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Oscillatory Thermocapillary Flow in Cylindrical Columns
of High Prandtl Number Fluids
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Oscillatory thermocapillary flow of high Prandt! number fluids in the half~zone configuration
is investigated. Based on experimental observations, one oscillation cycle consists of an active
period where the surface flow is strong and the hot corner region is extended and a slow period
where the opposite occurs. It is found that during oscillations the deformation of free surface
plays an important role and a surface deformation parameter S correlates the experimental data
well on the onset of oscillations. A scaling analysis is performed to analyze the basic steady flow
in the parametric ranges of previous ground-based experiments and shows that the flow is
viscous dominant and is mainly driven in the hot corner. The predicted scaling laws agree well
with the numerical results. It is postulated that the oscillations are caused by a time lag between
the surface and return flows. A deformation parameter S represents the response time of the
return flow to the surface flow.
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Nomenclature t . Time

Ar [ Aspect ratio u, v . Axial and radial velocity

Bd Dynamic Bond number U, Us © Characteristic velocity
Bo > Static Bond number
D(R) : The column diameter (radius) Greeks
g . The gravitational acceleration, a . Thermal diffusivity
Gr : Grashof number B . Volumetric expansion coefficient
L . Length of the liquid column 4, &  Characteristic length in hot (cold) cor-
Ma Marangoni number ner region
Nu . Nusselt number Os . Thickness of surface deformation
P : Pressure AT Imposed temperature difference
Pr . Prandtl number M  Fluid viscosity
¥, z . Radial and axial coordinate 4 . Kinematic viscosity
Ro . Surface tension Reynolds number o - Fluid density
S . Surface deformation parameter o . The surface tension.
T . Temperature or . Temperature coefficient of surface ten-
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1. Introduction

Variations in surface tension due to tempera-
ture variations along a liquid free surface generate
thermocapillary flows. Much attention has been
given over the past 30 years to the theoretical,
experimental, and numerical analyses of
thermocapillary flow for the various configu-
rations. One important feature of thermocapillary
flows found in previous experiments is a transi-
tion from steady to oscillatory (time-pericdic)
flow under certain conditions. The phenomenon
was originally discovered by Schwabe et al
(1978) and Chun and Wuest (1979) in the so-
called half-zone simulation of the floating zone
crystal growth process in which a cylindrical
liguid column is suspended between two differ-
ently heated rods. Since the oscillation
phenomena not only are interesting scientifically
but also have significant implications in many
practical applications, it has been studied in more
detail in the subsequent half-zone experiments by
several investigators (Chun, 1980; Schwabe et al.,
1982, 1990; Preisser et al., 1983: Kamotani et al.,
1984; Ostrach et al., 1985; Kamotani and Lee,
1989; Velten et al., 1991; Lee et al., 1995). In those
experiments the liquid column diameters were
made small {less than 1 ¢m) to minimize the
effects of buoyancy and gravity. Although the test
configuration was meant to simulate crystal
growth of low Prandtl number (Pr<1) crystal
melts, high Pr (> 1) fluids were used in the past
tests for experimental simplicity.

Despite all the work in the past the oscillatory
thermocapillary flow phenemenon is not yet fully
understood. Questions still remain concerning the
and the
parameter(s) defining their onset. Experimentally

physical mechanism of oscillations
for a given test fluid and zone dimensions the
flow becomes oscillatory beyond a certain critical
temperature difference across the column length.
From dimensional analysis of thermocapillary
flows (Ostrach, 1977), it can be shown that the
only parameter that contains the temperature dif-
ference is the Marangoni number (Ma) if the
liquid free surface is assumed to be undeformable.

Therefore, it was assumed by many investigators
that the transition condition is characterized by a
critical Marangoni number (Ma.,). Previous
ground-based experiments suggest that Mo is
around 10 for high Pr fluids. However, the Ma
in previous experiments were limited to be of
order 10* or less due to the limitation of available
fluids and gravity effect on earth. In experiments
under micro-gravity environment (Napolitano et
al., 1986; Monti and Fortezza, 1991) the
oscillatory flow was observed at much larger Ma
than observed on earth.

