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ERROR ESTIMATION FOR NONLINEAR ELLIPTIC
PROBLEMS USING THE h-p-MIXED FINITE
ELEMENT METHOD IN 3 DIMENSIONAL SPACE

MIYOUNG LEE

ABSTRACT. The approximation propertics for L2-projection, Raviart-
Thomas projection, and inverse inequality have been derived in 3
dimensional space. h-p-mixed finite element methods for strongly
nonlinear second order elliptic problems are proposed and analyzed
in 3D. Solvability and convergence of the linearized problem have
been shown through duality argument and fixed point argument.
The analysis is carried out in detail using Raviart-Thomas-Nedelec
spaces as an example.

1. Introduction

In this paper, we concern with a nonlinear boundary value problem to
solve using mixed finite element method which computes both the scalar
{pressure) and vector(flux) simultaneously with comparable accuracy.
The h-version of finite element method for solving PDE, which reduces
the meshsize h with the fixed degree of the approximating polynomi-
als on each element fixed, has been used for a long time as a standard
method. The p-version, which varies the degree of the polynomial de-
fined on each element with a fixed mesh, has been studied and analyzed
by Babuska, Szabo and Katz [5]. The h-p-version, the combination of
the h- and p-versions, was first addressed by Babuska and Dorr [2].
Babuskaand Guo [3] also exhibited that the convergence rate of finite
element solution to true solution for the h-p-version in 2D is much faster
than that of 4 or p version only. So far, most papers deal with linear
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problems to analyze using h-p-version on finite element methods. Re-
cently, only a few papers are presented about nonlinear elliptic problems:
the h-version, the p-version and the h-p-version used in [21], [17], and
[15, 16], respectively. We use the h-p-version of the mixed finite element
method, to apply to our problem in 3-dimensional space.

" Let © c¢ R? be an open domain with boundary 8§ throughout this
paper. We want to analyze the following nonlinear Dirichlet problem:

3
da;

Z —(zu, Vu) + ap(z,u, Vu) =0, z€Q,
(1.1) = dz;

’U(.’E) = —g(;r:), S aﬂa

where the coefficients a;, 0 € i < 3, are twice continuously differentiable
with bounded derivatives through the second order on ) x R x R%. We
assume that the quasi linear operator associated with ({1.1]) is elliptic
with respect to the third variable Vu.

The minimal surface problem is an example of the above form when
a{x,u, Vu) = _(TJrT%ﬁV'-" and ag = 0. We also can apply above problem
to find the equilibrium position of an elastic body when it is subjected
to applied forces by taking a(z,u, Vu) = T(z,u, Vu) = T(z, F} as the
elastic nonlinear constitutive equation defining the first Piola-Kirchhoff
stress tensor 7' as a known function of the deformation gradient F' =

Id 4+ Vu.

We divide this paper into three sections. This is the first section which
is the introduction to this paper. In this section, we showed divergence
type second order elliptic problem we shall consider. In section 2, we
present approximation properties devoted to analyze the applicability of
the h-p-version to our elliptic problem in 3D. L?-projection property is
used for estimation of scalar part and Raviart-Thomas-projection prop-
erty is for vector part. Projection properties tell us the error bound of a
projected value on the finite element space to original analytic function
at a rate of degree p and mesh-size h. We also derive inverse inequalities
between I” norm and L9 norm with 2 < p < g in finite element space.
We use orthogonal Legendre polynomials as a basis of the approximating
polynomial space we use to derive the above projection properties. In
section 3, we first linearlize our problem using the second order Taylor
expansion around finite element solution. Then, we show uniqueness and
existence of finite element solution of the linearized solution. To show
the solvability of our mixed finite element method, we employ Brouwer’s
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fixed point theorem. At the end of this section, we asymptotically es-
timates error of approximating finite element solution to true solution
with L?-norm. We have a little bit heavy regularity constraint. A nu-
merical solution exists if the true solution belongs to H7/2t<(Q) when
the function given as a boundary condition belongs to H**+¢(80) where
0 < £ « 1. We can reduce regularity constraint by giving some restric-
tions between mesh size h and polynomial degree p. But, here, we will
not consider that case.

Let WEP(Q) = {f € LP()|D*f € LP(Q) if |o| < k} be the Sobolev
spaces equiped with the norm

1 lkoe = 32 1D Iay)’

jo| <k

and the seminorm

Fleso=( D ID°f1, m)‘l’

|e|=k

for 1 < p < co and k be nonnegative integer.

2. Approximation properties in 3-D

In this section, we state the three dimensional nonlinear boundary
value problem. We shall study and present some approximation results
which are essential to analyze the applicability of the A-p—version to this
problem. We also derive error estimates for the approximate solution
obtained with the mixed method.

