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Fixed-Grid Simulation of Convection-Dominated
Melting in a Rectangular Cavity
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Numerical solutions for the convection-dominated melting in a rectangular cavity are
presented. The enthalpy-porosity model is employed as the mathematical model. This model is
applied in conjunction with the EIT method to detect boundary movement in a phase changing
environment. The absorption and evolution of latent heat during the phase change is dealt with
by the enthalpy-based energy equation, This seems to be more efficient than resolving the
iemperature-based energy equation, The velocity switch—off, which is required when solid
changes into liquid, is modeled by the porous medium assumption. For efficiency and simplicity

of the solution procedure, this paper proposes a simple algorithm, which iterates the temperature

and the liquid fraction of the cells comprising the front layer. The numerical results agree

reasonably well with the experimental data and other previous works using the transformed-grid

system.
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Nomenclature

c . Specific heat capacity

f . Ratio of the liquid mass to the total
mass

g * Gravitational constant

H > Cavity height

k . Specific enthalpy

ks . Saturation enthalpy of solid state

k : Thermal conductivity

L . Latent heat

b . Pressure

Pr . Prandtl number, Pr=%

Ra . Rayleigh umber, Ra="g%fgli

Ste . Stefan number, Ste=M‘L;M

* Corresponding Author,
E-mail : wgchun @chju.ac.kr
TEL : +82-64-754-3646; FAX : +82-64-757-9276
Department of Nuclear and Energy Engineering, Cheju
National University, #1. Ara 1-dong Cheju-do 690-756,
Korea.(Manuscript Received November 2, 2000;
Revised March 14, 2001)

Sz, Su © Momentum source terms determined ac-
cording to the model for velocity sup-
pression in the solid phase

T . Temperature

Tc . Cold wall temperature (right wall)

Ty . Hot wall temperature (left wall)

T . Initial temperature

T . Meliing temperature

@, v . Directional velocity for x-and ¥-
coordinates

W : Cavity width

Greek symbol

B . Volumetric compressibility referred to
the reference temperature

& . Dimensionless temperature in the liquid

. T—Tn

region, €1=7‘;——ﬂn

as . Dimensionless temperature in the solid

region, &; :%;:m—
m ¢

u . Viscosity
o . Density
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1. Introduction

In many engineering ficlds such as thermal
energy storage systems using latent heat and
materials processing, melting is an important
process to be considered for the optimal design
and operation, The temperature difference in melt
can give rise to natural convection and the
resulting flow structure can significantly affect the
phase change process. The convection gives a
great influence on the morphology of solid-liquid
interface, which may change the flow structure in
the melr. Hence, the effect of natural convection in
the melt on the phase change has drawn
considerable attention for the past several decades
(Voller, 1997)

In general, numerical simulations commonly
used for phase change problems can be classified
into two different approaches; the fixed-grid and
the transformed-grid methods. In the fixed-grid
method, a single set of conservation eguations
and boundary conditions is used for the whole
domain comprising solid and liquid phases, while
the (ransformed-grid method considers the
governing equations based on the classical Stefan
formulation. The interface conditions, therefore,
are treated differently according to the method for
solving the phase change problem. In the
transformed-grid  method, they are easily
implemented because the interface is explicitly
solved. However, in the fixed-grid method, the
interface conditions are described as source terms
in the governing equations. A nodal latent heat
value is assigned to each computational cell ac-
cording to its temperature or enthalpy. Upon
phase change, the latent heat absorption, or evo-
lution, is reflected as a source or sink term in the
energy equation.

The fixed—-grid method requires velocity switch-
off because it is necessary to impose the zero-
velocity condition whenever phase change takes
place from liquid to solid. The velocity switch-off
is readily accomplished either by imposing a large
value of viscosity for the solid phase or by a
suitable source term in the momentum equation
to model the two-phase domain as a porous

medium. The fixed-grid method combined with
the porous medium method is usually referred to
as the enthalpy-porosity method.

Brent et al. (1988) introduced the enthalpy-
porosity technigue to model convection-diffusion
melting. Lacroix and Voller (1990) applied the
fixed-grid and transformed-grid methods to the
solidification phase change problem., Emphasis
was placed on prediction of the front location and
CPU requirement. Viswanath and Jaluria (1993)
compared for the fixed-grid and transformed-grid
schemes. for convection-dominated melting, They
focused on the relative performances regarding
interface movement, heat transfer rates, and the
nature of convective motion established in the
melt. Rady and Mohanty (1996) presented the
numerical prediction of melting and solidification
with  the  enthalpy-
porosity fixed~grid method. They improved the

of  pure  metal
solution procedure by using a dual iteration loop
in which the energy equation is solved iteratively
in the inner loop. The calculation then proceeded
for the outer loop to resolve the rest of the
unknown variables. Recently, Rady et al. (1997)
employed the algorithm of Rady and Mohanty
(1996) to the effects of liquid
superheating during solidification.

