SMC is based on
the assumption of the unlimited control inputs.
Conversely, the robustness properties are guaran-
teed only as long as the control actuators do not
saturate. The input limitation is one of important
issues need to be considered for controller design
in realistic and practical applications. To solve
the robustness problem of the conventional SMC
under the input torque saturation, Madani-
Esfahani et al. (1990) proposed a scheme to esti-
mate the region of the asymptotic stability with
bounds on the control inputs but, which is not
applicable due to excessive chatter. Lu and Chen
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(1995) devised a global sliding mode control
scheme (GSMC), which ensures sliding behaviour
throughout an entire response. With given uncer-
tainty bounds, the merit of this control scheme is
that the maximum and minimum values of the
control action is estimated and the range of
allowable reference input is obtained under the
input limits.

In this paper, a model of the second time-
varying system with uncertain parameters is spec-
ified in Sec. 2. To control the system, we propose
a global optimal sliding mode control {(GOSMC)
for tracking to the reference input along the min-
imum time trajectory in Sec. 3. In Sec. 4, the
minimum arrival time expressed in the closed
form is derived. Finally, computer simulation
results are shown and discussed.

2. Model of the System

We consider the linear time varying second
order system with parameter uncertainties and
disturbances.

xtalt)xrtatix=b()u+d(H) (1)
where we suppose that system parameter 21(f), &z
(#), and b(¢) are difficult 1o measure and the
disturbance is unknown except their upper and
lower bounds as follows:

ﬁmjné b_l(f) g,@max
B < b7 () 1(1) = Aimax }

Qamin < b7 () @2(t) < tomax | (2
¢ o 1dw] <D

Since all the physical systems have input torque
limits, the bounds of the input torgues are defined
as

Unin =< 1t < Unax (3)

In this paper, a global optimal sliding mode
control algorithm is devised, which drives the
system with the uncertain parameters and
disturbances, to the target point in the minimum

time with limited inputs.

3. Design of Global Optimal Sliding
Mode Controller

3.1 Glebal sliding mode control
To control the uncertain system defined in Eq.
(1), a SMC with estimates of the uncertain
parameters, shown in Eq. (4), is applied
u=—RBlcx~F) +ax+mx—{48]| cx
—Fl+da| x| +da| x| +D}sgni(sy (4

where

B= Bimax+ Bmin . A8= Smax 2_ Bmin

2
&1: almaxg‘ imin da= aflmaxz' Gimin
azz Q’Zmnx'zf' 2min - da= LYZmaxz_azmm

The proposed control can be applied to higher
order systems similarly, but closed-form solution
may not be obtained. The sliding mode control
suggested by Lu and Chen (1995) is trivial except
for the forcing function f(f), where the sliding
mode is defined in conjunction with £(f) as

s=e+ce—f(£) (%)

where error state is e=x —# with reference step
input » >0, where the sign of » represents the
direction of input. When # <0, similar approach
except for the sign of input can be made. The
forcing function drives the system states in any
state space to the switching plane directly without
reaching phase such that the GOSMC is robust
during the reaching phase. In this paper, we
propose a new forcing function which drives the
system states along the minimum time trajectory.
In addition to jumping to switching plane, the
proposed forcing function makes helps us to cal-
culate the minimum arrival time at the target
point in a closed form. In order for the GOSMC
to manage the system states to maintain on the
sliding surfaces, the conditions on the forcing
function f{#) should be satisfied as

fO=ertce (6a)
fty—0as f — o0 {6b)
F(¢) should be bounded (6¢)

The stability of the GOSMC satisfying the
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conditions (6) can be shown using Lyapunov
function V' =(1/2)s?>0. The negative definite of
the time derivative of the V except for s=0
ensures that the proposed control scheme guaran-
tees asymptotic stability. The proof of the stability
of the closed system is simple and was already
shown by Luh and Chen (1995).

3.2 Design of the forcing function

In the stability analysis, the asymptotic stability
of the closed loop system is guaranteed if the
forcing function satisfies the condition Eq. (6).
This, eventually, means that $=0 is satisfied. In
this paper, we propose the following desired
trajectory function that not only satisfies the con-
dition in Eq. (6) but also is the minimum arrival
time trajectory for pure mass systems, The initial
and final conditions of the function are specified
as follows

for +=0 x(0)=0, x(0)=0 } .

for {21t @ x{tr)=7, X({)=0

where fr is the final arrival time. The boundary
conditions of the desired trajectory are specified

as
x:%fz ]
x=at for 0=={<{p (3a)
x=a=%J

x:af—%t?+atft—%t2]

for te=t=1{,

(8b)

where v is the maximum velocity, g is the accel-
eration, and {, is the mid travel time. The profile
of the trajectory is shown in Fig. I.

