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ON THE HYERS-ULAM-RASSIAS STABILITY
OF A GENERALIZED QUADRATIC EQUATION

KiL-Woung JunN AND YAnG-HI LEE

ABSTRACT. In this paper we prove the stability of the generalized
quadratic equation f(z + y) + glz — y) — 2f(x) — 29(y) = 0 in the
spirit of Hyers, Ulam and Rassias.

1. Introduction

In 1940, S.M. Ulam [22] had raised the following question: Under
what conditions does there exist an additive mapping near an approxi-
mately additive mapping?

In 1941, Hyers [5] proved that if f: V — X is a mapping satisfying

Iz +y) = fla) = Flyll <6

for all z,y € V, where V and X are Banach spaces and 6 is a given
positive number, then there exists a unique additive mappingT: V — X
such that

I (x) = T(x) <6

for all x € V,

Throughout the paper, let V and X be a normed space and a Banach
space respectively. Z.Gadja[3] and Th. M. Rassias[15] gave a general-
ization of the Hyers’ result in the following way:
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THEOREM 1.1. Let f : V — X be a mapping such that f(tz) is
continuous in t for each fixed . Assume that there exist 8 > 0 and
p # 1 such that

if(z+1) — f(=) = F@I < (=" + [lyll”)

for all x,y € V(for all z,y € V \ {0} if p < 0). Then there exists a
unique linear mapping T : V — X such that

17(x) — f(z)l| < 2= 2plll x|
for all z € V(for all z € V' \ {0} if p < 0).

However, it was showed that a similar result for the case p =1 does
not hold([3,19]). Recently, Gavruta{4] also obtained a further general-
ization of the Hyers-Rassias’s theorem([6, 7, 8, 9, 11, 14, 16}).

Lee and Jun [12, 13] obtained the Hyers-Ulam-Rassias stability of the
Pexider equation of f(z + ) = g(z) + h(y) ([10]):

THEOREM 1.2. Let f,g,h: V — X be mappings. Assume that there
exist 8 > 0 and p € [0,00)\{1} such that

I1f(z +y) — g(z) — h@)I < O(lI=l” + ll¥[I”)
for all z,yy € V. Then there exists a unique additive mappingT : V — X
such that

I7(2) ~ £(@) + SO)] < g el + M
I7() - ota) + 9O < S NP +1
I7(e) i) + Ol < SEE R e + b1

where M = || £(0) — g(0) — h(0)|| (if 1 < p then M =0).

In 1983, the stability theorem for the quadratic functional equation

(1.1) fle+y) + flz—y)-2f(z) - 2f(y) =0
was proved F. Skof[21] for the function f : V — X. In 1984, P. W.
Cholewa [1] extended V by an Abelian group G in the Skof’s result. We
define any solution of (1.1) to be a quadratic function.

In 1992, S. Czerwik [2] gave a generalization of the Skof-Cholewa’s
result in the following way:
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THEOREM 1.3. Let p(# 2), € > 0 be real numbers. Suppose that the
function f : V — X satisfies

Iz +3) + fle —y) = 27 (=) = 27 ()| < 8(=}” + lyll”)-

Then there exists exactly one quadratic function ¢ : V — X such that
1f(z) — g(z)|| < c+ k6| |||

forallz inV ifp > 0 and for all z € V\{0} if p < 0, where: whenp < 2,
c= LSD)'L, k= ﬁ and g is given by g(z} = limy,_,,, 47" f(2"x) for all
zinV. Whenp>2,¢c=0k= 5;,3;3 and g{z) = lim,_ 4" f(27"z)
for all z in V. Also, if the mapping t — f(tz) from R to X is continuous
for each fixed z in V, then g(tz) = t?g(x) for ali t in R.