To simulate the phase change process, this

investigate

paper proposes a simple numerical scheme based
on the enthalpy-porosity method. The scheme
facilitates the application of existing computer
codes for heat and fluid flow to resolve a phase
change problem. This, of course, requires some
modifications to the codes which could be readily
done. The proposed algorithm has been tested for
the heat-conduction phase change problems, in
which there is no natural convection in the liquid
zone (Kim et al, 2000). The efficiency and
reliability of the algorithm were proved in some
extreme cases without undue difficulties: low
Stefan number (sensible to latent heat ratio) with
small dimensionless temperature (ratio of initial
to boundary temperature deviation
saturation temperature) and large discrepancy
between thermal conductivity of each phase.
These problems are known to deteriorate the
numerical performance and sometimes fail to

from
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Fig. 1 Definition of gallium melting problem

converge (Fachinotti et al., 1999). This study

extends the algorithm to the convection-
dominated melting problem. The spatial and
temporal discretizations are carried out on the
basis of the finite volume scheme and the fully
implicit {backward) Euler scheme, respectively.
The flow field is expressed in terms of primitive

variables and solved by the SIMPLE algorithm.

2. Mathematical Models for
Convection-Dominated Phase
Change Problems

Two-dimensional melting in a rectangular

cavity is schematically described in Fig. 1.
Melting is driven by the combined effect of natu-
ral convection and conduction in a rectangular
cavity. The phase change material is contained in
a cavity, whose vertical sides are maintained at
constant temperatures, while the connecting hori-
zontal walls are adiabatic. Initially, the phase
change material in the cavity is kept at uniform
temperature below or at the fusion temperature,

1< Tm, where T; is the initial temperature and

T is the melting temperature. The melting is
initiated by raising the temperature of the lefi wall
abruptly to a predetermined temperature, T,
above the fusion temperature, Ty > Ty The tem-
perature at the right wall, T¢, is maintained at the
initial temperature, Tc=T7}. As time elapses, the
buoyancy force becomes large enough to over-
come viscous resistance and triggers natural
convection in the melt zone.

The momentum field is subject to no-slip
boundary condition on the walls. The flow is
assumed to be two-dimensional, laminar, and
incompressible. The thermophysical properties of
materials are constant, but may be different for
the liquid and solid phase. The density difference
between solid and liquid is neglected except when
invoking the Boussinesq approximation.

In the fixed-grid method, the absorption and
evolution of latent heat during phase change leads
to modification of the energy equation. This is
because the method doesn’t track the movement of
interface with phase change and no explicit
conditions are given at the interface. The fixed-
grid method is basically relying on the enthalpy
formulation, which employs enthalpy as a
dependent variable in the energy equation instead
of temperature. The enthalpy formulation also
introduces the liquid mass fraction f defined as
the ratio of the liquid mass to the total mass in a
given computational cell. If /s and 75 are given
as the reference enthalpy and temperature, re-
spectively, the specific enthalpy will simply be

h=fL+cT (0
The heat capacity ¢ may vary with phase. The

liquid mass fraction can be obtained from the
enthalpy:

O i n<o
f= % if 0<h<I 2)
i L<h

l

In the isothermal phase change with stationary
solid phase, finally, we can obtain the enthaipy-
based governing equations {(Viswanath and

Jaluria, 1993):
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Here, Sy and S, are the source terms to account

for velocity switch-off.

During the solution procedure of the

momentum field, the velocity at the com-
putational cells in the solid phase should be
suppressed while the velocities in the liquid phase
remains unaffected. Introduction of a Darcy-like
term {Viswanath and Jaluria, 1993) is popular in
modeling velocity switch-off in many cases;

=—cUi= fy o — /Y
Su— (f3+b)uand Sv (f3+b)v(6)

This is easily incorporated into the momentum
equation as shown in Eq. (4). The constant C is
a large value to suppress the velocity if a cell
becomes solid and & is a small number used to
prevent the division-by-zero when a cell is fully
located in the solid region, namely f=0. The
choice of these constants is arbitrary. However,
the constants should ensure sufficient suppression
of the velocity in the solid region and should not
interfere with the numerical resulis. In this work,
C =1 X10%g/m? and b =0.005 are used
(Viswanath and Jaluria, 1993).

3. Numerical Methods for Phase
Change

3.1 Front-layer predictor-corrector
algorithm
The discretized energy equation in the finite
volume formulation (Patankar, 1980) can be
expressed as

apr=§dannb_a%(fp_f;) (M

where subscripts ‘P” and ‘nb’ mean the value of
present and neighboring cell, respectively.
Superscript “% " denotes the value at previous time
step. The detailed expressions of the influence
coefficients ap, @ne, a» and the source term, Sp,
can be found in Patankar, 1980. The terms related
with the liquid fraction separate the non-linear
behavior associated with phase change into a
source term.