Clearly, the use of Maer to characterize the
onset of oscillations is not definitive. Further-
more, Kamotani et al. (1984) and Ostrach et al.
(1985) measured the critical temperature differ-
ence by systematically changing the column di-
ameter and length and also found that Ma alone
cannot specify the transition. That necessitated an
additional parameter containing the temperature
difference. The need for an additional parameter
to correlate the oscillatory flow data was the first
indication that surface deformations, in some
way, played a role in the oscillatory phenomena.
Based on their data, Kamotani et al. (1984)
proposed a surface deformation parameter to
specify the transition for high Py fluids. The idea
behind the parameter was that the free surface
deformation caused by the flow, albeit very small,
changes the flow response time by a significant
amount so that it triggers a three-way coupling
among the velocity and temperature fields and the
surface deformation. An analysis of the surface
deformation effect is the main objective of the
present work. Lai (1990) and Chen et al. (1991)
showed the existence of a time lag between the
surface and return flows in  unsteady
thermocapiilary flow caused by a deformable free
surface. Monti (1987) proposed a modified Weber
number, which represents the flexibility of the free
surface, to correlate microgravity data on the
onset of oscillations.

Theoretically the appearance of oscillatory
flow in the half-zone configuration has been
treated as a convective instability with a
nondeformable free surface. Xu and Davis (1984)
analyzed the stability of the shear flow, which was_
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Fig. 1 Schematic of half-zone configuration

assumed to exist in the core region {away from the
end walls} of a long float zone with a linear
surface temperature variation driving the flow.
propagating
hydrothermal waves appear, resulting in tempera-
ture oscillations at a given point. Shen et al.
(1990) applied the energy method to the
numerically computed basic flow field in a half-

Beyond a Matangoni number

zone to determine conditions for stability with
respect to arbitrary axisymmetric disturbances. In
their analyses the stability criterion is very sensi-
tive to the value of a coupling parameter, which
joins the velocity and temperature disturbances to
form generalized disturbance energy. Attempts
have been made to simulate the oscillation
phenomenon by numerical analysis (Rupp et al.,
1989; Chen and Chin, 1995; Wanschura et al.,
1995; Chen and Hu, 1998). Since the free surface
was assumed to be undeformable in all of the
above analyses, the onset of oscillations was not
well supported by experimental evidence,

In the present work the importance of a
deformable free surface on the oscillation
phenomenon is examined. The physical
mechanism of oscillations is delineated based on
the information obtained from experiments and a
numerical analysis and the surface deformation
parameter proposed earlier is formally derived.
Since much information is available on the
phenomenon in the half-zone configuration with
high Pr fluids, we focus our attention on that
configuration herein.

2. Oscillatory Flow in Half-Zone

The Thalf-zone investigated
herein is sketched in Fig. 1. A vertical liquid

configuration

bridge is formed between two cylindrical metal
rods. By heating the upper rod thermocapillary
flow is generated while minimizing buoyancy
effects. If the liquid free surface is assumed to be
flat and  undeformable, the important
dimensionless parameters  for steady flow
{Ostrach, 1977) are Prandtl number (Pr=yv/a),
surface tension Reynolds number (Ro=ordTL/
#v), Grashof number (Gr=gBATL*/ %), and
aspect ratio (Ar =L/D =L/2R). The
Marangoni number is defined as Ma=RoPFr.
The ratio of buoyancy to thermocapillary forces is
represented by (G¥/Ra, which is called the
dynamic Bond number (Bd). The liquid column
cannot be exactly cylindrical in one-g because of
hydrostatic pressure and its shape is determined
by the liquid volume, aspect ratio, and the static
Bond number which is defined as Bo=pgl?/ ¢

Before the appearance of oscillations the flow is
axisymmetric and recirculates in a toroidal pat-
tern with the fluid moving from the hot to cold
end along the free surface, Once the imposed AT
reaches a critical value (A7%,), the flow suddenly
becomes three-dimensional and both the fluid
motion and the temperature oscillate temporally
and spatially. If the above listed parameters are
the only important ones, the 47¢ should be non
-dimensionalized as Macr (or Koer) in the ab-
sence of gravity and for a given fluid {or Pr)
Maer should be a function of Ar only. Figure 2
(a) shows Macs vs. Ar measured with various
column diameters using 2 cs silicone oil (Pr=
27). It is very clear that Macr does not correlate
the data and thus it is not the appropriate
parameter to represent the onset of oscillations.
Another parameter containing 47 is needed. Af-
ter analyzing the data obtained under the various
conditions and the physical mechanism of
oscillations, Kamotani et al. (1984) proposed a
called the
parameter (or S parameter) that is defined as S=
(1/Pr)(6:AT /o). Note that S does not contain

parameter surface deformation



Oscillatory Thermocapillary Flow in Cylindrical Columns of High Prandt Number Fluids 767

