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ON THE BONNET’S THEOREM FOR
COMPLEX FINSLER MANIFOLDS

DAE YEON WON

ABSTRACT. In this paper, we investigate the topology of complex
Finsler manifolds. For a complex Finsler manifold (M, F}, we in-
troduce a certain condition on the Finsler metric F on M. This is
a generalization of the Kahler condition for the Hermitian metric.
Under this condition, we can produce a Kahler metric on M. This
enables us to use the usual techniques in the Kéhler and Riemann-
ian geometry.

‘We show that if the holomorphic sectional curvature of M is
> ¢® > 0 for some ¢ > 0, then diem(M) < = and hence M is
compact. This is a generalization of the Bonnet’s theorem in the
Riemannian geometry.

1. Introduction

Let M be an n-dimensional complex manifold with a local coordinate
system (z*), i =1,2, .- ,n, where 2* = 2" + /—1%* so that (z*,%"), i =

1,2,---,n, is a local coordinate system of the underlying real manifold.
We also use "™ = ¢*, i =1,2,--- ,n, so that (2%}, @ = 1,2,--+ ,2n is
a real local coordinate system. We will use (z%,{*),1=1,2,--- ,nasa

local coordinate system for the holomorphic tangent bundle 7100 . Let
J be the complex structure tensor of M defined by

a8 7, 0
J(B:ni} o B—y‘ and J(By“') T B

fori=1,--,n.
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Given a curve ¢ : {0,{] — M, we interpret ¢(t) as either

- dt 9zt f dt Oz

o=

i=

depending on whether we regard M as a complex manifold or as a real
manifold. They are identified by the identification map ¢ : T,M —
T, M defined by ¢(v) = L(v — /=1Jv).

Complex Finsler metric is a generalization of the Hermitian metric
in that we only require the structure on each tangent space to be a
Hermitian norm rather than to be a Hermitian inner product. Formally,

DEFINITION 1.1. A complex Finsler metric F' on M is a function
F: TWOM — R satisfying:

(1) F is smooth outside of the zero section of T"0M ;
(2) F(z,() > 0 and F(z,{) =0if and only if { = 0;
(3) F(z,X) = |MF(z,¢) for all A€ C;

{(4) F is strongly pseudo-convex, i.e., [5%%%] is positive definite.

This structure is enough to define a length of a curve and in turn a
distance between two points. This enables us to have an estimate on the
length of a minimizing geodesic joining two points.

To a complex Finsler metric F' on M, we can associate a real function
F° on M satisfying real analogue of {1)—(3) above. Indeed, F°: TM —
R defined by F°(v) = F(¢(v)) for any real tangent vector v is a real
Finsler metric without the condition that F° is strongly convex. Le,,
the real Hessian of (F°)? is not necessarily positive definite.

Throughout this paper, we will denote by G the function F2. This
G is (1,1)-homogeneous in ¢, ie., for all (z,{) € THM and X € C,
G(z, X)) = AAG(z,¢). And we will use subscripts to denote the differ-

entiations with respect to { variables. For example, Gi; = %fa%f .

Given a complex Finsler metric F on M, we define a length Lr(c) of
acurve c: [0,{]] - M in M by

{
Lr(c) = /0 F(c(t),é(t)) dt, where é(t) = > o
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DEFINITION 1.2. A geodesic for a complex Finsler metric F is a curve
which is a critical point of Lg. More precisely, a curve ¢ : [0,]] — M is
a geodesic if for every variation ¢, : [0,{] = M, —e < s < e, of e,

d

ds Lp(cs) =0.

5=0

In terms of a local coordinate system (z,¢) of T'OM, the geodesic
equations for a complex Finsler metric F' are
B2 S~ 5 OG,E dct dd
kh = | = -
(11) F-l_k;lh;c! 92t —dt—g—o, 2—1,2, 1.

By the general theory of ordinary differential equations, we have

PrROPOSITION 1.1. Let F be a complex Finsler metric. Given z € M
and nonzero ¢ € Ty° M, there exists a geodesic ¢ : (—€,€} = M satisfying
c(0) = z and ¢&(0) = ¢ for some € > 0.

We also assume that the real Finsler metric associated to a complex
Finsler metric is strongly convex. This is a usual assumption in the prob-
lem of classifying complex Finsler manifolds with constant holomorphic
sectional curvature. For this, see [1]. If F° is strongly convex, then
well-established techniques in real Finsler geometry are readily applica-
ble. Specifically, we have a version of the theorem of Hopf and Rinow
that guarantees the existence of the minimizing geodesics joining any
two points.

THEOREM 1.2. Let (M, F) be a complete complex Finsler manifold
with strongly convex F°. Then any two points can be joined by a mini-
mizing geodesic.

