ON THE HYERS-ULAM-RASSIAS STABILITY
OF A GENERALIZED QUADRATIC EQUATION

KIL-WOUNG JUN AND YANG-HI LEE

ABSTRACT. In this paper we prove the stability of the generalized quadratic equation $f(x + y) + g(x - y) - 2f(x) - 2g(y) = 0$ in the spirit of Hyers, Ulam and Rassias.

1. Introduction

In 1940, S.M. Ulam [22] had raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping?

In 1941, Hyers [5] proved that if $f : V \rightarrow X$ is a mapping satisfying

$$\|f(x + y) - f(x) - f(y)\| \leq \delta$$

for all $x, y \in V$, where V and X are Banach spaces and δ is a given positive number, then there exists a unique additive mapping $T : V \rightarrow X$ such that

$$\|f(x) - T(x)\| \leq \delta$$

for all $x \in V$.

Throughout the paper, let V and X be a normed space and a Banach space respectively. Z. Gadja [3] and Th. M. Rassias [15] gave a generalization of the Hyers' result in the following way:

2000 Mathematics Subject Classification: 39B72.
Key words and phrases: quadratic equation, stability of functional equation, quadratic function.
This work was supported by grant No. 2000-015-DP0025 from the KRF.
Theorem 1.1. Let \(f : V \to X \) be a mapping such that \(f(tx) \) is continuous in \(t \) for each fixed \(x \). Assume that there exist \(\theta \geq 0 \) and \(p \neq 1 \) such that
\[
\|f(x + y) - f(x) - f(y)\| \leq \theta(\|x\|^p + \|y\|^p)
\]
for all \(x, y \in V \) (for all \(x, y \in V \setminus \{0\} \) if \(p < 0 \)). Then there exists a unique linear mapping \(T : V \to X \) such that
\[
\|T(x) - f(x)\| \leq \frac{2\theta}{|2 - 2^p|}\|x\|^p
\]
for all \(x \in V \) (for all \(x \in V \setminus \{0\} \) if \(p < 0 \)).

However, it was showed that a similar result for the case \(p = 1 \) does not hold([3,19]). Recently, Găvruţa [4] also obtained a further generalization of the Hyers-Rassias’s theorem([6, 7, 8, 9, 11, 14, 16]).

Lee and Jun [12, 13] obtained the Hyers-Ulam-Rassias stability of the Pexider equation of \(f(x + y) = g(x) + h(y) \) ([10]):

Theorem 1.2. Let \(f, g, h : V \to X \) be mappings. Assume that there exist \(\theta \geq 0 \) and \(p \in [0, \infty) \setminus \{1\} \) such that
\[
\|f(x + y) - g(x) - h(y)\| \leq \theta(\|x\|^p + \|y\|^p)
\]
for all \(x, y \in V \). Then there exists a unique additive mapping \(T : V \to X \) such that
\[
\|T(x) - f(x) + f(0)\| \leq \frac{4\theta}{|2^p - 2|}\|x\|^p + M
\]
\[
\|T(x) - g(x) + g(0)\| \leq \frac{(4 + 2^p)\theta}{|2^p - 2|}\|x\|^p + M
\]
\[
\|T(x) - h(x) + h(0)\| \leq \frac{(4 + 2^p)\theta}{|2^p - 2|}\|x\|^p + M
\]
where \(M = \|f(0) - g(0) - h(0)\| \) (if \(1 < p \) then \(M = 0 \)).

In 1983, the stability theorem for the quadratic functional equation
\[
(1.1) \quad f(x + y) + f(x - y) - 2f(x) - 2f(y) = 0
\]
was proved F. Skof [21] for the function \(f : V \to X \). In 1984, P. W. Cholewa [1] extended \(V \) by an Abelian group \(G \) in the Skof’s result. We define any solution of (1.1) to be a quadratic function.