Let Tn be a quasi-uniform family of meshes on §? consisting of paral-
lelepipeds E. hg and pg will denote the diameters of £ and of the
largest sphere that can be inscribed in F, respectively. Let hy =
maxgeT, {hEg} We assume that there exist constants C; and Cj in-
dependent of Ay such that for all E € 7Ty and for all NV,

hn he
2.1 < Ch, — < C
(2.1) PR py 2.

Moreover, we assume that each pair of E; and E; € ‘TN has either an
entire face or an edge in common or has empty intersection.

For E € Ty, let Fg be an affine invertible mapping such that £ =
Fg(R), where R =[-1,1]? and

(22) (m,y,z) = FE((£1C3T])) = BE(fsC’n)T + bE,
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where Bg is a 3 x 3 matrix. With any scalar function ¢ defined on R
(or 8R) we associate the function v defined on F or F given by

(2.3) v=790Fz! (§=voFg).
For vector-valued functions, the correspondence between 7 defined on R
and 7 defined on F is given by

1
24 =
(24) e+
where Jg is the absolute value of the determinant of Bg. Then it is easy
to obtain the following results (see [10]). In this section we denote

WP = QPPP C W where W = L*([-1,1]3)

BpfoFz' (7 = JgBglr o Fg),

and
PP = {f o i Z ci’j,ka:’:yjzk where ¢; 1 € ]R}.
0<i+j+k<p
LEMmaA 2.1,
(le %75).3 = (le T, ¢)E VQ—S € Lz(R):
(2.5)

/ F.ogdS= | T-vpdS V¢ e L*(OR).
aR Ak

We also have the following scaling results.

LEMMA 2.2. For all integers I > 0,

(2.6) Flipr < Chg 0P ) g,

(2.7) Irlip.e < ChE /P Dz o

where the constant C depends on | but is independent of T and hg.

LeEmMMA 2.3. Forany € H (R), r > 0,

(2.8) g;gi‘}glpf(}a)“ﬁ —b|pp < Chl-‘—3/2||u”r,5,

where u = min(p + 1,7) and C depends on R, but is independent of p,
h, and u.
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Proof. For r = 0 the result follows from Lemma 4.2 in {4] by taking
w = 0. Assume that 7 is integer. Then

inf |j@ —Dfirp < inf( ){Hﬁ — whuR

wEPP(R) HEPP(R
Tr T
+ > g+ Y l@lir},
i=p+1 i=p+l

T
where Z hlig =01if r > p.
i=p+1
Using Theorem 3.1.1 of [10],

¥
Cy_lilir

.
inf i —wll.,r+ Y lilir

_ <
wePP{R) et P
T
< CY R ulg
i=p
el
The result then follows from interpolation [24]. O

LEMMA 2.4. Let 7 € (H"(R))® and 7 € (H"(E))*, r > 0, be related
by (2.4). Then,

@9) it |7~ Wln < CREE T g,

where C depends on r but is independent of hg,p, and 7.

Proof. The above lemma is simply a vector form of (2.8). The proof
follows in the same way, using the scaling relation (2.4) and Theorem
3.1.2 of [20}. O

2.1. Inverse inequalities

LEMMA 2.5. The following inverse inequalities hold in three dimen-
sions:
r _ ! I
Ixllo,y < Claa 2P |Ixllog, 1<g<q < o0,

(2.10) )
if xelLt@|wr
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2.2. The approximation properties of PP

We shall use the L?-projection onto W?, PP : W — WP, given by
(2.11) (PPw—w,x)=0, xeW? weW.
This has the following approximation property
(2.12) 1PPw — wllo < Qp~™ [l
Also, from Theorem 2.1 in {8] and using [6] (Theorem 6.2.4}, we obtain
(2.13) 1PPw — wllo,c0 < Qp~™ 2 |w]m.
It follows from (2.12) and (2.13), using interpolation theory, that
1PPw—wllo,s < Qp~" 525/ )|,

§>2, 5/2-5/s<m,

where @ is independent of p.

(2.14)

2.3. R-T-N mixed finite elements in 3-D

We introduce the space @ associated with the standard cube R =
[—1,1]3 in the (z,y, z)-plane. Given three integers k,I,m > 0, denote by
Q™ the space of all polynomials in three variables z,y, z of the form

I m n
frrrey,z) =) D ) cigrny b, ek €R.

=0 j=0 k=0
Now, we define the space @ by
Q= {§=1(q1,92,03) :n € orrlee o e QPPHLP 4o e Qp,p,pﬂ}'

Note that, for § € Q, we have :
(1) le (j = Q’P,P,'P,
(ii) the restriction of ¢ v to any face S of R is a polynomial of degree
< k in two variables (see [22}).