Proof. Note that Lr(c) = Lpo{c). And apply the theorem of Hopf
and Rinow in the real Finsler manifolds. O

For complete treatments on the Finsler geometry, we refer the reader
to 2], [8], [1]. And for the geometry of the spaces beyond the Riemannian
manifolds, we refer to [6], [4], [9].

ACKNOWLEDGMENT . We would like to thank S. Kobayashi for guid-
ing us into the realm of Finsler geometry and for his advice and constant
encouragement.
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2. Main theorem

Let M be a complex manifold. The action of C* = C\ {0} on
TLOM \ {O} by scalar multiplication defines the projective holomor-
phic tangent bundle PTOM of M by PTHOM = (TVOM \ {O})/C*.
Let 7 : p*T*®M — PT'®M be the pull-back bundle of the holomor-
phic tangent bundle # : T5°M —» M by the canonical projection p :
PTYOM — M . Since Gi{z, ) is a function defined on PT*M and [G]
is positive definite, [Gj;] defines a Hermitian inner product on each fiber
of # : p*TOM — PT1OM.

Let D be the Chern connection of the Hermitian vector bundle 7 :
p*THOM — PTYOM . This is a unique connection of type (1,0) which
is compatible with the Hermitian structure. For this, see [3]. Following
the idea of S. Kobayashi [5], we apply the techniques of the Hermitian
geometry to the pull-back bundle 7 : p*TLOM — PTYOM. Let {w,”} and
{Qij } be the connection forms and curvature forms of D with respect
to a local frame {a_?f’ e ,3%}‘ e,

9 X 0 N R
Do =2wpy  wd Diga=2 5

i=1

In terms of a local coordinate system (z%, %) of PT1OM,
9G; oG
ik ih d G_;lh. ih d
= G et + G,
Qf = R de* NdF' + P gde* A dd
+8.7d¢* A dz + Q. d¢F AdC,

where
PG 5 OG5 0G
o jh ih jh vab ah ih
RS =G dzkoz! GG ozt 9%’
; %G 7 G 1 0G 3
b gh ih jh ~ab “ah ib
Pi= G ol + OO
8*Gr G,z 0G,
ih ih ih vab ah b
Sz K= me 3ck5-l +G"G sl 3<k !
Q ~ _GJh, 62Gih + GjEGab OGap OGp

ikl 6Ck3@ 361 ack :
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Setting R,z = GrsR." -, etc., we obtain

i kD

BQG,-J o5 0Ga; 0G
Ripr = TN Z ¢ azl bz b ot

DEFINITION 2.1. Let ¢ be a nonzero holomorphic tangent vector at
z € M. The holomorphic sectional curvature H of  at z € M of a
complex Finsler manifold (M, F} is

H(Z,C) ( ) Z: szkl_gicjckcl

i,7.k,0=1

For a complex manifold M with a Kahler metric g = 377, _; gidz*d2?,
its curvature tensor is

g7 | 509 00

Rinl =~ 5555 + 9" 3+ o3
and the holomorphic sectional curvature H(z,£) of £ = (£1,..- ,&") is
(Z g) ”6”4 ijkl_gigjékgl:
where | - || is the norm associated to the Kahler metric g.

DEFINITION 22. A complex Finsler metric £ on M is called pseudo-
Kéhler 1f ( ¢)Y = 623 =£1(z,¢) for all {2,¢) € PTY M.

If complex Finsler metric F is a priori a Hermitian metric, then the
above condition is the usual Kahler condition. And for pseudo—Kéthler
Finsler metric F, by the Euler’s identity, we have B—G,} = 3z‘ :

The main goal of this paper is to prove the followmg

THEOREM 2.1. Let (M, F) be a complete complex pseudo-Kihler
Finsler manifold with strongly convex F°. If the holomorphic sectional
curvature of M is > ¢ > 0 for some ¢ > 0, then diam(M) < T and
hence M is compact.
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3. Proof of the main theorem

We first establish the following propositions which are essential in
proving Theorem 2.1.

PROPOSITION 3.1. Given a geodesic ¢, : [0,{] — M joining p and q
in M, there is a C'-variation o : [0,1] x (—¢,€) = M of ¢,, such that

(1) « is one-to-one,
(2) %a, %%} are linearly independent for all t € [0,1], s € (—¢,¢€),
(3) g_i(tss)ls=0 = JT(t)

Proof. By the theory of ordinary differential equations, for any ¢ €
[0, 1], there exists e(f) > 0 such that a unique geodesic a;(s) with the ini-
tial condition a;(0) = co(t) and & (0) = JT'(¢) is defined on (—e(t), €(t)).
Since this e(t) depends continuously on the initial datum and [0,1] is
compact, we can choose € such that o4(s) is defined on (—¢€',¢') for all
t € [0,1]. Let alt, s) = ou(s).