In 1992, S. Czerwik [2] gave a generalization of the Skof-Cholewa’s result in the following way:
Theorem 1.3. Let \(p(\neq 2), \theta > 0 \) be real numbers. Suppose that the function \(f : V \to X \) satisfies
\[
\|f(x + y) + f(x - y) - 2f(x) - 2f(y)\| \leq \theta (\|x\|^p + \|y\|^p).
\]
Then there exists exactly one quadratic function \(g : V \to X \) such that
\[
\|f(x) - g(x)\| \leq c + k\theta \|x\|^p
\]
for all \(x \) in \(V \) if \(p \geq 0 \) and for all \(x \in V \setminus \{0\} \) if \(p < 0 \), where: when \(p < 2 \),
\[
c = \frac{\|f(0)\|}{3}, k = \frac{2}{4 - 2p} \quad \text{and} \quad g(x) = \lim_{n \to \infty} 4^{-n} f(2^n x) \quad \text{for all } x \in V.
\]
When \(p > 2 \), \(c = 0 \), \(k = \frac{2}{2p - 3} \) and \(g(x) = \lim_{n \to \infty} 4^n f(2^{-n} x) \) for all \(x \) in \(V \). Also, if the mapping \(t \to f(t x) \) from \(R \) to \(X \) is continuous for each fixed \(x \) in \(V \), then \(g(t x) = t^2 g(x) \) for all \(t \) in \(R \).

Since then, the stability problem of the quadratic equation have been extensively investigated by a number of mathematician([17, 18, 20]). In this paper, we prove the stability of the generalized quadratic equation:

\[
f(x + y) + g(x - y) - 2f(x) - 2g(y) = 0.
\]

2. Main result

Theorem 2.1. Let \(p < 0, \theta > 0 \) be real numbers. Suppose that the functions \(f, g : V \to X \) satisfy
\[
(2.1) \quad \|f(x + y) + g(x - y) - 2f(x) - 2g(y)\| \leq \theta (\|x\|^p + \|y\|^p)
\]
for all \(x, y \in V \setminus \{0\} \). Then there exists exactly one quadratic function \(Q : V \to X \) such that
\[
\|f(x) + g(y) - Q(x) - Q(y)\|
\]
\[
\leq \frac{4\theta}{4 - 2p} (\|x + y\|^p + \|x - y\|^p + 2\|x\|^p + 2\|y\|^p)
\]
for all \(x, y \in V \setminus \{0\} \) with \(x + y, x - y \in V \setminus \{0\} \). The function is given by
\[
Q(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n} = \lim_{n \to \infty} \frac{f(-2^n x)}{4^n}
\]
\[
= \lim_{n \to \infty} \frac{g(2^n x)}{4^n} = \lim_{n \to \infty} \frac{g(-2^n x)}{4^n}
\]
for all \(x \in V \).
Proof. If $f_1 = \frac{1}{\theta} f$ and $g_1 = \frac{1}{\theta} g$, then f_1 and g_1 satisfy

$$\|f_1(x + y) + g_1(x - y) - 2f_1(x) - 2g_1(y)\| \leq \|x\|^p + \|y\|^p \quad \text{for all } x, y \in V \setminus \{0\}$$

from (2.1). Hence we may assume that $\theta = 1$ without the loss of generality. From (2.1), we easily obtain

\begin{align*}
(2.4) \quad & \|f(2x) + g(0) - 2f(x) - 2g(x)\| \leq 2\|x\|^p, \\
(2.5) \quad & \|f(0) + g(2x) - 2f(x) - 2g(-x)\| \leq 2\|x\|^p, \\
(2.6) \quad & \|f(0) + g(-2x) - 2f(-x) - 2g(x)\| \leq 2\|x\|^p, \quad \text{and} \\
(2.7) \quad & \|f(-2x) + g(0) - 2f(-x) - 2g(-x)\| \leq 2\|x\|^p
\end{align*}

for all $x \in V \setminus \{0\}$. Let $U(x) = f(x) + f(-x) + g(x) + g(-x)$. From (2.4), (2.5), (2.6), and (2.7), we get

$$\|\frac{U(2x)}{4} - U(x)\| \leq 2\|x\|^p + \frac{1}{2}\|f(0) + g(0)\|$$

for all $x \in V \setminus \{0\}$.