If the discretized equation in the above is
solved properly at the n-th iteration step, the
enthalpy obtained with physical properties as-
sumed at the n-th iteration step satisfies the ener-
gy conservation equation. Then, the enthalpy and
the liquid fraction can be obtained from Eqgs. (1)
and (2), respectively. This procedure redistributes
the energy contained in the cell so that the exces-
sive (or deficient) energy can be stored into (or
retrieved from) latent heat rather than spurious
sensible heat. Also, the temperature can be re
-estimated according to the new mass fraction

T(ﬂ+1):(MVf(ﬂ+l) )%_D_ (8)
which gives a better estimation for the next
iteration.

At the cell with phase change, the updated
temperature should satisfy the
discretization equation. If we assume the present

distribution

cell ‘P’ is undergoing phase change, the tempera-
ture is given by

Za{nﬂ} T;% )+ ngzﬂ)
iy ©)

T(ﬂ+u_

The generalized source, (Sp, can be easily
obtained from Eq. (7). The influence coefficients
and the generalized source are calculated with the
updated mass fraction, 'Y, Although the
temperatures of neighboring cells 7Ty, are
obtained at the previous iteration step and may be
comparatively less correct than the other updated
values, the new temperature 75" based on the
updated mass fraction will yield a beitter estima-
tion. We could use this temperature to update the
mass fraction with the enthalpy expression. The
foregoing predictor-corrector procedure will be
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applied iteratively only to those phase changing
cells existing in the phase change front. Hereafter
this algorithm will be referred to as the front-
layer predictor—corrector (FLPC) algorithm. Kim
et al. (2000) called this algorithm the single-point
predictor-corrector because they applied it to the
one-dimensional heat conduction phase change
problem where the phase front is limited to a
single node. We don’t need to solve the whole set
of the governing equations during the FLPC
procedure. It should be noted that during the
FLPC procedure the temperatures at neighboring
cells are not changed, but the updated tempera-
ture is a good estimation for the next iteration.
The proposed algorithm seems to be effective due
to its simplicity and a low computational cost.
Furthermore, this can be readily adapted to any
numerical schemes designed for computational
efficiency. This algorithm always ensures energy
conservation for phase changing cells.

3.2 Pseude Newton-Rapson algorithm

In this study, another simple algorithm is
introduced to further improve the convergence.
Let’s consider the discretized energy equation, Eq.
(7), again. During the FLPC procedure, we could
resort to the Newton-Rapson methed in order to
expedite the temperature convergence from the
non-linear relations. The problem is to find the
temperature minimizing the objective function ¢»

0=, Ty~ [Sanw+So—ao—15]10)
The updated temperature could be written as
ad)(ﬂ) -1
(n+1)  Pim_ gylm
T =1 — 0| 5 ) (1)

If the Jacobian 3@/37e is known, the Newton-
Rapson method surely guarantees faster conver-
gence. However, the Jacobian can not be
procured without any cost.

Recall that the neighboring temperatures are
assumed to be constant during the predictor-
corrector procedure and f does not have any
related to Tp Also the

thermophysical properties are assumed not to be

terms explicitly

strongly dependent on temperature. From these,
the Jacobian could be reasonatly approximated as

AP/ 3Tr =g The updated temperature can
be readily obtained as,

oW

Tp(n+1)= TAH)MEF (12)
We call this algorithm pseude Newton-Rapson
(pNR), since we do not strictly calculate the
Jacobian. The extra cost of the pNR is negligible.
The preliminary studies on the heat conduction
phase change examples demonstrate the efficiency
of the pNR scheme. It is capable of reducing the
total number of inner iterations required for the
converged solution to about 2/3 of the original
one.

4. Numerical Results and Discussions

The convection-dominated melting of pure

gallium is simulated against the proposed
algorithm. The numerical predictions are verified
and discussed against the experimental and nu-
merical results in literature. The experiment of
Viskanta and his coworkers {Gau and Viskanta,
1986; Beckermann and Viskanta, 1988) is chosen
as a reference case because they have been widely
cited for verification of numerical models (Brent
et al., 1988; Lacroix and Voller, 1990; Viswanath
and Jaluria, 1993; Rady and Mohanty, 1996).
Also, the transformed-grid results of Viswanath
ang Jaluria (1993} are compared.

