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A NOTE ON GREEDY ALGORITHM
NaAHMwOO HaHnMm* AND Bum I Hong**

ABSTRACT. We improve the greedy algorithm which is one of the
general convergence criterion for certain iterative sequence in a
given space by building a constructive greedy algorithm on a normed
linear space using an arithmetic average of elements. We also show
the degree of approximation order is still O(1/+/nr) by a bounded
linear functional defined on a bounded subset of a normed linear
space, which offers a good approximation method for neural net-
works.

1. Introduction

The greedy algorithm is the algorithm which solves a problem by
making a sequence of local decisions and makes decisions based solely on
local information. This algorithm is one of the important tools in many
areas, especially in neural network approximation. In recent years, there
has been a great deal of research in the theory of approximation of real
valued functions using artificial neural networks with one hidden layer
[1, 4, 7, 10, 11]. Mathematically, a neural network can evaluate a spe-
cial function, depending upoen its architecture. Many different types of
neural network models are studied, but we describe just one in this pa-
per, called a “feedforward network with one hidden layer”. Feedforward
neural network with one hidden layer is of the form

Z Bio(ax + b;)

i=1
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where o is a nonlinear activation function, x € R™, the weights a; € R",
and the thresholds b; and the coefficients 3; are real numbers for i =
1,...,m.

There are many different proofs in the area of neural networks re-
lated to the proposition that any continuous real functions over arbi-
trary compact subsets of R™ can be approximated arbitrarily well by
neural networks with one hidden layer. This is called the density prob-
lem [8, 11]. In the theory of approximation by neural networks, a major
problem beyond the universal approximation problem is the complexity.
This problem is related to determining the number of neurons necessary
to a given order of approximation for all target functions in a certain
class. The complexity problem has been studied by many authors [1, 4,
6, 9, 10]. :

Chakravathy and Ghosh [2], and Ghosh and Tumer [5] indicated that
the problem of determining the number of hidden nodes in order to
achieve a given degree of approximation bound is very important in
practice even though they do not show any theoretical error bounds.
Barron [1] showed the dimension-independent bounds for a certain class
of functions defined by the Fourier transform properties for certain Lo
approximation. Using radial basis function approximation, Mhaskar and
Micchelli [10] obtained dimension-independent bounds similar to those
obtained by Barron [1}, but with a more general class of activation func-
tions and much easier proofs. Jones {8] showed a method for constructing
certain approximations to a general element in the closure of the convex
hull of a subset of an inner product space and this is a connection with
neural networks.

In this paper, we construct a greedy algorithm using the arithmetic
average of elements of a given subset in a normed linear space. We
also build upon this work on approximation by functionals defined on a
normed linear space to study the complexity problem for neural networks
and show the approximation rate of order @(1/+/n). This shows our
proofs are constructive.

2. Greedy algorithm on an inner product space

DEFINITION 2.1. Let S be a given subset in a normed linear space.
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Then the convex hull of 5 is the set

n k)
co(S)={Zaisi|a,-20, Za,;=1, SiES}
i=1 i=1
and co(S) denotes the closure of co(S).

In a subset S of a normed linear space, it is well known that if f €
¢o(S), there exist a sequence {r,} € § and a sequence {s,} with s, €
co{ry,7s,... ;7 } such that s, — f where r,, € § for a positive integer
n. However we do not know the exact form of s,.

In the following lemma, Barron [1] indicated that s, in co(S) could
be represented as

asn—1 + (1 — a)ry,

for some a € [0,1] and r,, € S when the given space is an inner product
space. Note that in an inner product space, we define || fl| = v< f, f >.

LEMMA 2.2. If S is a bounded subset in an inner product space and
b =sup,cg ||s|l, then for f € ¢o(S) and h € co(S),

inf |If —ah— (1~ a)s|? < o®|If — BlI* + (1 — ) (% — [IF11%)
where 0 <a < 1.

Proof. See Barron [1]. {

We define the Chebyshev radius and the Chebyshev center of a bounded
subset S of an inner product space.