Since then, the stability problem of the quadratic equation have been
extensively investigated by a number of mathematician([17, 18, 20]). In
this paper, we prove the stability of the generalized quadratic equation :

flz+y)+g(z—y) —2f(z) - 29(y} = C.
2. Main result

THEOREM 2.1. Let p < 0, & > 0 be real numbers. Suppose that the
functions f,g: V — X satisfy

(2.1) 1 f(z +y) + g(x — 1) — 2f(2) — 2g()I| < 8J|=]1” + Hull”)

for all z,y € V \ {0}. Then there exists exactly one quadratic function
Q@ : V — X such that

£ (=) + 9(y) — Q=) — Q)|
2.2
(2.2) L 48
T 4-2p
for all z,y € V \ {0} withz +y,z —y € V' \ {0}. The function is given
by

(e +yl? + llz - ylI” + 2l<® + 2[19*)

Q) = lim £ (inm) _ lim 12279 (_4?1 z)

(2.3) nee nmeo
. 927y . g(—2"x)
= Jm == = Im =——

forallz e V.
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Proof. If f; = %f and g1 = ég, then f; and g; satisfy

Ifilz +y) +a1(z —y) — 2f1(z) — 201 (9)||
< llzllP +fyll  forall z,yeV\{0}

from (2.1). Hence we may assume that # = 1 without the loss of gener-
ality. From (2.1), we easily obtain

(24)  Nf(22) +9(0) — 2f(x) — 29(=x)}} < 2]|=[|”,
(2.5) [1£(0) + g(2x) — 2f(z) — 29(-=)[| < 2[=]/%,
(2.6) 1£(0) + g(—22} — 2f(—x) - 29(z)|| < 2[=||", and
@7 If(=22) +9(0) - 2f(~2) — 29(~=)|| < 2|
for all x € V' \ {0}. Let U(z) = f(z) + f(—=x) + g(x) + g(—x). From
(2.4), (2.5), (2.6), and (2.7), we get
U2z)

1722 ) < 2lall + 5150) + 90

for all z € V' \ {0}.
Applying an induction argument to n, we have

U@Ee~ts) U(2”) 22

)

for all z € V' \ {0}. Hence

”U(Zn:r) U zm < U@t U@2'z) ”
4n - 4z+1 i
mfl 22;,
S ~ 2l + 5 1£0) + g(0)I1)
8- P
< Wllmll + (0) + g0}

for all m > n and z € V' \ {0}. This shows that {U(2 “:)} is a Cauchy
U(2 z)
41’1

sequence. Since X is a Banach space, the sequence { } converges.

Define @ : V — X by

(28)  4Q() = im LEH(E2D) +9(22) + g(-2"2)

n—oo 4r
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for all z € V. From (2.4), (2.5), (2.6), and (2.7), we have the inequality

@) + (-22) ~ 2"2) ~ o(~2"2)]

2.2l 2[lg(0) — F(O)
i [ T el | -4 0 AR e |}

for all z € V'\ {0}. Hence

i [272) + £(=2"3) — g(2"3) — g(=2"a)

n—oo 4n

(2.9) =0.
From (2.8) and (2.9), we have

n—oo 4n

2.10

(210 o 9(2°0) + g(-2")
n—oo 4n

for all z € V' \ {0}. Replacing = by z + y, y by z — y and dividing by 2
in (2.1), we have

- 15722) + 50(2y) — f(z+1) — oz )|

1
< 5=+l +llz ~ o")

where z +y,z — y € V' \ {0}. From (2.1) and (2.11), we have

15(@) + ola) ~ 7(7(22) +g(20)]

1 1
< gl +yl” + lle = ylI7) + Slel” + llyl*)

for all z,y € V' \ {0} with z + y,z —y € V \ {0}. Induction argument
implies

1£(@) +9u) ~ 22 (F(2"2) + 9@
1
4—2r

(2.12)
<

(I +yll” + lle — vl + 2li=]” + 2||yl).-
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Hence
I f@T2) + 92™) ~ G (S@™72) + g2+ ")
mp
< gyl uIP + = oI+ 20el? + 20P)

for all m,n € N and 2,y € V\{0} with z+y,z—y € V\{0}. This shows
that {5 f(2™z) + ¢(2™y)} is a Cauchy sequence and thus converges.