The experimental configurations are sketched
in Fig. 1. Initially, a solid gallium block is kept at
a constant temperature, 7y The temperature at
the left wall is increased instantly to Ty, while the
Te=T; The
thermophysical properties used in the calculation

right wall is maintained at
are adopted from Brent et al. (1988): density p=
6095kg/m’, latent heat L=8.017 %X 10*1/kg, spec-
ific heat capacity ¢=381.50/kg’C,
diffusivity @=1.376 X 107*m?/sec and kinematic
viscosity of liquid phase v; =2.970 X 107" m*/sec.
Hence, the Prandtl number is Pr=0.0216. The
Rayleigh number and the Stefan number used in
the Gau and Viskanta’s experiment (1986) are
Ra=6.057X10°, Ste=0.03912; whereas Ra=
166X 10°,  Ste=004854 are
Beckermann and Viskanta’sexperiment(1988). The

thermal

those  of
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foregoing dimensionless numbers are defined as

the following:
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According to the experiment of Gau and
Yiskanta(1986), the
changes its shape as melting of gallium proceeds
from its flank. At the very early stage, its shape is

interface  continuously

flat and parallel to the heating wall because the
buoyancy-driven flow is still weak. However, the
effect of heating propagates with time, which
triggers the convective motion of melt. This is
driven by buoyancy and as it develops, the
distortion of interface becomes more obvious. The
melt layer grows faster in the upper region since
its temperature is higher than the rest. This is
schematically illustrated in Fig. 1.

In the present analysis, the experiment of Gau
and Viskanta is first simulated to establish
reliability of the proposed model. The predicted
phase change fronts are shown with the results
from the experiment and the transformed-grid
simulation of Viswanath and Jaluria (1993) in
Fig. 2. The latter used a uniform grid system of
50x30 for their simulation following rigorous in-
vestigation on grid refinement. They tested up to
a grid system of 60 X350, which resulted in little
improvement. Based on these results, the present
work has employed a uniform grid system of
50x36, which is appropriate concerning accuracy

and computational efficiency. The numerical
results obtained reassure our intuitive conclusion
about the outcome of the physical phenomena
involved. That is, the interface evolves with time
and the upper part of the phase front penetrates
into the solid region effectively due to buoyancy-
driven melt convection. When comparing solid-
liquid interfaces at 6 and 10 min, the transformed-
grid results show slightly better agreement with
the experiment than the present model, but the
difference is not significant. The front location at
19 min is successfully predicted with the proposed
method, while the transformed-grid results show
somewhat large discrepancy. It should be noted
that the retardation of the front movement at 6
min is observed in both the transformed-and the
fixed-grid simulations. It is quite probable that
this indicates what could happen in reality. The
hot wall temperature, even though it is assumed
here for the sake of simulation, could not reach
the desired temperature in reality. It is likely that
less heat is transferred to gallium than what's
been predicted in both numerical analyses. The
proposed algorithm based on the fixed-grid ap-
proach shows better prediction of the interface
movement than the transformed-grid approach.
The heat transfer during melting is also well
predicted by the proposed algorithm with the
40X 40 uniform grid system. The calculated tem-
perature profiles agree quite well with the
measurements of Beckermann and Viskanta
(1988}, as seen in Figs. 3(a)-(c). The measured
and calculated results confirm occurrence of
distortion in the phase interface and its evolution
with time as the wall heating continues. In these
figures, the temperature is non-dimensionalized
to comply with the notations of Beckermann and
Viskanta. The dimensionless temperatures in the
solid region, &, and in the liquid region, &, are
_T-Ta T—Tn
T T 1. Y
respectively. Hence, &; has a negative value while
& has a positive value. Except for the temperature
distribution in the upper region at 3 mins, the

Gs and fy=

agreement between experiment and calculation
seems excellent. The temperatures in the upper
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Fig. 3 Temperature profile during the melting of

gallium

melt zone at 3 mins are somewhat overestimated.
This overestimation seems to be narural because,
as mentioned in the above, the amount of heat
transferred to gallium in the calculation should be

more than in the experiment. Hence, the
calculated flow, especially in the upper melt re-
gion, tends to be more developed than the real

flow,
5. Conclusions

The convection-dominated melting in a rectan-
gular cavity is investigated numerically with the
fixed-grid formulation. Especially, this work
proposes a simple numerical scheme that predicts
and corrects the temperature and liquid fraction
for a phase changing cell during the computation.
It also introduces the pseudo Newton-Raphson
algorithm.

The location of the phase front and the tem-
perature distribution during the melting of
gallium are simulated for verification of the nu-
merical model. Except for the earlier stage of
melting, the apgreement between experiment and
calculation seems excellent. The discrepancy be-
tween experiment and calculation at the earlier
stage of melting can be explained quite reason-
ably if one considers the fact that an abrupt
change in temperature for one of the boundaries
(i. e. the hot wall in this case) is almost impossi-
ble to implement in reality. Hence, the actual
amount of the heat transferred to the gallium is
less than what’s been given by the simulation.
Also, comparisons are made between the fixed-
and transformed-grid schemes with regard to
prediction of the front location. Results show that
both schemes are comparable in this regard.
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