DEFINITION 2.3, Let S be a subset of an inner product space X . Then

me = juf sup ljs — ]

is called the Chebyshev radius of § and an element z, € X satisfying

T« = 8up s — .|
s€S

is called the Chebyshev center of S.

REMARK. If a given space in Lemma 2.2 is a Hilbert space, we obtain
the following result which is more generalized. The following lemma is
just mentioned in [3] and we prove it in detail.
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LEMMA 2.4. Let S be a bounded set in a Hilbert space X. If f €
éo(S) and h € co(S), then

inf I = oh = (1 - s < o|If = BP + (1 - 0

where v = 72 — || f — x..||* such that r. and x, are the Chebyshev radius
and the center of §, respectively.

Proof. If we replace f,h and 5 in Lemma 2.2 with f — z,h — z and
S — z, respectively where z is an element in a Hilbert space, then

. _ _ _ 2
inf |f — ah — (1 - a)s]

<a®|f —hlP+ (1~ a)zsglbg(lls =zl = If = =[*).

Therefore we have, by taking the infimum over a Hilbert space,

inf [|f —ah - (1- a)s|?
=;g)f( Slgf If — ah — (1 - a)s|”
< int ol - Bl + (1~ @)? sup(lls ~ al[* ~ [If 2]

=a?||f —hl* + (1 — @)? inf Sup(lls —zl? = |If —=]*)
z€X ge g
=a?|If = k| + (1 — )72 = |f — 2. 1)

The last equation is true since every bounded set in a Hilbert space has
a unique Chebyshev center. Thus we complete the proof. O

We have the greedy algorithm on an inner product space suggested
by Barron [1] as follows:

Let S be a bounded subset in an inner product space X and f € ¢o(S),
Let v = infzex sup,es{lls — z||2 — || f — z||?} and let C be a positive
constant with C' > v and ¢, = C(C — v)/n(C — v + ny). We choose
$1 € S such that

I = o1l < inf hf — sl + e
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Inductively, we choose s, = Bs,_1 +(1—3)s* for some suitable 3 € [0, 1]
and s* € 5 such that
_ 2 . . _ _ _ 2
If = sall® < inf inf |If —asn-1 — (1 —)s|” + en.

In this algorithm, we do not know the exact form of suitable 3 and
so it is hard to apply this algorithm in practice. However, using this
algorithm and Lemma 2.2, Barron [1] showed the following result by
mathematical induction.

THEOREM 2.5. Let § be a bounded set in an inner product space. If
f € éo(8), then there exists a sequence {s,} in co(S) such that
C
If = snll < 7

where C is a constant such that C > infze x supseg{||s—=|*— | f —z|*}.

As we mentioned before, the constant C in Theorem 2.5 is compli-
cated and we do not know the exact form of s,, € co(S) and so it is hard
to use it in practice.

COROLLARY 2.6. If § be a bounded set in an inner product space
and f € ¢o(S), then

~ C
inf || f — iSif| £ —=
inf || f ;ﬂas | < NG

where the infimum is taken over all 51,... ,s,, € § and all nonnegative
«1,...,0, whose sum is 1, and C is a constant such that C > inf,cx

supses{fls — =l — |1 — =%},

These results can be improved when the given space is finite dimen-
sional. The proof can be easily obtained by the famous Caratheodory
Theorem.

THEOREM 2.7. If S is a subset of an n-dimensional space and f €
co(S), then

inf [|f — ) ausi|| =0,
i=0

where the infimum is taken over all s; € S and o; > 0 for0 < i< n
with E?:O x; = 1.



298 Nahmwoo Hahm and Bum Il Hong

3. Greedy algorithm on a normed linear space

As we pointed out before, the algorithm suggested by Barron[1]
proved the error in approximating an element of Co(S) with a convex
combination of n elements in S. But, the proof in Barron[l] is non-
constructive and gives no information concerning the implementation or
needed complexity of the structure in practice. We make an observa-
tion concerning the proof of Theorem 2.5 and we obtain a corresponding
simple algorithm for achieving the same bounds. We show that each s,
in Theorem 2.5 can be taken to be an arithmetic average of n points
in 5. This result gives some applications to neural networks. A neural
network with a single hidden layer with n neurons proves approximation
to a function of the form

Z Bio(a;x + b;)
i=1

as output when z is the network input. The activation function o is
fixed and the network is trained by selecting the parameter a;, b;, 3;, m.
We train with the relaxed algorithm by setting P, = {fo(ax+b):a €
R™ and b, 8 € R}. when we consider the linear functional on a normed
linear.