The forcing function is specified as

Fh=x+clx—r)

for 0= :
ot L) or 0=t <ty (9a)

Fhy=al(ty=ty+ ettt =5t —5 1)
fOf bbéfgtf
where f(t)=0 for {>{;.

(9b)
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Fig. 1 The minimum time trajectory

4. Estimation of the Minimum
Time Trajectory

The proposed control vields the asymptotic
stability of the uncertain second order system.
However, the input torques of the system are
bounded as in Eq. (3). Within this bounded
range, we design 4 control scheme to estimate the
minimum arrival time to the reference inputs. To
do this, we divide the proposed controller into
two parts according to its magnitude depending

on the sign of s as follows:

w=Pl—cx+ )+ ax+ax+{d48| —cx
+fl+da | x| +dee| x| +D} for s<0
(10a)
w=R(—cx+f)+amx+ax—{48| —cx
+Fl+da| x| +da!| x| + D) for s>0.
(10b)

Since the closed-loop system is asymptotically
stable, s=5=0 becomes satisfied for #=0. Using
this, we have the following equation by exploiting
Eq. (3)

r=—cx+f. (11

Rewriting Eq. (100 using Eq. (11) yields
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un=PBr+ax+ax+{48 x|
+dm | x{ +da| x| +D}  (12a)
u1=E§+&1;;:+Erzx—{AB | )C | -+ Aday I x |
+da | x | +D} (12b)
Equation (12) can be rearranged according to the
input profile and trajectory tracking time. Equa-
tion (12a) is expressed as:

uh:Bmax%+leax3‘C+Q’zmaxx+D for 0=t<f }
1n= Bint + timaxX + Comanx + D for ty <<ty )

{13a)
For the time division 0<¢<t;, we have x| =
x «, and for [, <1</, also, we have | x =—
¥=—a. With the same procedure, Eq. (13b) is
expressed as

Mlzﬂmax}é+alminji+ﬂzminX“D for 0= <y }
ulzﬁmaxi+&'1min};€+ﬂzmanfD for =<1y
(13b)
To estimale the maximum of the input, we
snbstitute the Eq. {8) with »=1/4af} into Eq.
{13a), which yields

Un— 0« W+D for 0<{< te
aX-+1D for tbstéff (14)
where
W=Bmax+ Q’lmaxt‘f’%a@maxtz
== 7Bmin+a1max(tf_lf> — amax
1 1
(thz —tftJr?rz).
With the same approach, substituting the

functions of the minimum time trajectory into Eq.
{12b) and arranging it yields

=aY—D for 0<
w=aY—Dfor 0 t<tb} (s

=al—D for t,<t=</tr

where

Y = (Bmln + almint + famin tz)

—_Bmax‘*‘almjn(tf*t)_aznm
1. 1
(4 tr— it + Zf )

The maximum of #x in Eq. (14) and the minimum
of z; in Eq. (15) exists at a certain time in the
tracking time range. Using the maximum and
minimum values of the input we can estimate the
maximum value of the acceleration of the uncer-

tain system with the bounded input. We express
the maximum and minimum values of the Egs.
(14) and (15) as

ma

f20 u(f)h aTmax-I_D (16)
g‘o w(t)=aTua—D. (17)

The input torgues are bounded as specified in Eq.
(3). The physical bounds always exist on all the
systems. Hence, for the realistic and practical
application, the applied input values should be
within the physical bounds. The maximum and

minimum input values are bounded as
UanSminz(t)<max @)= Unax  (18)

Employing the specified torque bounds, we can
range the permissible acceleration of the system as
follows:

Um%rlm‘:D Q_ Umja_‘:cnax (19)

To estimate the minimum time of the trajectory

tracking, we need to obtain the maximum value of
the #y, in Eq. (16) and the minimum value of the
#; in Eq. (17). To do this, we should differentiate
#, and #; with respect to time. The trajectory
functions are bounded and closed except the ac-
celeration profile at the mid time ¢, for /[0, £/].
At this time, we can not differentiate but can get
the limit value. In addition to this, we can get
several points where the time derivative of the
conirol inputs in Egs. (14) and (15) become zero.
The maximum or minimum values are obtained
out of these candidates. Differentiating Eqs. (14)
and (15) with respect to time within the
differentiable range yields