LEMMA 2.6. A function § € Q is uniquely determined by ([19], [20]):

(a) the values of - ¥ at (p + 1)? distinct points of each face S of R
with no p + 2 points aligned;

or

(a') the moments [+(G- vs)}pdo, p € QPP, for each face S of R; and
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(b) the moments

falmiyfz’“dﬂ, 0<i<p—1, 0<jk<p,

R

(2.15) /azsc*'yjz"da‘:, 0<j<p-1, 0<i,k<p,
R
/éaz‘yjz’“d:i:, 0<i<p—1, 0<ij<p.
R

2.4. The approximation properties of n*

Recall that P is given locally (on every element E) by the following
relations (see [22]):

(2.16) ([Po — ] - VB, p)s, =0, p € QPP

where (-, }g, 1 <1 < 6, denotes the surface integral along each face S;
of the element F, and

(2.17) (mPv—v,¥)g =0, % € VP(E),
where
17:0( E)= Qr-Llpp o QPP-LP Qp,p,p—l( E),
and (-, -) denotes the standard L?(E)-inner product. Now, let {L;}i>0

denote the L%([—1, 1])-complete orthogonal Legendre polynomials. For
any v € H(div; R), let [18]

ai,j,kLi(ﬂf)Lj (¥)Le(2),

i
RN

e I0s T

o9 = |

(2.18) bijuLi(x)Li(y) Li(2),

L[~]s
.
g

M
M8

-
Il
=

LY
Il
(]
o~
Il
=)

i Lil@) Ly W) L(2)]
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and
ptl p p
e,y 2) = [ 3 D0 D @i ali(@)Liy) L(),
i=0 j=0 k=0
p ptl p
(2.19) N b jaLi(@)Li(y) Le(2),
i=0 j=0 k=0
p p ptl
PIPIPILINAGIAOI NG
i=0 §=0 k=0
It follows from (2.17)-(2.19) that
((aijr=aijr 0<i<p~1, 0<j<p,
0<k<p,
W ] bije=bijr, 0<i<p, 0<j<p-1,
0<k<p,
Cijk =Gk, 0Sisp, 0<j<p,
\ 0<k<p-1

Next, we see that (2.16), (2.18)-(2.20) imply that

r p+1

X}Wg;in

=P

p+l
< Z}¢ﬂ311

Zba Ik

(2.20)

p+1

Zcu kLk :i:].)

=p

Zcm,

E @k

Li(£1),
0<j<p,0<k<p,
Lj(+1),
0<i<p, 0<k<p,
Li(£1),

0<i<p,0<j<p
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Since L;j(—1) = (=1)* and L;{1) = 1, (2.20) implies that

p,jk = § 02i4p ks Gprlik
0

= 2921+p+1,3,k1 0<j<p,0<k<p

bi,p,k =

bi2itpk: bipi1k

MSZ

.
Il
o

(2.21) 4

i

bi 25 +p+1.ks 0<i<p 0<k<p,

.
I
&

Eikp =D Cijaktp Cigptl
k=0
oQ

= cijokipr,  0<i<p0<ji<p.
\ k=0

LEMMA 2.7. Let v € V and nPv be its Raviart-Thomas projection in
VP given by (2.16)-(2.17). Then, if v € H"(2)?, we have

(2.22) v — =Pullo < QP2 ||ull,, > 1/2,
where €} > 0 is a constant independent of p and v but depending on r.

Proof. Assume that £ = R and that the decomposition consists of
just one element. Then, v € V and #nPv € VP can be given, respectively,
by (2.18) and (2.19). The following relation is a trivial consequence of
well-known properties of the Legendre polynomials [18],

pt+l p 8(a; ;1 — i k)2
. p _ 1,1,k (¥
Il — 7Pull§ = ZZZ (20 + 1)(25 + 1)(2k + 1)
i=p j=0 k=0
p p+l p A
S(bi’j,k - bz‘,j,k)2
+2.2.2 (28 +1)(25 + 1){2k + 1)

zOka:O




246 Miyoung Lee

p p+l

8(ci ik ~ Eijk)’
+ZZZ @i +1 (323 +1)j(2k+l)

=0 7=0 k=

p+l p

8(a;j, )2
+2.2 Z @+ 1)(2) —f—kl)(2k+1)

=0 5=0 k=p+1

co p+l p

(bijk)°
2 ZZ(2@+1 23—7—1)(2k+1)

t=p+1 =0 k=0

P oo p+l
)J) )

2
IPIDY 2+ 1) 23+1)(2k+1)

i=0 j=p+1 k=0
741 o oo

8(‘11, ,k)
IPIP> BT DR T

i=0 j=p+1 k= 0

(2.25) s 8(bijk)?
I L2+ D25+ 1)(2k+1)

i=0 j=0k=p+1

oo oo ptl

S(Cz;r,)
22 G D DR T

i=p+1 j=0 k=0

+§§i B(ai55)°
L = i D@+ )Rk + 1)
oo oo o0 b, 2

+ Z ( ,Jk)