Applying an induction argument to n, we have

$$\|\frac{U(2^{n+1}x)}{4^{n+1}} - \frac{U(2^nx)}{4^n}\| \leq \frac{2 \cdot 2^{np}}{4^n} \|x\|^p + \frac{1}{2 \cdot 4^n}\|f(0) + g(0)\|$$

for all $x \in V \setminus \{0\}$. Hence

\begin{align*}
\|\frac{U(2^nx)}{4^n} - \frac{U(2^mx)}{4^m}\| &\leq \sum_{i=n}^{m-1} \|\frac{U(2^{i+1}x)}{4^{i+1}} - \frac{U(2^ix)}{4^i}\| \\
&\leq \sum_{i=n}^{m-1} \left(\frac{2 \cdot 2^{ip}}{4^i} \|x\|^p + \frac{1}{2 \cdot 4^i}\|f(0) + g(0)\| \right) \\
&\leq \frac{8 \cdot 2^{np}}{4^n(4 - 2^p)} \|x\|^p + \frac{2}{3 \cdot 4^n}\|f(0) + g(0)\|
\end{align*}

for all $m > n$ and $x \in V \setminus \{0\}$. This shows that $\{\frac{U(2^nx)}{4^n}\}$ is a Cauchy sequence. Since X is a Banach space, the sequence $\{\frac{U(2^nx)}{4^n}\}$ converges. Define $Q : V \to X$ by

\begin{equation}
(2.8) \quad 4Q(x) = \lim_{n \to \infty} \frac{f(2^nx) + f(-2^nx) + g(2^nx) + g(-2^nx)}{4^n}
\end{equation}
for all \(x \in V \). From (2.4), (2.5), (2.6), and (2.7), we have the inequality

\[
\frac{1}{4^n} \| f(2^n x) + f(-2^n x) - g(2^n x) - g(-2^n x) \| \\
\leq \frac{2 \cdot 2^{(n-1)p}}{4^{n-1}} \| x \|^p + \frac{2 \| g(0) - f(0) \|}{4^n}
\]

for all \(x \in V \setminus \{0\} \). Hence

\[
(2.9) \quad \lim_{n \to \infty} \frac{f(2^n x) + f(-2^n x) - g(2^n x) - g(-2^n x)}{4^n} = 0.
\]

From (2.8) and (2.9), we have

\[
2Q(x) = \lim_{n \to \infty} \frac{f(2^n x) + f(-2^n x)}{4^n} = \lim_{n \to \infty} \frac{g(2^n x) + g(-2^n x)}{4^n}
\]

for all \(x \in V \setminus \{0\} \). Replacing \(x \) by \(x + y \), \(y \) by \(x - y \) and dividing by 2 in (2.1), we have

\[
(2.10) \quad \| \frac{1}{2} f(2x) + \frac{1}{2} g(2y) - f(x + y) - g(x - y) \| \\
\leq \frac{1}{2} (\| x + y \|^p + \| x - y \|^p)
\]

where \(x + y, x - y \in V \setminus \{0\} \). From (2.1) and (2.11), we have

\[
\| f(x) + g(y) - \frac{1}{4} (f(2x) + g(2y)) \| \\
\leq \frac{1}{4} (\| x + y \|^p + \| x - y \|^p) + \frac{1}{2} (\| x \|^p + \| y \|^p)
\]

for all \(x, y \in V \setminus \{0\} \) with \(x + y, x - y \in V \setminus \{0\} \). Induction argument implies