%z;—h=almaxd + temaxatl for 0=¢<ts }
‘2‘;” - Gman@lty—£) for tSiS

(20)

In Eq. (20), for each time division, we get ihe

solution of “;;" =0 for { =0 as

g‘m“ for lh<<t<t 20

2max

tha=1tr—

Substituting the solution in Eq. (21) into Eq. (16)
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yields
Un E t=tu=aTmax| =t D for L <i<{,
{22a)
At initial, final, and mid points of tracking time,
the values of the control inputs are calculated as:

Ui | e=0=aPBmax+ D (22b)

Un | t=tyog

=a{ Bmax+ Bimaxls +%0—'2max i# )+ D(22¢c)

tn| =t
=a{— Bmln'l' Cimax bo +%a‘2maxtb2 -+ D
(22d)

i | t=t,=a(_8mln+%a’2maxfzf)+D. (22e)

Since the input values of the Eqs. (22b) and (22d)
are obviously smaller than that of the Eq. (22c¢),
the maximum input value can be written as

max w(H)=max{ua | t=trn ®a| i=tro
Un | t=e,} for 0<F<<i,  (23)

In the same way as shown in obtaining the
maximum value, the minimum value candidates
of #; can be obtained. By referring to the
trajectory profile, we can get a minimum candi-
date f.¢ by differentiating 4, 4s
tu=n—%¥@¢m-@gtgn. (24)

2min
Substituting 4 in Eq. (24) into Eq. {17) yields
Ur| tmen=a Tn | =¢,— D for ty <t =<ty
(254)
We can get other minimum candidates at the piece-
wise continuous mid and final points of the
tracking time, which can be obtained as
2| i=t, .= a( Boin+ Giminte + Corunts }—D
(25b)

[£4] I =150

=ﬂ( _ﬁmax'}' Tioun e +%ﬂ'2mjnt§)_D

(25¢)
I | :::,=a(_ﬁmax+"‘}1—02mmf_?)_D- (25d)

Since the value of Eq. (23b) is bigger than that of
Eq. (25¢), the minimum value of the control input
is selected among the candidates in Egs. (25a),

(25¢), and (25d} as

min w(¢y=min{ze; | et
U | i=tyn Ui | t=t;}r0r bh=t=l. (26)

In this paper, the goals of the proposed control
scheme are to achieve tracking of the desired
trajectory and to estimate the arrival time at the
reference input of the second order time-varying
system with unknown but bounded parameters
and disturbances. The proposed scheme is more
realistic and applicable than the scheme to find
the range of allowable reference input proposed
by Lu and Chen. One of the eminent merits of the
proposed control scheme is that we can get the
closed-form solution of the arrival time £, which
we can calculate easily without numerical
approaches.

In the electric motor system, where the stiffness
coefficient is not considered such that g:=0, the
minimum arrival time is expressed in a closed
form. To derive the closed-form solution, we use
the Eqgs. (21} through (26). Since @ is zero, there
(21). By
evaluating the values of Eqgs. (22¢) and (22d), we
can tell that the value of Eq. (22¢) is larger than
that of Eq. (22d). Hence, the maximum value

becomes

max u{#)=un| +-¢,, for 0<{. (27)

does not exist a solution in Eq.

Also, in finding the minimum value, since @z=0,
we know that there does not exist a solution in
Eq. (24). By evaluating the last two Egs. (25c),
and (25d), we can tell that 2, | .. is the mini-
mum, which is expressed as

min 2{$)=u:| 1=, for 0<¢ (28)
From the minimum and maximum values, we can
decide the minimum arrival time within the input
value limit. By substituting a=4+/+% into Eqs
. (22¢) and (25d), and arranging them within the
bounded region in Eq. {3}, we obtain the follow-
Ing equations as

%(ﬁmax"’ Cimaxfe) T D= Upex (29)
Drming 7%Bmax_D- (30)

Rearranging Eq. (29) yields second order ine-
quality as:
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(Umax_D)f} *27&’1maxtf—4rﬁmax20. (3])

By solving the Eq. {31), the minimum time candi-
date to arrive at the desired final position # can be
obtained in a closed form as

PR ¥Oimax T \/Tzazlmax+ 4 ?’Bmax( Unag D)
hman Uax— D .