We know that {7, JT(¢)} is linearly independent over R along ¢,, i.e.,
the sum of the squares of the determinants of all possible 2 x 2 minor
matrices of the Jacobian matrix Jg(a) of a is nonzero for s = 0. So
there exists € > 0 such that the rank of the Jacobian matrix Jr(a) of
o is 2 for every s € (—¢, €). This implies that o is locally one-to-one on
[0,1] X (—¢, €). Note in particular that {%", %;‘-} are linearly independent.

Now we want to show that « is globally one-to-one for sufficiently
small € > 0. Assume such € does nof exist. Then we have two sequences
(tn,sn) and (t,,s,) for n > N in [0,1] x [-#,#] for some N such
that o(tn,sn) = a(th,s,) and (tn,sz) # (th,sh) —% < Sn, 8, < L
Since [0,1] x [—%, %] is compact, they have converging subsequences
with (., s,) and (£, s)) as their limit points, respectively. Clearly, s, =
s, = 0. Next we will show that ¢, = t,. By the continuity of o, we
obtain that oft,,s,) tends to a(t,,0) = co(t,) and that a(ty, s,,) tends
to a(t),0) = ¢,(t,). But by the assumption that (tn,s,) = a{ty, sp),
we get co(to) = co(th) and hence t, = t,,. Thus the limit points are same.

On the other hand, o is locally one-to-one. So we can choose a
neighborhood U of (t,,0) = (£,,0) where a is one-to-one. But there are
two distinct points (tn,8n) # (t,,5,) in U whose images under a are
same. This is a contradiction. Therefore, we can choose ¢ > 0 such that
a:[0,]] x (—e,€) — M is one-to-one. O
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Now modify the variation c. We define ¢(t, s) = a(t, ssin 3*). Then
we have
(0, 8} = (0,0) = co(O) =p and ¢{l,s) =a(l,0) =c,(l) =g,
dc  Oa  Oa L

TN +— 5 1 C ;é 0 by (2) of Proposition 3.1,
% = 3_a sin mt
s Os L’

% do 7t (s m
ds|,.p Os I {

Next choose a continuous nowhere vanishing vector field X on some
open set U containing {c(¢,s) : t € (0,1}, s € (—e¢, €)} such that X agrees
with 6‘5(t 8), i.e.,

X(z) = %(t,s) if z=clt,s).

For example, locally in the preferred real coordinate neighborhood, the
image of ¢(t,s) is considered as a real 2—dimensional slice L of R?"
and for z in the preferred real coordinate neighborhood, define X(z)
as %(t,s) where ¢(t,s) is the projection of z onto L and then use the
partition of unity. Note that [/ can not contain p and ¢ because of the
continuity of X.

PRrOPOSITION 3.2. On U, we have a Kihler metric defined by gi7(z) =
Giz(z, X (2)) if (M, F) is a pseudo-Kéhler Finsler manifold. We call this
metric g = g;;dz*dz? the induced Kéhler metric on U.

Proof. By the definition of g;7, we have

Bgy _ 0Giy  §0Gy0X! ¥~ 0G; 0%
dzk — Ozk Z ¢t 82k Z acl bzk”

Note that by the homogeneity of Gz,

X)Xt =0.



310 Dae Yeon Won

Hence we have
9 [~ 0Gi;
= 9z (Z a_gl(z’X(z))Xl)

*. 9G;; dX! 82G
Z: CzJ B2k ZBC’B:.;“ (2, X(2)X".

Note also that by the homogeneity of 621-,

Z FOs . x)xt=0.

oCloz k
Hence
Z 8Gi; 0X' _
= act 8%
And by the same token,
Z 8G,J 8Xx!
ol 2 -
Thus
(3 1) Bgi:—, _ 8G,;J— _ aij _ ngj—
) Oz Oz Ozt azt ]

Now note that if ¢ is a geodesic for a complex Finsler metric, then it
is also a geodesic for the induced Kéhler metric. Indeed, along a curve
¢, the induced Kihler metric g on U defined in Proposition 3.2 satisfies
gij—(c(t)) Gy5(c(t),é(t)) and (3.1). And so (1.1) reads

B, 5, dc dct .
ih kh __ — .
dt2 +HZ”§ 9z dt dt =0, P=12m,

which is the geodesic equation for the Kahler metric g.
Next we will relate the notions of the holomorphic sectional curva-
tures of the complex Finsler metric and the induced Kihler metric.

ProPOSITION 3.3. Along c(t),
H(elt).0)) = T2y
And H(c(t),c(t)) = H{c(t),é(t)) for 0 <t < L.

G ksl
Rij-ki-c*cjc’“c
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Proof. Recall that g,;(z) = Gi3(#,X(2)). As in the proof of Proposi-
tion 3.2, .