\[
(2.12) \quad \| f(x) + g(y) - \frac{1}{4^n} (f(2^n x) + g(2^n y)) \| \\
\leq \frac{1}{4 - 2^p} (\| x + y \|^p + \| x - y \|^p + 2\| x \|^p + 2\| y \|^p).
\]
Hence
\[
\left\| \frac{1}{4^m} f(2^m x) + g(2^m y) - \frac{1}{4^{m+n}} (f(2^{m+n} x) + g(2^{m+n} y)) \right\|
\leq \frac{2^{mp}}{4^m (4 - 2^p)} \left(\|x + y\|^p + \|x - y\|^p + 2\|x\|^p + 2\|y\|^p \right)
\]
for all \(m, n \in \mathbb{N} \) and \(x, y \in V \setminus \{0\} \) with \(x + y, x - y \in V \setminus \{0\} \). This shows that \(\{ \frac{1}{4^m} f(2^m x) + g(2^m y) \} \) is a Cauchy sequence and thus converges. Let
\[
R(x, y) = \lim_{n \to \infty} \frac{f(2^n x) + g(2^n y)}{4^n}
\]
for all \(x, y \in V \setminus \{0\} \) with \(x + y, x - y \in V \setminus \{0\} \). By the definition of \(R(x, y) \) and (2.10), we obtain
\[
\lim_{n \to \infty} \frac{f(2^n x)}{4^n} = \frac{1}{2} \left(R(x, 2x) - R(-x, 2x) + \lim_{n \to \infty} \frac{f(2^n x) + f(-2^n x)}{4^n} \right)
\]
\[= \frac{1}{2} (R(x, 2x) - R(-x, 2x) + 2Q(x)) \]
for all \(x \in V \setminus \{0\} \). Similarly we obtain
\[
\lim_{n \to \infty} \frac{g(2^n x)}{4^n} = \frac{1}{2} (R(2x, x) - R(2x, -x) + 2Q(x))
\]
for all \(x \in V \setminus \{0\} \). Replacing \(x \) by \(2^nx \) and dividing by \(4^n \) in (2.4), we have
\[
(2.13) \quad \left\| \frac{f(2^{n+1} x)}{4^n} + \frac{g(0)}{4^n} - \frac{2f(2^n x)}{4^n} - \frac{2g(2^n x)}{4^n} \right\| \leq \frac{2 \cdot 2^{np}}{4^n} \|x\|^p
\]
for all \(n \in \mathbb{N} \) and \(x \in V \setminus \{0\} \). From (2.13), we have
\[
\lim_{n \to \infty} \frac{f(2^n x)}{4^n} = 2 \lim_{n \to \infty} \frac{f(2^n x)}{4^n} - 2 \lim_{n \to \infty} \frac{g(2^n x)}{4^n}
\]
\[= \lim_{n \to \infty} \frac{f(2^{n+1} x)}{4^n} - 2 \lim_{n \to \infty} \frac{f(2^n x)}{4^n} - 2 \lim_{n \to \infty} \frac{g(2^n x)}{4^n}
\]
\[= 0 \]
for all \(x \in V \setminus \{0\} \). From this, we get
\[
(2.14) \quad \lim_{n \to \infty} \frac{f(2^n x)}{4^n} = \lim_{n \to \infty} \frac{g(2^n x)}{4^n} \text{ for all } x \in V.
\]
Replacing x by $2^n x$ and dividing by 4^n in (2.5), we have
\[\| \frac{f(0)}{4^n} + \frac{g(2^{n+1} x)}{4^n} - \frac{2f(2^n x)}{4^n} - \frac{2g(-2^n x)}{4^n} \| \leq \frac{2}{4^n} \| x \|^p \]
for all $n \in \mathbb{N}$ and $x \in V \setminus \{0\}$. From this and (2.14), we obtain
\[(2.15) \quad \lim_{n \to \infty} \frac{g(2^n x)}{4^n} = \lim_{n \to \infty} \frac{g(-2^n x)}{4^n} \]
for all $x \in V$. From (2.10), (2.14) and (2.15), we have
\[(2.16) \quad \lim_{n \to \infty} \frac{f(2^n x)}{4^n} = \lim_{n \to \infty} \frac{f(-2^n x)}{4^n} = \lim_{n \to \infty} \frac{g(2^n x)}{4^n} = \lim_{n \to \infty} \frac{g(-2^n x)}{4^n} = Q(x) \]
for all $x \in V$. From the definition of $Q(x)$ and (2.16), we obtain
\[(2.17) \quad Q(2x) = 4Q(x) \quad \text{and} \quad Q(x) = Q(-x) \]
for all $x \in V$. From (2.1), (2.16), and (2.17), we obtain similarly
\[Q(x + y) + Q(x - y) - 2Q(x) - 2Q(y) = 0 \]
for all $x, y \in V$. From (2.12) and (2.16), we can easily obtain the inequality (2.2).