(20 + 1)(25 + 1)(2k + 1)

o0 oo 00 8(62, ,k)
+ZZ :zp: (2 + 1) (2343—1)(2k+1)

Note that Iy — I1o can be bounded as follows:

oo 0 00 13k1+3 +J +k2)

< 2r
Ii+ I+ 11p £ 8p~ 12322(:] (20 +1)(25 + D)(2k + 1)’
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while

[s RN I o) VAY
o tJ,,k(1+z + 72+ k%)
I+l +In <8 EJZZ% i+ D@+ 0Ek+) =0

ea

and

X (1442 + 52 + k%)
—2r 1.3'"3
Ie+ Iy + I <8p g;}zﬂ S DG TR r>0.

Then, we shall see that

Pi2ez Y /f/l—:z: (1= )

0<s+t+g<r
as+t+qv

Ox*0ytoz9

o0 0 X ;23 (l+i2+j2+k2)r
= C(T)ZZZ G DG TR T

i=0 j=0 i=

(2.26) x (1 - 2%)9( )2 dx dy dz

Note that we can prove (2.26) as follows: Assume that s, g, r are
nonnegative integers. Then (see [23]),

2> Y /[/1_9; (1 - ¢t

0<s+t+g<r

o0 o0 o0

(1—~zz)q(6$56 5, q)2 dz dy dz ZZZ

=0 j=0 k=0
v 8aZ ;4 (i + )15 + Ok + ¢!
O<sta<r 20+ 1127+ D(2k+ 1) (i — s)I(F — )}k — g)!
o0 0 00 2

8a; ;k s At
222 2 Gine4 e A

i=0 §=0 k=0 0<s+t+g<r
where

m—n)!

Al = ,
0 if m<n

e

and using induction and interpolation we can prove the following:

Z zjkAsAtAq >C( ) zjk(1+i2+j2+k2)r'
0<s+t+q<r
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Therefore, we have
(2.27) I+ I+ + I <Qp o), r>0.

On the other hand, by following the line of proof in [18] analogously, we
can show that

(2.28) L+ L+ L<Qp™v|%, fors>1.
Let now v € HY/2t¢(Q)3, We also can show that,
(2.29) 7P — vllo < @p"(lvll1/2+e;

L, I, I < Qp ol yes
which yields (2.29). Using interpolation [25], it follows from (2.28) and
(2.29) that, for s bounded away from 1/2,

L+ + 15 < Qpt |l

which, together with (2.23) and (2.27), concludes the proof for the case
! = R. For the case when {0 is a disjoint union of parallelograms, the
result follows on each element by using affine mappings onto R. The
proposition then follows by summing over all the elements. |

REMARK. This result differs from the one known for the h-version of
the finite element method [17](1.5),
(2.30) o = ollo < QW Jwlle, 7> 1/2.

The constraint » > 1/2 (or » > 1/2 + ¢£) stems from the fact that, ac-
cording to the trace theorem, this is the minimum requirement to ensure
that v has a trace on the boundary which is an L2-function (not just
a distribution). In [17], the corresponding result required an additional
half derivative on v (r > 1). In contrast, Proposition 2.1 assumes the
minimum regularity. It is possible, however, that the bound still holds
with the exponent of p replaced by —r, as suggested by (2.30).

COROLLARY 2.1. For s > 2, r > max{1/2,5/2 — 5/s},
(231) lo = 7Pvllos < Qr, Qp™* o,
where @} is dependent on r.

Proof. Let P? be the L?-projection PP x PP x PP : V — V?. Then,
the following analogue of (2.14) holds:

(2.32) [PPu—ullos < Q"o ull,, s>2, 5/2-5/s<r.
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Also,
(2.33) 72 — vllo,s < IPPv — Flo,s + [7Fv — PPu]lo,s.

The second term in this expression may be bounded using the inverse
inequality (2.10) as follows:

1770 — PPollo,s < Qp*~%|[wPv — PPiflg
< Q*S([PPy — vllo + [[77v — vllo).
Combining (2.32)-(2.34) and using Lemma 2.7, we obtain the result. O
2.5. The h-p — version in 3-D
Let V = H(div; ) = {v € L2(Q)?: div v ¢ L3(Q)}

(2.34)

be normed by
I[vllv = llvlo + Il div vllo
and W = L?(Q).

