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Inverse Dynamic Analysis of Flexible Multibody Systems
with Closed-Loops
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The analysis of actuating forces (or torques) and joint reaction forces {or moments) are
essential to determine the capacity of actuators, to control the system and to design the
components. This paper presents an inverse dynamic analysis algorithm for flexible multibody
systems with closed-loops in the relative joint coordinate space. The joint reaction forces are
analyzed in Cartesian coordinate space using the inverse velocity transformation technique. The
joint coordinates and the deformation modal coordinates are used as the generalized coordinates
of a flexible multibody system. The algorithm is verified through the anaysis of a slider-crank
mechanism.
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1. Introduction

The inverse dynamic analysis of multibody
systems,
required to produce a prescribed motion and joint

which determines actuating forces
reaction forces, is necessary to determine the ca-
the
manipulators and to design the components of the

pacity - of actuators to control robot
system.
The constraints  that  describe

mechanical joints interconnecting each body and

kinematic

driving constraints that describe specified motion
trajectories are expressed as nonlinear algebraic
equarions and these constraints are adjoined to
the the
Lagrange’s multiplier technique.

system equations of motion using
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Generalized constraint forces can be obtained
from the Lagrange multipliers and constraint
Jacobian matrix but the forces are neither actual
joint reaction forces nor actual actuating forces
when the Cartesian coordinates are used as the
system coordinates. Chen and Shabana (i991)
derived the procedure determining actual joint
reaction forces of mutibody systems with flexible
bedies from the constraint force vector in the
Cartesian coordinate space. In case that relative
joint coordinates are used as system generalized
coordinates, actual joint actuating forces for
driving constraints are directly obtained from the
system equations of motion. So it is efficient to
obtain the data for controlling the motion of the
system. But in this case, since the kinematic
constraints of all joints except cut-joint are not
adjoined to the system equations of motion, the
should be
recursively from the tree-end body along the

joint reaction forces computed
inward path in the Cartesian coordinate space
after analyzing the motion of the system. And
studies on this procedure for systems with closed-

loops are not yet performed.
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In this paper, an inverse dynamic analysis
algorithm for flexible multibody systems with
closed loops in the relative joint coordinate space
is presented.

The constraint acceleration equations expressed
in Cartesian coordinates are derived in terms of
joint using  the  velocity
transformation  technique 1978).
Froem the system equations of motion combined

coordinates
(Jerkovsky,

with the constraint equations, the actual joint
actuaring forces (torques) or joint reaction forces
{moments) corresponding to the constraints
{driving or cut-joint constraints) are computed.
The reaction forces are analyzed in Cartesian
coordinate space using the
transformation matrix (Lee, 1997).

A slider crank mechanism with an angle driver

inverse velocity

is used as an numerical example in order to
exemplify the formulation presented.

2. System Equations of Motion

The position coordinate vector of an arbitrary
point on the deformable body ¢ can be re-
presented with a vector of Cartesian coordinates
¥%, ' and modal coordinates @, that is

x'=[rT pT &’ (1
where #7 is the global position of the origin of the
ith body reference frame and p'(=[#, pi, 25
#17) is the Euler parameters that represents the
orientation of the body reference frame with re-
spect to the inertial reference frame.

The relative joint coordinates ¢° of body 7 are
defined as relative rotational angles about joint
axes and translational distances between that
body and its reference body. Since the reference
coordinates of the base body are inertial reference
frames, the relative joint coordinates of the base
body are Cartesian coordinates of that body.

This paper defines the generalized coordinates
g™ of a flexible body 7 as a collection of relative
joint coordinates g’ and modal coordinates a® of
that body, that is

qitz[qﬂ" aﬂ"]T (2)

In general, the vector of Cartesian velocities

and the time derivatives of modal coordinates x
can be represented in terms of generalized veloci-
ties ¢* using the velocity transformation matrix
S:
x=Sq* (3)
The time derivative of Eq. (3) yields the
acceleration transformation equation.