Now we have to prove the uniqueness. If Q' is an another quadratic function satisfying (2.2), then
\[\| 5Q(x) - 5Q'(x) \| \leq \frac{2}{4^n} \cdot \frac{2^{np}}{4^n} \cdot 4^n \| x \|^p + \| 3x \|^p + 2 \| x \|^p + 2 \| 2x \|^p \]
for all $n \in \mathbb{N}$ and $x \in V \setminus \{0\}$. Therefore
\[Q(x) = Q'(x) \quad \text{for all} \quad x \in V. \]
THEOREM 2.2. Let \(p < 2, \theta > 0 \) be real numbers. Let \(\psi : V \to [0, \infty) \) be a mapping such that
\[
\psi(x) = \|x\|^p \quad \text{for } x \neq 0.
\]
Suppose that the functions \(f, g : V \to X \) satisfy
\[
\|f(x + y) + g(x - y) - 2f(x) - 2g(y)\| \leq \theta(\psi(x) + \psi(y))
\]
for all \(x, y \in V \). Then there exists exactly one quadratic function \(Q : V \to X \) such that
\[
\|f(x) + g(0) - Q(x)\| \leq \frac{4\theta}{4 - 2p} \psi(x) + \frac{2}{3} \theta \psi(0)
\]
for all \(x \in V \) and
\[
\|g(x) + f(0) - Q(x)\| \leq \frac{4\theta}{4 - 2p} \psi(x) + \frac{2}{3} \theta \psi(0)
\]
for all \(x \in V \). And then, the function \(Q \) is given by (2.3).

Proof. We may assume that \(\theta = 1 \) without the loss of generality. By the same method as in the proof of Theorem 2.1, we obtain the unique quadratic function \(Q : V \to X \) satisfying (2.2) and (2.3). From (2.18), we have
\[
\|f(x) + g(y) - \frac{1}{4}(f(2x) + g(2y))\|
\leq \frac{1}{4}(\psi(x + y) + \psi(x - y)) + \frac{1}{2}(\psi(x) + \psi(y))
\]
for all \(x, y \in V \). Replacing \(y = 0 \) on the both sides of (2.19), we obtain
\[
\|f(x) + g(0) - \frac{1}{4}(f(2x) + g(0))\| \leq \psi(x) + \frac{1}{2} \psi(0)
\]
for all \(x \in V \). Applying an induction argument to \(n \), we get
\[
\|f(x) + g(0) - \frac{1}{4^n}(f(2^n x) + g(0))\| \leq \frac{4}{4 - 2p} \psi(x) + \frac{2}{3} \psi(0)
\]
for all \(n \in N \) and \(x \in V \). From this, we get
\[
\|f(x) + g(0) - Q(x)\| \leq \frac{4}{4 - 2p} \psi(x) + \frac{2}{3} \psi(0)
\]
for all \(x \in V \). Similarly, we have
\[
\|g(x) + f(0) - Q(x)\| \leq \frac{4}{4 - 2p} \psi(x) + \frac{2}{3} \psi(0)
\]
for all \(x \in V \). \(\square \)
THEOREM 2.3. Let $p > 2, \theta > 0$ be real numbers. Suppose that the functions $f, g : V \to X$ satisfy

\begin{equation}
\|f(x + y) + g(x - y) - 2f(x) - 2g(y)\| \leq \theta(\|x\|^p + \|y\|^p)
\end{equation}

for all $x, y \in V$. Then there exists exactly one quadratic function $Q : V \to X$ such that

\[\|f(x) - f(0) - Q(x)\| \leq \frac{4\theta}{2^p - 4} \|x\|^p \]

for all $x \in V$ and

\[\|g(x) - g(0) - Q(x)\| \leq \frac{4\theta}{2^p - 4} \|x\|^p \]

for all $x \in V$. The function is given by

\[Q(x) = \lim_{n \to \infty} 4^n (f(2^{-n}x) - f(0)) = \lim_{n \to \infty} 4^n (g(2^{-n}x) - g(0)) \]

for all $x \in V$.