In this section, we define, for each element £ € Ty,
VN(E) = QPn+Llpnpn (E) x grvent+lon (E) x QPN;PN:PN‘FI(E)’

and let
WV VN cwxV
be the Raviart-Thomas-Nedelec space of index py > 0, associated with
this decomposition [12, 19, 20, 22] given by
V=TI VYE)f: Q- R|fve=fvponE(\E, E E ¢y},
EcTy

where vg denotes the outward unit normal vector along 9E, E € Tyn.
We use the L2-projection onto WV, PV : L2 —» W given by

(2.35) (PYw—w,x)=0, xe WN, wew.
We shall also use the R-T projection of V onto V¥, 7,V — V¥ [12].
(¥ is as defined in (2.16) and (2.17).)

LemMMA 2.8. Let v € H™(Q)* and r > {1/2,5/2 — 5/s}, and let
oV 1V — V¥ be as defined above. Then,
“TFN’U _ U“O,s < Ch;in(pN+l’T)_2+3/Sp;{2_r_6/s||'U||T,
ve (H(Q))3, r>max{1/2,5/2—-5/s}, s>2

where C is a constant independent of hy, py, and s but depends on 7.

(2.36)
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Proof. Let v € (H"(Q))3, 7 > max{1/2,5/2 ~ 5/s}. Consider r"w =
w for all w € PPN x PPN x PPN as follows:

CRY*||mN (v — w) — (v — w)o.R
Ch%s—2p¥2—r—6/s

”“TNU - U”Oale
(2.37) iv - wllr,r
Chi{/s—2+,u.p']?é2—r—6/s“ﬁ"r’E,

where u = min{py + 1,7} + 1/2, and £ € 7. Taking summation over
E € Ty we see that

(238) [7N5 — tllosa < CRYP=2+p 2775 .

We have used Lemmas 2.4 and 2.1 in our proof. O

IA A A

LEMMA 2.9. The L2-projection, PY, defined above has the following
property:

(2.39) llw — PNuwlfo,, < CRI T3 #p 4827505 1y

where ¢t = min(py +1,7), § 2 2,5/2-5/s <m, w € H'(R). Cisa
constant independent of hy, py, and w.

Proof. We can prove the lemma using the same methods as those used
in Lemma 2.8 and, using (2.14), Lemma 2.3. O

We will also use the inverse-type inequalities

3/8=3/r 6/r—
a0y TXlos < Cls IR0 oy,
1<r<s<oo, xeL(nWY¥(or xeL}QPnvh)

3. Solvability of linearized problem

In this section, we will show the solvability and convergence for the
linearized version of (1.1) where Q is a bounded convex domain in R?
with C2%-boundary 89. The analysis we use here is basically similar
to those employed by Milner [17] and Park [21]. The functions a; :
OxRxR* S R,0<i< 2, are twice continuously differentiable with
bounded derivatives through the second order. Also, assume that the
quasi-linear operator associated with (1.1) is elliptic and assume to be
symmetric. The mixed finite element method approximates at the same
time the solution u of (1.1) and the flux

(3.1) ¢ = —a(u,Vu) = —(a1(u, Vu), az(u, Vu), az(u, Vu))
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which we assume to be in C%1(Q2)? [7]. By the implicit function theorem,
(3.1) can be inverted to obtain Vu as a function of ¢ and o, say

Vu = —blu,0o).
We now set
f(u,0) = —ap(u, Vi) = —ag(u, —b(u, o))

in (1.1}. Then, the mixed weak form of (1.1) we shall consider consists
of finding (u,o) € W x V such that

{(b(u,o),v) — (divv,u) = {(g,v-n) Yv €YV,
(div o,w) = (f(u,0),w) Ywe W,

where n denotes the unit outer normal vector to d1. We now give a
succinct description of the Raviart-Thomas-Nedelec mixed rectangular
elements. Consider a quasi-uniform family {7x} of decompositions of
2 by parallelepipeds E (with boundary elements allowed to have one
curved face). The mixed finite element method is a discrete form of
(3.2) and consists of ﬁnding (wV, oy e WY x V¥ such that

(b{u, Ny o) = (div v, u™) = {g,v-n) Yee V¥,
(leO’ Jw) = (fu,0™),w) Ywe WV,

In 1975, linearlization of a nonlinear problem using Newton method
was proposed and analyzed by Douglas and Dupont [11] to get a nu-
merical solution. Chen [9] applied and generalized that linearlization
for mixed finite element method by nonlinear functional analysis. Park
[21] employed and implemented the linearlization for the mixed method
using second order Taylor approximation. Following [21], we use first
and second order Taylor expansions of f and b with second order terms
Qs and Qp respectively. Notice that Q 5 € R and O, € R3. We obtain
our first error equations by subtracting (3.3} from (3.2):

(b{u, o) ~ b(u”,o™),v) — (div vu—u¥)=0 Yve V¥,

3 (div (O'—UN),"U) = (f(u,0) - (uN oV, w) Ywe W,

Recall that

(3.2)