8905 _ 9Gaz 99 _ 0Gy
gzt o7 and oz T 9k
Next '
9zkdz 82’“82‘ 6‘("321 Fraa 85"8? k-
By the homogeneity of 2%z 6 2,
BChale =0.

Hence we have

8 PGy
= 5% ( > aerpm? X(z))Xh)

282G aXE O B3G, n
Z 3@53;! 2k Zacha k%’l % X(2) X"

And also by the homogeneity of 2 e az“

Z“: 8y n_o

= aChaFoE
Hence
Z 8? 0G5 axh
3(“32‘ Bk
And by the same token,
Z 82G” oxh
8(“82" Bk

Thus
Fgir Gz
59 = Harpm (=X ()

Therefore R z7 = Rinr-
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Since
Fe(t),é(t)) = 3 Gisle(), é(t))&E () (8)
i,j=1
=3 gilc®)EWF @),
i,5=1
we get H{c(t),c(t)) = H(c(t), é(t)) for 0 <t < L. a

Proof of Theorem 2.1. Let p and ¢ be any two points in M. Then
by the Theorem 1.2, there exists a minimizing geodesic ¢, : 0,{] = M
joining p and q. We will show that Lr(c,) < Z. Then d(p,q) < T and
diem(M) < 7, as asserted; in addition, because M is bounded and
complete, it is compact.

Consider the variation c(t, s} of ¢, on page 309 such that

c(0,8) =c,(0) =p and c(i,s) = co(l) =g,

and
T(t,s) = % = WTScosﬂTt # 0,
S(t,s) = g—z = {sin %E)g—? ,
suﬁy—gggo=@m%5£nn
Since Lp{c,) < Lr(cs),
;—; o Lr(es) = 0.

Note that Lg(c,) is independent of the values of F(cs(t),cs(t)) at
t=0and ie,

1
Lﬂ@:ﬂF@@@@Mt
I
- [0 Fles(t),é(0)xo dt.

And hence we can use the induced Kahler metric on U to find the second
variation formula of arc length. Tet { , } denote the real part of the
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induced Kihler metric g;5(2) = Gi;(2, X(2)) and V be its Levi-Civita
connection. For simplicity, {, } = 0 at p and ¢. Thus

ot
Lr(e) = [ (.1 d
0
and the second variation formula of length in Riemannian metric {, }
of U is

1 d?
2d’€2 s=0

i—8 -4
Lp(es) = }i_r%{(T, VsS)“s + {5, VTS)IJ }

— ]I(S, VrVrS+ R(T,S)T) + (T(T, S))zdt-
0

We will show that the boundary terms are zero. Because ¢, is a geodesic
in U with respect to { , ) and g is a Kihler metric on U, VpJT =
JV7T = 0. Hence

VrS = VT(sin VT (t)
T (cos B)JT(t) + (sin BYVrJT(t)
= %(cos Z)JIT(¢).

So we get

-4 i—é
(S, VsT) ;s = {(sin Zt)JT(t), F(cos ZL)JT(t)) 5

-4
= 7(sin )(cos )5 ,

which tends to 0 as & goes to 0.

Next since § = (sin 2t g‘; and 60‘ = 1( ) 7.0, We get

V58 = (sin? LAV %0 g—(:

8 do?\ 0  dofdod a
27t v ey 9 ao” v
= (sin” ) ( dt (axf dt ) 57 Tl @ amj) '
Note that for a Kdhler metric, its canonical Hermitian connection and its
Levi-Civita connection coincide under a suitable identification of tangent

vectors, i.e., if V is the canonical Hermitian connection of I/ and ¢
ToM — T 0M is the identification map on page 1,

$(VxY) = Vyxyo(Y).
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For this, see [7]. Thus

J ~ J
AV 255 = V&g
a
k
=g a2k
kmagJ'm 9
9zl 9zF

0y, 52

= GM™ (3, X () 52 (2. X ()

where the last equation comes from (3.1).

Now
dot [ 8 dod
. (T, VsS) = sin? ’? — (@ _g!t_) g (%’@(T))
' dot do?
o FkRﬁQ(g;k‘ $(T)) }
But since

9 (%, (7)) = Gj;(co(t),éo(t))gm"
% = G0, 6(0) 22 (olt) ol 5

the right hand side of (3.2) can be continuously extended to [0,i]. In
particular,

dot (8 dof P do’ do? i 8

is bounded. Therefore, we get

‘1—5

%%(VsS, T s = 0.

Finally, since {T,5) = 0 at s = 0, we get
L

0< )

I}
Lr(es) = — f (S, VrVrS + R(T, S)T)dt
0

{
5] sin? ”lt (TQ' (:2) dt
0

and hence we get { < Z. O

1
-2

Q..

s=0
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