THEOREM 3.1. Let S be a bounded subset of a real normed linear
space and let ® be a continuous linear functional of norm 1. If f & ¢o(S),
then

inf [®(ah + (1 —a)s — /) < o*[lh — f|*
s€
for h € co(S) and 0 < x < 1.

Proof. 1t is encugh to show that

inf [B(ah + (1 - a)s — f)| < allh - f.

Let € > 0 be given. Since f € ¢o(S), there exists p € co(S) such that
If — ol €€ Thus |®(f —p)| < ||f —pll < e since ® is a bounded linear
functional of norm 1. If we write p= >, B;s; where 8; > 0,s; € S for
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i=1,2,... ,nand 3. B =1, then for a € [0,1],
ajgng[ah +(1 —a)s— f]
= 3gg¢[a(h—f)+(1—a)(3—f)]
< ®la(h - N+ (1~ ) min Bs—f)

<a®h-f)+(1 —Q)Zﬁi‘f’(si - f)

=abh-f)+(1- a)‘I’(ZﬁiSi - f)

i=1

= ab(h— f)+ (1 - a)®®— f)
< a®|-|h - fll+ (1 -a)
<alh—fll+e

Similarly, we have

inf 8[f — ah — (1~ a)s] Sallh - | +¢

and hence

| inf ®lah +(1-a)s - f]| < allh— fll +e

Since inf,cs |®(s)| € |infses ®(s)| and € > 0 is arbitrary, we complete
the proof. a

Comparing to Lemma 2.2, the approximation error bound in Theorem
3.1 is very much improved because (1 —a)?(b% - || f||*) is not needed any
more. This enables us to get a constructive sequence to approximate a
function f € co(S).

THEOREM 3.2. Let S be a bounded subset of a real normed linear
space and let ® be a continuous linear functional of norm 1. Then for
all n, there is s, € co(S) such that

¢
n

[8(f) — B(sa)l* <
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where C is a positive constant.

In order to prove Theorem 3.2, we construct a sequence from the
greedy algorithm and this sequence is constructive.

Let C be a positive constant and €, be a number such that ¢, < C/n?
for each n. Select r; € S such that

[2(£) = B(s0)l* < inf |(f) = B(s) + 1.

If we set s; = rq, then s; € co(S). Inductively, we select r, € § such
that

2() — B((1 = D)snos + 2ra)l

) 1 1 .2
< - 1——=)s5,_ - n-
< ;g£|®(f) (( n)s L+ ns)l +e

Setting s, = (1 — %)sn_l + %rn gives
1 1
§p = (]- - ")Sn—l + =7y
n n
1 1 1 1
= ( - _) [(1 - )sn——Z + —rn—l] + —7r
n n—1 n—1 n
n —_—

2 1 1
= Sp—2+ —=Th-1+ —7n.
n n n

Therefore, by induction, we get
1 1
Sp==81+—=Tot -+ -7,
n n n

11 1
=T+ STy et Ty,
n n

Thus s, is the arithmetic average of r1,... ,r, and hence s, € co(S).

Proof of Theorem 3.2. Let C be a positive constant with ¢, < C/n?
for each n. Then

[B(F) — (s1)f” < inf |8(f) — B(s) + 1

<eg <.
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Assume that for n > 2,

C
—_ 2 £ .
(f) - Blsn ) < —2=
Then 5
|(f) — ®(s..)|
1 1
<i —®((1— Vsp_1 4+ -8 +en
<inf [B(f) - &((1 = ~)sp1 + ) +e
n—1\2
<(F==) 18() — 2(su-)l +en
n—1\2 (C
< .
_( n ) n—1+€n
Cn-1) C
ST T2
_¢
_n
Thus we complete the proof. O
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