2
- 15 | Pr=27 .D=4mm
2
x . ®D=3mm
5 - -
° Ll ] L A
= L .
] . " +* D=2mm
-
0.5 L :
0 0.5 1 1.5
Ar
(a) Macrvs. Ar
2
n
1.5 | .
< .
= M
»
& s ‘....‘.A a
1
05 1 1
Q 0.5 1 1.9
Ar
(by Svs. Ar

Fig. 2 Critical condition for onset of oscillations

any zone dimension and is essentially a modified
capillary number. Figure 2(b) shows that the
onset conditions can be correlated by & alone and
in the range A# >0.7 the oscillations occur if § is
larger than about 1.1 X107 The data taken with
other fluids (Ostrach et al., 1985) gave the critical
S values close to the above value. The §
parameter is considered to represent the effect of
surface deformation as will be discussed in detail
in Sec. 4,

In order to gain some insight into the physical
mechanism of oscillations the oscillatory flow and
fields
rimentally. The flow field was studied by flow

temperature were investigated expe-

visualization. A small amount of alumina
particles (1-20 pm dia. ) was added to the test
fluid and illuminated by a laser light sheet. Figure 3
shows two photographs of the flow structure in a
cross-sectional plane taken at two different times

for A»=0.625. During oscillations a non-axisy-

mmetric flow pattern travels around the zone and

the pattern varies in a pertodic manner in the

(b)
(a —b)

Fig. 3 Cross-sectional views of flow during

oscillations

azimuthal direction as described by Preisser et al.
(1983). The second picture was taken when the
pattern in the first figure rotated just 180°, so the
two pictures are mirror images of each other. We
focus our attention on the right half of the zone in
Fig. 3. In Fig. 3(a) one sees a strong motion
toward the free surface near the top hot wall and
the location of the cell center, which is closer to
the celd wall than the one in the left half,
indicates the flow along the free surface is also
strong. We call this period the active period. 1n
Fig. 3(b) one sees that the strong motion
originating from the free surface region near the
cold wall does not return to the hot region in the
right half and the cell center location indicates the
motion near the hot region is relatively weak and
confined in a small region. This period is called
the slow period. Thus the flow goes through an
active and a slow period in one cycle in one radial
plane.

Other useful information on the flow was
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Fig. 4 Infrared images of free surface during oscillations

obtained by scanning the free surface with an
infrared imager (Inframetrics Model 600). The
insirument scans the surface at 30 frames per
second and measures the radiation emitted from
the surface in the 8-14 gm wavelength range. To
be more precise, it detects radiation emitted by a
thin layer (less than 0.2mm thick in the case of
silicone oils} adjacent to the free surface. The
infrared images of a silicone oil (2 cs) zone taken
at four different times in one cycle of oscillation
are presented in Fig. 4. In Fig. 4(a) the hot region,
represented by red and yellow colors, is confined
to a small region near the hot wall and this
corresponds to the slow period. In Fig. 4(b} a
larger hot region appears on the right indicating
a beginning of the active period during which
convection along the free surface is strong. In Fig.
4(c) the active period covers the full view and
then moves to the left in Fig. 4(d). Therefore, the
information from the infrared images seems to be
consistent with our concept of cyclic active-slow
period obtained from the flow visualization and
this information will be used to explain the phys-
ical mechanism of oscitlations in Sec. 4.