¥=Si*+Sq* 4)
where ( ) denotes second derivative with respect
to time.

with the
transformation Eqs. (3) and (4), the equations of

Using the Lagrange’s equations

motion for a flexible multibody system can be
written in terms of generalized coordinates as
(Lee, 1993)

M*§*=Q* — @uA (5)
where

M*=5"MS (6)

. o1 - . 7 ATAT
Q' =S"F-MS¢" - Kx—Mi+(S5)1 )
in which M and K are systerm mass and stiffhess
matrices respectively, £ is a force vector in
Cartesian coordinate space, T is the kinetic ener-
gy of the system, @g= is the Jacobian matrix of the
constraint equations(@=0) and A is a vector of
Lagrange multipliers associated with those
constraints.

Combining the second time derivatives of the
constraint equations(@gx§*=A4) with Eq. (5)
yields the following matrix form:

Moon| [ at] _[ e
o SIS e

y=—Qgg*— D, (9
in which @.=[5®/5¢].

After the generalized coordinates, velocities are

where

determined, the motion of the system can be
described in the Cartesian coordinate space using
the position and velocity transformation
equations.
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Fig. 1 External forces acting on body i

3. Cartesian and Generalized Forces

The actual force % and moment #* acting on
an arbitrary point P* of body 7 shown in Fig. |
can be expressed as a force vector F? in the
Cartesian coordinate space

f.&z'
AETFH I T R (10)
(Aiqsgi)Tfki_i_(Aigb?i)Tnhi

Fi=

where s* is the position vector of point P*¥ in the
body reference frame, A‘ is the transformation
matrix from the 7th body reference frame to the

inertial frame, §*

is a (3X3) skew-symmetric
matrix associated with the vector §* (Nikravesh,
1988). % and ¢ are modal matrices whose
columns are composed of translational or
rotational displacement of point P* respectively,
and E? is a (3X4) matrix defined with the

elements of Euler parameters p° as

- kb b ]|
E'= —=p» o —h (1)
e R

Cartesian force vector for the system with N,
bodies is

F=[F1T FZT - FNbT}T “2)

Using the velocity transformation matrix S, the
generalized force vector @ can be obtained as

Q=5'F (13)

Meanwhile, the generalized forces can be
transformed into forces in Cartesian coordinate
space. The virtual work done on the system by the

generalized forces is written as

cut joint
body i

3

Fig. 2 A body with kinematic constraint

SW=Q7dq" (14)
Using the chain rule of differentiation, the

generalized virtual displacements 8g* are related
to the Cartesian virtual displacements 8x as

6(1'2%6}52%—&6:1‘?6}: (15)

where the identity 8¢ */dx=2dg/dx is used and R
is the inverse velocity transformation matrix {Lee,
1997) which can be obtained systematically ac-
cording to the system reference matrix.

From Egs. (14) and (15), the following equa-
tion is obtained:

SW=Q Réx=(R"Q) 6x=F,0x (16)

where Fgq is defined as the equivalent Cartesian
force for the generalized force §).

Feq=RTQ (17)

4. Actuating and Joint
Reaction Forces

In the system equations of motton (5) derived
in the generalized coordinate space, the second
term of right side @A denotes the joint actuating
forces to drive the system for given driving
conditions or to satisfy the kinematic constraints
generated when cutting a joint of a closed-loop
system.

The Cartesian force vector corresponding to
those driving constraints and  kinematic
constraints expressed in the Cartesian coordinates
is @71 in which A1is the vector obtained from Eq.
(8). If the driving constraints are expressed in the
joint coordinates(@(g*, #)=0), the equivalent
Cartesian force vector of the joint actuating force
(Dg*/l becomes RT@;P*A using the inverse velocity

transformation matrix /.



696 Byung Hoon Lee, Shi Bok Lee, Weui Bong Jeong, Wan Suk Yoo and Jin Saeng Yang

body i

Fig. 3 Joint reaction forces acting on body 1

Figure 2 shows a cut-joint in a closed-loop
system. The joint reaction force /¢ and reaction
moment #: of body i at the cut-joint can be
calculated from the following equation:

1

2ETSHAI LI E Tyl (i8)

(A4 + (AP nb

In order to analyze the joint reaction forces

Qi=

acting on each joint along the inward path of the
system, consider the following adjacent three
bodies connected by joints as shown in Fig. 3.
Body ¢ and % are bodies on inward and cutward
path of body i respectively.