(3.3)

div- 7 = PV . div : HY(Q)? - WV,
Linearization of (3.4) at (uV, "), leads to the following form, which we
will need for our fixed point argument:

(B(u, o) [N o — o], v) — (dive, PV u — ™) + (T, 1PN u — u™), v)
=(B(u,0)[nNo — o] + T3 [PNu —u] + Qp(u — Y, 0 — a™),0) Yw e VV,
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(div (7o — a™),w) — (D2l o — o), w) — (Y[PNu — u],w)
=(-Ta[r"o — o] —4[PYu—u] = Qs(u—u",0 — o™),w) Ve WV,
Here we have set [21]
B(u,0) = by(u,0) = A (u,0), T =byu,0), Ts=f.(u,0),
and v = f,(u,0).

Now define M : H%(Q) — L*(Q) by
(35) Mw = —div(A(u,0)Vw + A{u,0)T1w) + A(u,0)Ty - Vw
' — (v - T3 Ay, 0)l1)w
and its formal adjoint M™* by

M*x = —div(A(y,0)Vyx + A(u,o)Lax) + A(u,a)T - Vy
— {7 = T5 A(u,0)T1)x-

From [12], we know that the restrictions of the operator M and M*
to H2(Q)}N HH{(Q) have bounded inverses, provided that 9Q is 2. In
our case it is only Lipschitz, but the result is still valid if we assume that
(u,o) can be extended to a pair (4,5) defined on a domain Qg with a
C?-boundary, such that 2 C £y and meas(Qg — ) is arbitrary small [1,
14]. Then for any 1 € L?(Q2) there is a unique ¢ € H2(Q2) () HL(Q) such
that M¢ =1 (and M*¢ = ¢, respectively) and we have ||é[j2 < Cl¥|lo

if we assume that, for example, the zero order term of M* is nonnegative,
that is

(3.6) v < T7 A(u, )Ty — div (A(u,0)Ty),

where v €CO1(2) and ¢ €C>1(02)? [13], [21]. In this paper, we shall
assume the structure condition (3.6} to employ our duality arguments.
Let & : VN xWN — VN x WH be given by ®(y, p) = (£, ¢) where (£, $)
is the solution of the system,

(B(u,0)[r" — ¢],v) — (div v, PN'u — €) + (T1[PYu - &), v)
= (B(u,0)[7" o — 0] + T1[PVu — 4]

+ Qplu — 0 — p),v) Yoe VvV,

(div (r¥o — ¢), w) — (Ta[rVo — ¢, w) — (+[PVu — €], w)
= (=To[rNo — o] — v[PVu — 4]

— Qflu— p,0 —p),w) Ywe WV

(3.7)
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Note that the left hand side of (3.7) corresponds to the mixed method
for the operator M given by (3.5). In the next subsection, we will show
that this system is uniquely solvable, so that the map ® is well-defined.

The problem we want to study is to find (y,q) € WY x V¥ such that
(BQ:U) - (diVU,y) + (I‘]_Q‘,’U) = (l,’U) Vv e VN:
(divg, w) — (Tag,w) — (yy, w) = (m,w) Ywe W

(3.8)

Here we have assumed the structure condition (3.6). Note that this
condition is reduced to vy < 0if I'y = 0.

LEMMA 3.1. Let ¢ € V, 1 € L2(Q)?, and m € L3(). Ify e WV
satisfies the relation (3.8), then for sufficiently large py or small hy,

2 =1/2 3/2 _. .
lyllo < QY55 allo + k32 px21divallo + [[Eflo + [mo)

under the structure condition (3.6).

To prove the above Lemma, we use a duality argument.
LEMMA 3.2. If g € V¥ satisfies (3.8), then
llallo + lldivallo < C(liyllo + lItllo + llmllo).

Proof. To bound ||¢llp, choose v = ¢, w = y in (3.8) and add the
resulting equations. The choice w = divg in (3.8)}(b) gives the bound
for ||div ¢||o. O

LEMMA 3.3. There exists one and only one solution of the system
(3.7) under the structure condition {3.6).

Proof. Existence follows from uniqueness since the system is linear.
Assume | = 0,/ = 0. Then Lemma 3.1 implies

lyllo < Q'  lallv,

where ||g]lv = |lgllo + ||div g¢|lo- By Lemma 3.2, we have

lallv < ellyllo = llvllo < QrY*px"*lallv < QY *px" Iy,
which implies ¥ = 0 for large py, or small Ay. Then, g = 0. O

Now it is clear from Theorem 3.3 that the map ® defined via (3.7) is
well-defined.
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3.1. Existence and uniqueness
The solvability of {3.3) is now equivalent to showing that & has a
fixed point.