3. Analysis of Basic Flow Field

Before we discuss the oscillation mechanism it
is useful to understand the basic steady flow. A
scaling analysis of the steady thermocapillary
flow in the half-zone is presented herein to deter-
mine what forces are important in the flow and to
derive the important velocity and length scales.
Since detailed experimental data is very limited, a
numerical analysis is also performed to check the
scaling laws as well as to give some guidance to
the scaling analysis. The analysis is limited to the
conditions under which the previous oscillatory
thermocapillary flow experiments were
performed, namely Pr=10~100, Ar =0.35~ 1.0,
Ma<2.5X10*. The effects of buoyancy and radi-
ation are not considered. The free surface is as-
sumed to be flat and rigid in this steady flow
analysis. The numerical analysis is based on the
SIMPLER algorithm by Patanker (1980). Based
on the earlier analyses (Zebib et al., 1985; Car-
1990}, non-uniform grid
systems were adopted with meshes graded toward

penter and Homsy,

the hot and cold walls and toward the free sur-
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Fig. 7 Surface velocity and temperature
distributions near hot corner region

flow along the free surface (herein called the
surface flow) is confined to a relatively narrow
region near the surface and the interior flow back
to the hot region (called the return flow) is much
slower. The trend of computed flow pattern
agrees well with experimental observations. The
isotherms indicate strong effects of convection
and the temperature along the free surface is
relatively uniform over a large part of the surface.

The surface temperature distribution is impor-
tant because it is directly related to the driving
foree of the flow. The computed surface tempera-
ture and velocity distributions are presented in
Fig. 6 for three different values of Ma. With
increasing Ma, convection causes large surface
temperature changes near the hot and cold walls
with a relatively uniform temperature region in
between. As a consequence, the driving force
exists mainly in those corner regions and the
velocity has a peak in each of those regions. Since
oscillatory flow ai}pears at high Ma, it is impor-
tant to understand what is happening in those
COTNEr regions.

In the hot corner the important quantities are
the location of the velocity peak A(see Fig. 7),
which represents the extent of the hot corner
region, and the peak velocity value [J, that re-
presents the characteristic velocity in that region.
A scaling analysis is performed to determine how
those quantities vary with Ma, A, and Pr.

Before the scaling analysis, the importance of
inertia forces relative to viscous forces in the flow

needs to be discussed. The ratio of those two
forces is represented by K&, which is larger than
unity for the conditions under which the onset of
oscillations has been observed. For example, with
2 cs silicone oil (Pr=27), D=3mm, and L=2.1
mm, AT (maximum temperature difference for
steady flow) was measured to be 7.2°C, which
gives Ma=1.0x 10" and Ro=370. However, the
is based on the velocity scale o747 /g, but in
reality I/, is less than 5% of the value when Ma
is large as can be seen in Fig. 6. Moreover, since
the flow is driven in a relatively small region
when Ma is large, the length scale in should also
be reduced. Based on the computed values of (U
and A, the actual Reynolds number is reduced to
a value less than unity (about 0.7) for the above
conditions, indicating that the viscous forces are
much more important than the value Ro=—370
suggests. The effect of inertia forces is small, but
convection heat transfer is very important. There-
fore, the flow is assumed to be dominated by
viscous forces in the following scaling analysis
and thus the important parameters for the flow
are Ma and Ar.

The momentum equation in the axial direction
without inertia terms is

op _ [u 1 3¢ du
0z ﬂ[azz ' r&r(rar)] 1
The energy equation is

aT |, oT _ [82]" 1 8( GT)]

“or Ve = Ty ar\Tar
2)
The shear stress condition at the free surface is
au dT
Hor = 4z )

As mentioned above, the length scale A defines
the extent of the hot corner region in the axial
direction (see Fig. 7). Since the flow is viscous,
the momentum equation for the flow contains
only two viscous terms and a pressure term. Those
two viscous terms are equally important in the
corner region where the flow turns. Therefore, by
balancing those two viscous terms one finds that
the length scale in the radial direction should be
the same as that in the axial direction. Using that
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fact, the velocity scale {J, can be determined from
Eq. (3) as

/_t—%l~o‘r dj}" or an-—UTﬂTH
where A7y is the surface temperature variation
over 4. Since the length scales in the axial and
radial directions are the same in the corner re-
gion, the continuity equation shows that {/, is the
velocity scale in the radial direction as well.