Let . N
R(z,y) = lim f(2"z) + 9(2"y)

n—00 4n

for all z,y € V \ {0} with x + y,z —y € V'\ {0}. By the definition of
R{z,y) and (2.10}, we obtain

lim f(2::c) =

n—oQ 4

f2"z) + f(—Z”fﬂ))

%(R(m, 2z) — R(—z,2z) + lim 1

_ %(R(z, 22) — R(—z,2z) + 2Q(x))

for all z € V' \ {0}. Similarly we obtain

im 92°2) _ %(R(2:1:,a:) _ R(2x, —z) + 20(2))

n—oo 47

for all z € V' \ {0}. Replacing z by 2"z and dividing by 4" in (2.4}, we
have

@) | g0 () 2(0a) 22

(2' 13) ” 4n 4n 4n 4 4n

el

foralln € N and z € V' \ {0}. From (2.13), we have

2 lm L&D g @
n+1 n n
RN L) SRS A CIlC) Bt | )
n—oo 4qn n—2o0 n—oo 47
= 0

for all z € V' \ {0}. From this, we get

(2.14) T G . 2(%;5)

n—oc 47 n—00

forall zeV.
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Replacing z by 2"z and dividing by 4™ in (2.5), we have

n+1$ oy oy . onp
uf(o) (24n ) _ 2f(42n ) 29( 42 ))“ < 2 4i ”w”iﬂ

for all n € N and z € V' \ {0}. From this and (2.14), we obtain

(2.15) i 920 _ o 9(-2")

n—oo n n—00 4n

for all z € V. From (2.10), (2.14) and (2.15), we have
n _on
lim ———(2 2) = lim —w-—f( 2"z)

N 00 4qn n—00 4qn
. 9(2"2)
—1
(2.16) nseo A7
. g(=2"x)
= lim 22~/
o, 4n

= Q(x)
for all z € V. From the definition of @(z) and (2.16), we obtain
(2.17) Q(2z) =4Q(z) and Q(z) = Q(-z)
for all z € V. From (2.1), (2.16), and (2.17), we obtain similarly
Qz +y) + Qlz —y) —2Q(=) - 2Q(y) = 0

for all z,¥ € V. From (2.12) and (2.16), we can easily obtain the in-
equality (2.2).

Now we have to prove the uniqueness. If @' is an another quadratic
function satisfying (2.2}, then

I5Q(=) - 5Q'(=)]
Q@'z) , Q") 2w g -2)

<l

T 4n 4r 4n
(2%) g(2"-2z) Q'(2"z) Q'(2"-2x)
+ + T
4 2”
<2 g (=l + 1327 + 2[le]” + 2)122]7)

forallne Nandz eV \ {0}. Therefore
Qz)=Q(x) forall zeV. ]



268 Kil-Woung Jun and Yang-Hi Lee

THEOREM 2.2. Letp < 2, 0 > 0 be real numbers. Let v : V — [0,00)
be a mapping such that

P(x) = ljzff* for z#£0.
Suppose that the functions f,g: V — X satisfy

(218)  |If(x+y) + gz —y) — 2f(2) — 2g(¥)|| < O(¥(x) +¥(v))

for all x,y € V. Then there exists exactly one quadratic function Q) :
V — X such that

1 (z) + g(0) — Q=) <
forall z € V and
49 2
lo(a) + £(0) = Rz}l € —5;%(a) + 50%(0)

for all x € V. And then, the function Q is given by (2.3).