THEOREM 3.1. For py sufficiently large or hy sufficiently smali, ¢
has a fixed point.

To prove this, we shall need the following duality lemma.

LEMMA 3.4. Let w € V, 1 € L3(Q)*, and m ¢ L2(Q). If T € WV
satisfies the relation

(B{u,0)w,v) — (dive, 7) + (T'17,v) = (L,v) Vee VY,
(divw, w) — (Pow, w) — (yr,w) = (m,w) Ywe WV,
then there exists a constant C > 0, independent of py, hy, such that
2 —1/2 3/2
I7llo < ClaX*prllwllo + k3t pa2lldivello + Ll + llmlo),
where C' = 0(9, U, 7, Fla r2a Y Q: E)‘

(3.9)

Now let V¥ = V¥ with the stronger norm ||v}ly~y = ||v]jo.4+||div v]|o,
and let WY = WY with the stronger norm |lw|y» = l[wllg4. We can
now prove the existence of a solution of (3.3).

It follows from the Brouwer fixed point theorem that Theorem 3.1 is
true, if we can show the following.

THEOREM 3.2. For § > 0 sufficiently small {(dependent of py and
hy), ® maps the ball of radius § of W™ x V¥, centered at (p™u,mVo),
into itself, provided the structure condition (3.6) holds.

Proof. Let ||[7¥o — pllyvy < 6 and ||PMu — pllwn~ < 6. We apply
Lemma 3.4 with 7 = PNu—y, w=n"o — g,

! = B(u,0)[mNo — o] + T1[PYu — u] + Qp(ue — p, 0 — p)
and )
m = —Talro — ] = 7[PYu—ul - Qylu — g0 — p).

Using Lemma 2.8, Lemma 2.9 and 2eb < a? + b2,

(3.10)
1PYu—yllo < [hy px" "IN — gllo
+hy PR ldiv (%o g)llo + [ltlo + llmlo]
< O[3 +hy PN
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for sufficiently large py with r > 7/2, where C' = Cllollr, [[wllm, T1, @s,
Q)
By applying Lemma 3.2 to (3.9), we have
I7%o — gllo + div (=" — g
(3.11) < CIPYw —yllo + o + limllo]
< Clhy Vpi* + 8.
Using Lemma 2.10, we have,
r—1/2 1/2—-r
I — gl < Chy 3 Iy 2oy + 8%,
while (3.10) and (3.11) imply that
1PV — ylhw < Ch—3/4 3/2[52+hr 1/2 1/2 -,
Therefore,
1PN u—yllwn + 7o = qllyn < Ch P16 + R 2oy,
where C = C(llallr,Hullm,I‘l,Qb,Qf) We want to choose py,hy, and
§ so that I = [2C1h}, 5/4 fv'", —@—hm‘f pNs/z] is not empty with r =

7/2+ €. Then, for § = 2Clhr_5/4pfv ", we have |PMu — y|lyyv < 8 and
in%o —gliyn < 6. 0

We shall prove a uniqueness result provided that the coefficients a;,
1 =0,1,2 of (1.1) are three times continuously differentiable.

THEOREM 3.3. If py is sufficiently large or hy sufficiently small,
there is a unique solution of (3.3) near the solution {u,c} of (3.2) under
the structure condition (3.6).

Proof. Let (ul, o) € WN x VN i = 1,2 be the solution of (3.3) and
let
U=u{“r—u"2v, Zzaf—og, ¢t =O’—O’£V, £ =u—u£v; i=1,2.
Rewrite (3.3) as
(b(u, o) — blud , o), v) — (div v, U)
= (b(u, ) — b(ul,oi"),v), Vv € VY,
(divE,w) = (flul, o) — fFud, o), w), Yw e WV,
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By the linearization, we obtain
(B(u,0)X,v) — (div v,U) + (T1U, v)
= (@s(€%,¢) — Qo€ M), w), Yo e VY,
(diV E:w) - (F2 : )3,1{)) - (’YU: ’LU)
= (Qe(€,¢*) — Qul€', (M) w), Yw e WY,
It follows from Lemma 3.2 that
=+ lldiv o < Gl + 1Qs(€",¢) — Ba(e%, ¢3lo
+H1Qs(E, <Y — Qf(€%,¢*) hol-

Also, by Lemma 3.1, we see that

100 < Q{hy"py"*ISllo + B *pR7lldiv Zflo + 1Qs(¢,¢")
—Qu(€%,¢)lo + 11976, ¢1Y — Qp (€1, ¢ Hio}-
We now want to show that
1@(€", ¢Y) = Qel€%, Pl < ChY Pl T (I Mo + 1T ll0),
1Qs(€%,¢") — Qu(€%,¢®lo < CRE ™ i > (1= 0 + U fo)-