Proof. We may assume that $\theta = 1$ without the loss of generality. From (2.20), we easily obtain

(2.21) \[\|f(0) + g(0)\| = 0, \]

(2.22) \[\|f(2x) + g(0) - 2f(x) - 2g(x)\| \leq 2\|x\|^p, \]

(2.23) \[\|f(0) + g(2x) - 2f(x) - 2g(-x)\| \leq 2\|x\|^p, \]

(2.24) \[\|f(x) + g(-x) - 2f(0) - 2g(x)\| \leq \|x\|^p, \text{ and} \]

(2.25) \[\|f(x) + g(x) - 2f(x) - 2g(0)\| \leq \|x\|^p. \]

From (2.21), (2.22), and (2.25), we get

\begin{align*}
\|f(2x) - f(0) - 4(f(x) - f(0))\| &
\leq \|f(2x) + g(0) - 4f(x) - 4g(0)\| + 3\|f(0) + g(0)\|
\leq \|f(2x) + g(0) - 2f(x) - 2g(x)\|
+ 2\|f(x) + g(x) - 2f(x) - 2g(0)\|
\leq 4\|x\|^p.
\end{align*}

(2.26)

Applying an induction argument to n, we have

\[\|(4^n(f(2^{-n}x) - f(0)) - 4^{n+1}(f(2^{-n-1}x) - f(0)))\| \leq \frac{4^{n+1}}{2(n+1)p} \|x\|^p. \]
Hence
\[(2.27) \quad \|f(x) - f(0) - 4^n(f(2^{-n}x) - f(0))\| \leq \frac{4}{2^p - 4}\|x\|^p.\]

Replacing \(x\) by \(2^{-m}x\) and multiplying by \(4^m\) in (2.27), we have
\[
\|4^m(f(2^{-m}x) - f(0)) - 4^{m+n}(f(2^{-m-n}x) - f(0))\|
\leq \frac{4^{m+1}}{2^{mp}(2^p - 4)}\|x\|^p
\]
for all \(m, n \in \mathbb{N}\). This shows that \(\{4^n(f(2^{-n}x) - f(0))\}\) is a Cauchy sequence and thus converges from the completeness of \(X\). Define \(Q : V \rightarrow X\) by
\[Q(x) = \lim_{n \to \infty} 4^n(f(2^{-n}x) - f(0)).\]

From (2.27) and the definition of \(Q\), we have the inequality
\[
\|f(x) - f(0) - Q(x)\| \leq \frac{4}{2^p - 4}\|x\|^p.
\]

Replacing \(x\) by \(2^{-n-1}x\) and multiplying by \(4^n\) in (2.22), we have
\[
\|4^n(f(2^{-n}x) - f(0)) - 2 \cdot 4^n(f(2^{-n-1}x) - f(0))
- 2 \cdot 4^n(g(2^{-n-1}x) - g(0))\|
= \|4^n(f(2^{-n}x) + g(0)) - 2f(2^{-n-1}x) - 2g(2^{-n-1}x))\|
+ 4^n\|g(0) + f(0)\|
\leq \frac{2 \cdot 4^n}{2^{(n+1)p}}\|x\|^p.
\]

Taking the limit in (2.28) as \(n \to \infty\), we have
\[Q(x) = \lim_{n \to \infty} 4^n(g(2^{-n}x) - g(0)).\]

By the similar method as in (2.26) and (2.27), we obtain
\[
\|g(x) - g(0) - Q(x)\| \leq \frac{4}{2^p - 4}\|x\|^p
\]
from (2.21), (2.23), and (2.24). The rest of proof is similar to the proof of Theorem 2.1. \(\square\)
On the Hyers-Ulam-Rassias stability

References