Proof. We may assume that 6 = 1 without the loss of generality. By
the same method as in the proof of Theorem 2.1, we obtain the unique
quadratic function Q : V — X satisfying (2.2) and (2.3). From (2.18),
we have

T2b(@) + 2040

1£) +9(u) - 5(/(20) + sl
< (@ +y) + (@ - v) + 3 () +Y()
for all z,y € V. Replacing y = 0 on the both sides of (2.19), we obtain
17(@) + 9(0) — 5(£(20) + gD < V(o) + ZH(0)

foral z € V. Applying an induction argument to n, we get

[1f{z) + ¢(0) ~ -—(f(2"sv) +9(OPIf < Plx) + %1/)(0)

(2.19)

4
T 4-2
for all n € N and z € V. From this, we get
17@) +9(0) - Q@) <
for all x € V. Similarly, we have
lo(2) + £0) - Q) < 5 9(a) + (0
forall z € V. a

5 9(@) + 39(0)
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THEOREM 2.3. Let p > 2, 6 > 0 be real numbers. Suppose that the
functions f,g : V — X satisfy

(220)  [f(z+9) +g(z —y) — 2f (=) — 29(»)]| < O(l|=]|” + llw}i*)

for all z,y € V. Then there exists exactly one quadratic function @ :
V — X such that

17 (z) = £(0) ~ Q) < o5— ll=ll”
for all x € V and
46
lo(=) - 9(0) - Q@I < 5 lell”

for all x € V. The function is given by
Q(z) = lim 4™(f(27"z) - f(0)) = lim 4%(g(27"z) - 9(0))

n—Cco

foralz € V.

Proof. We may assume that § = 1 without the loss of generality.
From (2.20), we easily obtain

(2.21) 1£(0) + g(O)]| = G,

(2.22) £ (22) + g(0) — 2f (=) — 29(2)| < 2||=[1?,
(2.23) 1£(0) + g(2z) — 2f (=) — 29(—=)|| < 2|},
(2.24) If (=) + g(—=) - 27(0) — 29(z)|| < [|z}}*, and
(2.25) [1f (2} + g(z) — 2f(z) — 29(0)if < fi=[”.

From (2.21}, (2.22), and (2.25), we get

1f(22) — £(0) — 4(f () — F(O)]|
< [|£(2x) + 9(0) —4f(x) 49 (O + 311.£(0) + g(0)|
(0

(2.26) < 1£(2z) + g(0) — 2f(x) - ( )|
+2[ () + gz} — 2/ (z) — 29(0)]|
< dfz|®.

Applying an induction argument to n, we have

n+1

1@ (@) = £(0)) = 4 (F(27 ) = SO < 5oy Bl
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Hence

[z,

(227)  |f(@)— F0) - 4"(f(27"e) ~ O < 5

Replacing x by 27z and multiplying by 4™ in (2.27), we have
[47(f(27™2) — £(0)) — 4™ (f(27 ") - f(0))]

4m+1

< P
< =3

for all m,n € N. This shows that {4*(f(27"x) — f(0))} is a Cauchy
sequence and thus converges from the completeness of X. Define Q :
V — X by

Qo) = lim 4°(f(27"2) = £(0))

From (2.27) and the definition of @), we have the inequality

[l]”.

17 () = £0) = Q)| = 55—

Replacing z by 27" 'z and multiplying by 4” in (2.22), we have
4™ (f(27"z) — £(0)) — 2-4"(f(27"'z) - £(0))
—2-4"g(27" " z) — g(0))|
(2.28) = 47 (f(27"2) + 9(0)) — 2 (27" z) — 29(2 " ')
+47|g(0) + F(0)]

2.4"
< sty el

Taking the limit in (2.28) as n — o0, we have
Q(z) = lim 4"(g(27"z) — ¢(0)).
n—0o0

By the similar method as in (2.26) and (2.27), we obtain

4 P
lg(z) — 9(0) = Q) = 55— =l

from (2.21), (2.23), and (2.24). The rest of proof is similar to the proof
of Theorem 2.1. O
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