In the Cartesian coordinate space, the equation
of motion of body ¢ is written as

) , ) . aTINT
M%'=Fi+Fi+Fi-Kx'—M%'+( %)

(19)

where M* is the mass matrix, 77 is the kinetic
energy, F} is the Cartesian force vector of the
actuating forces for driving and kinematic
constraints. F¢ is the Cartesian force vector of the
external forces acting on body 7. Fi is the
Cartesian force vector of the joint reaction forces
acting on joints between body /% and j. I} can be
written as
(1= fF —(0 =) f7
(1= &) [2ET(—d"fH)+2E  n}
—(1—8n) [2E7$"f? +2ET n}]
(1= [(A$E) f7 +(A'EF) ns ]
— (1= 8n) [A'GEY A+ (A'BF Y ni]

(20)
where f{ and ni are the joint reaction force and
reaction moment acting on the joint of body 7
with irs reference body. The subscripts | and # of

Table 1 Inertia properties and dimensions of a
slider-crank mechanism
Moment of inertia
L -cm?
Body ength | Mass (g-cm?)
{em) | (g) Lx L, |
Crank 15.2 378 1.9 7324 | 7324
Connecting 405 | 756 | 38 |5853.3 | 5853.3
rod
Slider 2.0 62.6 41.8 41.8 41.8

universal joint

spherical joint
¥, { cut-joint )

T T
4

Fig. 4 A silder crank mechanism with an angle

driver

&1; denote the base body and tree-end body num-
ber respectively and & is Kronecker delta.

After analyzing the absolute motion of a sys-
tem, joint reaction forces acting on each joint are
determined successively from the tree-end body to
the base body along the inward path. The joint
reaction force f7 and #} acting on body 7 can be
calculated from Egs. (19) and (20).

5. Numerical Example

A slider-crank mechanism shown in Fig. 4
consists of a rigid crank, a flexible connecting rod
with uniform circular cross section and a rigid
sliding block. Inertia property of each component
in the undeformed state is presented in Table 1.
Young’s modulus and diameter of the connecting
rod are 2.0x 102 dyne/cm® and 0.64 cm respec-
tively. To illustrate the effect of the elastic defor-
mation of connecting rod, it is divided into ten
beam elements and the first two simply supported
beam bending modes are used for flexible body
analysis.

To change this mechanism into an open-loop
system, a spherical joint between the connecting
rod and slider is cut. Simulation is carried out for
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9.80

0.45

0.40 4

0.25 o

0.30 4

Position {m)

o.z0 4

0.15

Driving congtraint

...... Driving lorque

T T T T
0.00 LE 3] a.02 0.93 [ E.1} D.0%

Time (sec)

Fig. 8 Position of the slider in X-direction

0.05 sec with a constant crank angular velocity
w,=125.7 rad/sec.

Figure 5 shows the actuating torque for the
given crank driving constraint. Figure 6 and 7
show the joint reaction forces acting on the cut-
joint (spherical joint) and reaction forces on the
universal joint. The results are quite similar to
those obtained by DADS (CADSI, 1997). For
more verification of the algorithm proposed,
forward dynamic analysis is carried out with the
actuating torque obtained from inverse dynamics
(Fig. 5) imposing on the crank instead of impos-
ing a driving constraint. The motion trajectoriy of
the slider in the X-direction is compared with
that of the case imposing a driving constraint in
Fig. 8 and the two results agree quite well. This is
an indication of the validity of the inverse
dynamic analysis algorithm which calculates the
joint reaction forces and actuating forces of flex-
ible multibody systems with closed-loops.

6. Conclusions

An inverse dynamic algorithm that calculates
actuating forces and joint reaction forces of flex-
ible multibody systems with closed-loops in the
joint coordinate space has been presented.

The relative joint coordinates and the defor-
are used as the
generalized coordinates of a flexible multibody
system.

mation modal coordinates

The joint reaction forces are analyzed in
Cartesian coordinate space. The reaction force
acting on the cut-joint is calculated with the
Lagrange multipliers obtained from the system
equations of motion derived in the joint coordi-
nate space. After calculating the joint reaction
force at the cut-joint, the reaction forces acting on
the other joints are determined successively from
the tree-end body to the base body along the
inward path. To transform the joint actuating
force for joint driving constraint expressed in the
relative joint coordinates into the equivalent
Cartesian force vector, the
transformation matrix is used.

The algorithm proposed is verified through the
analysis of a slider-crank mechanism with a

inverse velocity
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crank angle driver.
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