As can be seen in Fig. 7, the surface velocity

(4)

increases only in the region where the surface
temperature changes sharply close to the wall.
Although a finite temperature gradient exists be-
yond , the velocity decreases there. That observa-
tion and the analysis of isotherms in Fig. 5(b)
suggest that A is the region where the conduction
of heat from the hot wall is important. This means
that 4 scales with the thermal boundary-layer
thickness along the hot wall. Along the hot wall
the fluid velocity varies from zero (at ¥ =0) to {/,
(near »=R), so the average velocity along the
wall scales with {J, and to obtain 4 we balance
the conduction term in the axial direction and the
convection term in the radial direction in the
energy Eq. (2), which gives

~aK ®)
According to Fig. 5(b) the thermal boundary
layer thickness is nearly constant along the hot
wall, which suggests that the velocity along the

AZ

wall varies almost linearly with » from zero to U/,
(stagnation-point type flow). Also it can be
shown that if the thermal boundary layer thick-
ness is used as the length scale, the ratio of inertia
to viscous forces in the momentum equation is
represented by 1/Pr so that the inertia force is
relatively small when Pr is large, which is
consistent with the assumption made earlier. In
the region outside the hot corner the surface
velocity decreases despite of the fact that positive
thermocapillary driving force exists there (Fig. 7).
The reason for the velocity decrease is that in the
case of Py >>1 the viscous retardation effect from
the hot wall is still important outside the thermal
boundary layer (or A).

Convection of heat toward the cold wall causes

a large temperature gradient near the wall and the
surface velocity increases again (Fig. 6). This
region is called the cold corner region. In the cold
corner the flow is accelerated toward the wall,
which squeezes the corner region further. The
extent of the cold corner is determined by
balancing the surface convection toward the wall
and conduction to the opposite direction. From
the analysis of the cold corner Ostrach et al.
{1985) found that the extent of the region scales
with Ma™", which is much smaller than the hot
corner size, and the velocity scales with gr 47T/ u
{AT¢: surface temperature variation in the cold
corner), which is close to the velocity scale in the
hot corner. Therefore, the overall mass flux
generated in the hot corner is much greater than
that generated in the celd corner. Although the
temperature gradient at the cold wall is very large
in the cold corner, the region is relatively small so
that the total heat transfer rate to the cold wall is
determined by the thermal boundary layer along
the wall beyond the corner region. Since the
surface flow convects heat to the cold wall, the
heat transfer region at the cold wall should scale
with the radial extent of the surface flow as was
assumed in the scaling analysis by Zebib et al.
(1985). The radial dimension of the surface flow
scales with R beyond the hot corner because the
flow is viscous and it remains nearly constant
{approximately equal to 0.2/, see Fig. 5) until it
is forced to turn due to increased pressure in the
cold corner. After the turning the lateral flow
extent remains at about 0.2R since the flow is
viscous dominated. Since the velocities in the hot
and cold corners scale closely with gz47/ u. the
average surface flow velocity (UO) over the zone
length is considered to scale with the same quan-
tity and just after the turning the velocity scale
remains at U, because the flow extent does not
change. The flow creates a thermal boundary
layer along the cold wall with characteristic
thickness 8. When Ma is large, § is much less
than R (or 0.2R) so that when estimating & one
has to take into account the fact that the velocity
close to the wall is less than the velocity .
Including the velocity adjustment the balance of
the convection term in the radial direction and
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the conduction in the axial direction in the energy
equation gives

5 8 dT¢ A7z
R R & ®)
where A7: is the average temperature drop

across 8. Along the hot wall the flow accelerates
in the flow direction, which makes the thermal
boundary layer thickness nearly constant, but
along the cold wall the flow decelerates in the
flow direction (decreasing #) so that § increases
quickly (Fig. 5).

Based on the definition of Nusselt number
{N1¢) one obtains

e,
Nu~?ﬁ-——ﬁ;~~? (7)

_L .

where A7, is assumed to scale with AT as
discussed below. And since the total heat transfer
rate at the hot wall should be equal to that at the
cold wall, one has

k%n}ez—ik%nﬁ’z (8)
When Ma is large, a large temperature drop
occurs near the cold wall because of convection
along the free surface (Fig. 6). Therefore, one can
assume that 47 and AT scale with AT when
Mga is large. With that assumption Egs. (4)~(8)
give the following scaling laws:

*__ ﬂUa __.dTH -~ —1/9
U= 37~ (Ma/Ar)

L (MatArty
Nu~(MaArty" )

The quantities s, 4, and Nu can be deter-
mined by numerical analysis. The scaling laws are

compared with the present numerical results
obtained under various conditions in Fig. 8. They
are in very good agreement in the range of Ma>
1.5X 1%, which suggests that the above scaling
analysis and flow structure are correct.