To show (3.12), use the definition of the quadratic form Q sl21). It
follows that

1Q5(€%.¢%) — Q5 (€, ¢Mlo
< C[lI€M 0,00 + [1€3]l0,00 + IEM11Z 00 + 1€ 0,00
+ 1€ lo,00 /1< 0,00 + 1€ 0,00 + 12118 0o I N0 + 1T7]l6]-

By the inverse estimates (2.40), and the & chosen,

(3.12)

-3 3/2
1PN u —uM oo < By P IIPYu — w00
< h;[3/4pi{25
—2 7/2—
< Kh’j\, P i

—3/4 3/2
17Vo — oV llo,0o < B D 7o — oV loa

< hf—v3/4p?;\{2 5

—2_T7/2—
< KRy 2%,



Error estimation for nonlinear elliptic problems 267

So, we have
1€ ll0.00 = It — v flooe < flus — PV tilloo + 1PV 1s — 4l Jlo,00
—m+5/2 7/2—
< {h” 2ol + R 2Pl

— 0

| S

and

¢t loco = lloi = o7 llo,0o

A

loi — 7 aiflo,00 + |7V s — o [[0,00
7/2— T o -

< K[h’}v 217" lo b + By 2Pl }

0

1

as py — o¢ and hy -+ 0. We have now shown (3.12). By Lemmas 3.1
and 3.2, this concludes the proof of the theorem. a

3.2. L2?-error estimates

In this subsection we will estimate the error of the solution of the
h-p-version for the problem (1.1).

THEOREM 3.4. If the solution of (1.1) is regular enough that u €
H™(Q) and o € H"(Q)3, where r > 7/2, then we have the following
error estimates.

lu—u® hw < QLAY 4 p¥* |l (loll + 1)
R 5/4 5/4-muu||m<nunm +1)},

lo — o™ ilv < @k P2 ||ollrr1 (el + 1)
+ By Y o (el + 1D,

Proof. Let ( =o—oN, ¢ =u—uV, 0 = Vo -V and 7 = PNu—uV.
Rewrite (3.3) as

(B(u,0)8,v) — (div v, 7) + (T 7, v)
= (B(u, o)V o — o] + Ty [PNu— u] + Qb(E,C),U) Yo e VN,
(div 8, w) — (T8, w) — (y1,w)
= (~To[rVo — o] — y[PVu ~ o] — Q;(ﬁ,(),w) Yw e WH,
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Then, just as in Theorem 5.1 in [15)

16110 + Idiv Bilo
< Clirllo + 7134 + 16124 + 170 — o3 4

+lmNo — ollo + 1PN u— ullf 4 + 1PV — ullo}
< Hlirhlo + A B I loalirlloz + 18ll0.akn B3 6llo

+l7Ne = alfa+ o — ollg + 1PV u — ull} 4 + [PVu — ullo}
< C{li7llo + iy 2o lirllo + Wy 2p - H6lko

+llrNo = old 4 + lxVo — alio + [PV u— ulld s + | PVu — ullo}
< CAllrllo + By 2o i llo + By e " 16llo

_5/4 o9_ —5/4 5/4—
+ B2 ol (ol + 1) + Ry 00 ™ el (el + 1)}

By taking pn large or Ay small,

oo + Ydiv 8llo < Cli7ho + BhpN" ol (el +1)

(3.13)
+ BN lellm(fullm + 1)}

Likewise, by Lemma 3.1,

—-1/2 - .
e < Q(anpy*I16l0 + Rip’ldiv 8o + (1o + llmllo)

< Q{hnpn6llo + RkpEldiv 6llo + Rl 0 " lI7llo

-1 5/2— 1/2—
RIS 1000 + Bapn ol (il + 1)

+hipy” el (lefim + 1)}

and, by taking py large or Ax small,

e < Q{hNPer/;/IZIﬁIIo + h%,pxﬁng/i; Ollo + 1 o " lirllo
(26) R N0l + Bivpy ol (lloll- + 1)

+hgen" lull(ffullm + 1)}
Substituting (3.14) into (3.13), we find

(3.14) |18l < QLR llall-(lol + 1) + ARpR ™ lellm (lullm + 1)},
and, substituting (3.14) into (3.14),

(315) lI7llo < Q{hxpx "ol lols + 1) + ARpR lechm(lullm + 1)}
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By combining (3.14), (3.15) with Lemmas 2.5 and 2.9, we have
llu — M fjw < QRN 4y o li- (el + 1)
+ RSl (e + 1)),

r—5/4 2.
lo ~ o¥llv < Q{ky g " lollr+1 (ol + 1)

m—5/4 5/4-—m
+ Ry B ™ ullm (el + 1)} 0
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