(32)

In the same way, another minimum time candi-
date can be obtained by solving the inequality
(30} as follows:

_ 4?’Bmﬂx
b= Cpa— D" (33)

The minimum arrival time is
i =MAXY famins Limen) (34)

As shown in Egs. (33) and (34), the minimum
arrival time is expressed in closed form clearly.
Therefore, we can easily calculate the minimum
arrival time at the desired final condition. Con-
versely, we can easily design or select appropriate
motors to drive mechanical systems according to
control specifications

4. Computer Simulation

4.1 Model of the motor system

In the computer simulation, we apply the
proposed GOSMC to the BLDC motor system,
and show that the performance of the proposed
control scheme is more realistic and superior to
that of the GSMC and SMC. We apply the
propased GOSMC to the motor system with un-
known but bounded parameters and disturbances,
and show that the estimated minimum arrival
time becomes quite near to the simulation result.
We describe the well known motor dynamics as

O+ mb=>b(u+d) (35)

where @ is the position angle, a1=B/J is com-
posed of the damping coefficient £ and the
moment of inertia J, =K. K./J is composed of
the torque coefficient of motor K; and PWM
inverter currents /. The disturbance d is the
Coulomb friction. The only parameter A, is given
in the catalogue, and other parameter should be
measured or be estimated. In this reason, the

parameters are uncertain, but their upper bounds
can be specified in general.

The values of the parameters for a 700 W
permanent-magnet synchronous BLDC motor are
taken from those of Lu and Chen’s reference to
compare controller performance. The bounds on
the uncertain parameter, disturbances, and con-
trol torques are specified as

Brin=2.8743 X 071 < H ' <4.3114 X 107°= Brax
Fimin=1.6679 X 1073 < b 12, <0 3.7528 X 1073

= (Yimax
| d| <01=D{V)
—5<max #<5 (V)

42 Results of the computer simulation and
comparison

In the simulation, we set the desired final posi-
tion ¥ =15(rad), and set system parameters @i, b,
and dto 8, 2.5 % 10%, and 0.08 sgn(#), respectively.
With given parameter bounds, we can calculate
the maximum acceleration, the maximum input
torques, and the minimum arrival time using Eqs.
(27), (28), and (34), which are

bun=0.2415(s),
a=4r/t} =1028.4(m/s%),
max #=u | =0.1205=5(V}

where fmn=1r is obtained using the closed-form
equation. We compare the calculated values with
simulation results.

In the simulation, we compared three different
controllers: GOSMC, GSMC, and the conven-
tional SMC. We analyze the performance of the
proposed controller by evaluating the simulation
results. Especially, we compares the controllers in
two aspects: the desired trajectory tracking capa-
bility and the obeyance of control torque limits.

According to the simulation results, it took 0.
242 (seconds) for GOSMC to arrive at the refer-
ence input as shown in Fig. 4(a), but took 0. 4
(seconds) for GSMC in Fig. 3(a), and even took
more than 0.5 (seconds) for SMC controller in
Fig. 2{a). The arrival time shown in GOSMC is
the fastest out of the three controllers. The reason
is that GOSMC utilizes the control torques fully
within the torque limits but not the other
controllers as shown in Figs. (b}. The SMC shows
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poor response despite of applying excessive con-
trol torques as shown in Fig. 2(a). GOSMC does
not show any overshoot or chattering over transi-
ent mode despite of the fastest dynamic tracking.
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Fig. 4 GOSMC: (a) reference input tracking (b)
control input

GOSMC does not trespass against the control
torque limits as shown in Fig. 4(b). Though
GSMC does not trespass against the control
torque limits, it does not fully exploit the control
torques.

One of the eminent advantages of GOSMC s to
estimate the arrival time at the reference input.
The estimated arrival time based on the closed
-form equation become quite near to simulation
results. Hence, we don’t have to simulate the
closed-loop system by using a numerical
algorithm such as the Runge-Kutta method. The
estimation scheme of the arrival time in conjune-
tion with the maximum acceleration estimation
would be very helpful in selecting and designing
motor systems.

5. Conclusion
A global optimal sliding mode control
{GOSMC) was proposed to control the second
bounded
parameters and disturbances within limited con-
trol input. The proposed controller drives the
system states along “the time

order system with uncertain but

minimurm
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trajectory” within the control input limit. If the
desired final and the bounds of the uncertain
parameters and disturbances are specified, the
arrival time and the acceleration are expressed in
closed-form equations. The proposed controller
was applied to the BLDC motor with uncertain
parameters. Simulation results of the proposed
controller are quite similar to the closed-form
equation results, and showed the best perform-
ance compared with other SMCs. The closed
-form equation can be utilized in selecting the
actuators for the mechanical system without a
computer simulation.
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