4. Physical Mechanism
of Oscillations

One important effect of a flexible free surface is
that the pressure at the free surface is determined
by the surface curvature in the absence of gravity.
When the flow is changed
thermocapillarity, there is a time lag before the
bulk of the fluid responds to the change because
it takes a finite time to change the free surface
shape and thus the pressure field. This time lag is
the key part of the present concept of oscillations,

locally by

which was originally discussed in the earlier
papers (Kamotani et al, 1984; Ostrach et al,
1985). Assuming that the free surface deformation
is small, pressure p at the free surface is related to
the radii of curvature of the surface as
1 _d°R
r=o{ =47*)

where [ is the local radius of the zone. Variation

{10)

of p occurs mainly in the relatively small driving
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force region (), so the second curvature is more
important in Eq. (10). Therefore, p near the free
surface scales with gds/ 4 where §; is the amount
of free surface deformation. In order to estimate p
{and ;) we add the unsteady term p- gu/ 0t to the
momentum Equation. The free surface deforma-
tion 8¢ occurs in a very short time after the
surface velocity is changed, so the unsteady term
is more important than the viscous terms in Eq.
(1) during the deformation (the ratio of the un-
steady to viscous term during the deformation can
be shown to be (U,L/v)(L/8s), which is large).
The order of magnitude of ¢/ J¢ can be estimated
by knowing that the velocity variation over one
cycle scales with [J,. Then, by balancing the
unsteady term and the pressure gradient in Eq. (1)
one gets

Us - ds 1 iﬁPUgdz
S TR, 3 Ly Ry S Y

For a fixed Ar, R scales with L, so using Eq. (5)
the above equation can be written as

8 plsa

Y r (12)
It is shown in Sec. 3 that pll,/orAT is only a
weak function of Ma/Ar. If we neglect the
dependence on Ma/Ar and consider ull,/6:AT
to be constant, the above equation reduces to

O 1 oo AT _

47 Pr g O (13
Thus, the S parameter represents the amount of
free surface deformation relative to J. A more
useful interpretation of S can be obtained by
rewriting the above relation as

— 3s/ Us
S~4/0, {4

8s/ U, represents the time it takes to deform the
surface by s with the normal velocity (which
scales with {/;) or it is considered to be a measure
of the time lag discussed above. 4/ {/, represents
the time of convection over A4, or since the driving
force exists mainly over 4, it is a measure of the
time required to change the driving force by
convection.

The fact that oscillations appear beyond a
certain value of S can be interpreted as follows:

One oscillation cycle containing an active period
followed by a slow period proceeds. During the
active period the surface flow becomes stronger
and the center of the recirculation cell moves
closer to the cold wall [Fig. 3(a)). During this
period the surface flow is stronger than the return
flow so that a certain amount of the fluid is
carried away from the hot surface region and is
deposited in the cold surface region, which
changes the free surface shape in such a way as to
build up a pressure field for increasing return
flow. Although the return flow always lags be-
hind
increasingly effective since the return flow travels

the surface flow, its cooling becomes
a shorter distance from the cold wall as the cell
center moves toward the cold wall. After the
increase of the surface flow is reversed, the return
flow becomes more dominant than the surface
flow and the surface flow recedes to the hot
corner as it becomes weaker [Fig. 3(b)]. During
this period the fluid accumulates in the hot sur-
face region and is removed from the cold region
to change the free surface shape and pressure field
in such a way to retard the return flow. At this
stage, since the cell center moves toward the hot
wall, the amount of the return flow increases
[Fig. 3(b)) and only a part of it is directed
toward the hot corner because during the slow
period less fluid is needed. As the hot corner is
nearly isolated from the cooling by the return
flow, the surface temperature gradually rises and
the next active period starts.

5. Concluding Remarks

From the foregoing analysis one can make the

following conclusions regarding the basic
thermocapillary flow which is known to become
oscillatory: (1) The viscous force dominates over
the itnertia force and the effect of convection is
important in the flow. (2) The flow is driven
mainly in the hot corner region.

It is apparent that the free surface deformation
plays an important role in  oscillatory
thermocapillary flow in high Pr fluids. The de-
formation induces a time lag before the return

flow responds to a change in the surface flow and
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the parameter S represents the ratio of the time
lag to the convection time scale, based on which
the oscillation mechanism can be clearly

explained.
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