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NORMAL EDGE-TRANSITIVE CIRCULANT GRAPHS

Hyo-SEoB SmM* AND YounGg-WoN KiMm

ABSTRACT. A Cayley graph of a finite group G is called normal
edge-transitive if its antomorphism group has a subgroup which
both normalizes G and acts transitively on edges. In this paper,
we consider Cayley graphs of finite cyclic groups, namely, finite
circulant graphs. We characterize the normal edge-transitive cir-
culant graphs and determine the normal edge-transitive circulant
graphs of prime power order in terms of lexicographic products.

1. Introduction

Let G be a finite group and S a subset of G not containing the identity
1¢. The Cayley graph X = Cay(G,S) of G on S is a graph defined by

V(X)=G, B(X)={(9,59)|g€C,s€5)

In particular, if S~ := {s~! | s € S} is equal to S, then the Cayley
graph is said to be undirected. In this case, (x,y) is an edge if and
only if (y,z) is an edge, and such a graph can be viewed as a usual
undirected graph by coalescing the- two edges (z,y) and (y,z) into a
single undirected edge.

It is easy to see that the group G acts regularly on the vertex set G
by right multiplication, and so G may be viewed as a regular subgroup
of the automorphism group of the Cayley graph. In particular, the
automorphism group AutX of the Cayley graph X acts transitively on
the vertex set G. The normalizer N x{(G) of the regular subgroup G
is the semidirect product

Naux (G) =G-Aut(G, 5), where Aut(G, S) :={o € Aut(G) | 57 =S}.
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A Cayley graph X = Cay(G, S) is said to be edge-transitive if its
automorphism group AutX is transitive on the edges. Also, if X is
undirected and AutX is transitive on the undirected edges, then X is
said to be edge-transitive as an undirected graph. It is difficult to find
the full automorphism group of a graph in general, and so this makes it
difficult to decide whether it is edge-transitive, even for a Cayley graph.
As an accessible kind of edge-transitive graphs, Pracger|[8] focuses at-
tention on those graphs for which N, x{G) is transitive on edges, and
those undirected graphs X for which Na,.x(G) is transitive on the
undirected edges. Such a graph is said to be normal edge-transitive,
or normal edge-transitive as an undirected graph, respectively. In [8],
Praeger gave an approach to analyzing normal edge-transitive Cayley
graphs as a subfamily of central importance. Using the strategy sug-
gested in [8] to construct normal edge-transitive Cayley graphs from
quotients, Houlis [3] was able to determine the isomorphism types of
all connected normal edge-transitive undirected Cayley graphs for Z,,,
where p, g are primes; for G = Z, x Z,, p a prime, Houlis also made
a classification which gives all normal edge-transitive undirected Cayley
graphs Cay(G, S) such that Aut(G, S) acts reducibly on G. In this pa-
per, we consider finite circulant graphs, namely Cayley graphs of finite
cyclic groups.

Two Cayley graphs Cay(G, §) and Cay(G, T} are said to be equivalent
if there exists o € Aut(G) such that T' = S*. Equivalent Cayley graphs
are of course isomorphic.

Let Z,, := {0,1, ...,n—1} denote the additive group of integers modulo
n, and let U,, denote the multiplicative group of units integers modulo n.
We may identify U,, with Aut(Z,,). The following theorem characterizes
all connected normal edge-transitive circulant graphs of order n.

THEOREM 1.1. Every connected normal edge-transitive circulant
graph Cay(Z,,,T) is equivalent to Cay(Z,,S) for some subgroup S of
U,. Conversely, each subgroup § of U, defines a connected normal
edge-transitive circulant graph of order n, different choices of subgroups
S giving nonisomorphic graphs.

An abelian group G has an automorphism which maps each element
to its inverse, and so if an undirected Cayley graph of G is normal edge-
transitive as an undirected graph then it is also normal edge-transitive.
Therefore, a connected circulant undirected graph of order n is normal
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edge-transitive as an undirected graph if and only if it is isomorphic to
Cay(Z,,, S) for some subgroup S of U, containing —1. .

We focus our attention on the special case when n is a prime power.
Let p be an odd prime. For each positive divisor r of p — 1, there is a
unique subgroup of order r in the cyclic group U,:. The Cayley graph
of Z,« on the subgroup of order r in Uy is denoted by X (pt, 7).

For p = 2, let X(2°,1) = Cay(Z,{1}), X(2!,2) = Cay(Zy, {1, —1}),
and X (2,3) = Cay(Zy:, {1, —1+2'~!}). Denote the Cayley graph of Z,,
on the empty set by nK;. Then we have:

THEOREM 1.2. (i) For an odd prime p and a positive integer m,
every connected normal edge transitive circulant graph of order p™ is
isomorphic to the lexicographic product X (p*,r){p™ K] for some pos-
itive divisor v of p — 1 and an integer i with 1 €< i < m, different
choices of i or r giving nonisomorphic graphs. (ii) Every connected nor-
mal edge transitive circulant graph of order 2™ is isomorphic to one of
the lexicographic products X (2¢,4)[2™ K] for some integers 7,5 with
1<j<3<i<morl<j<i=2for3<m,andl1<j<i=m for
m = 1,2, different choices of i or j giving nonisomorphic graphs.

We note that the analogous result can be given for n = 2p™ for
an odd prime p since the automorphism groups of Zy~ and Zgpm are
isomorphic.

2. Basic facts

In this section we give some facts on Cayley graphs, which will be
useful for our purpose.

First we make some comments about the normalizer N, x (G) of the
regular subgroup G. The normalizer of the regular subgroup G in the
symmetric group Sym(G) is the holomorph of G, that is the semidirect
product G - Aut{). Thus,

Nawx(G) = (G-Aut(G)NAWX = G-(Aut(G)NAutX) = G-Aut(G, 5).

The following lemma to characterize normal edge-transitivity is fun-
damental, and a more general description can be also found in [8].
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LEMMA 2.1. Let X = Cay(G, S) be a Cayley graph for a finite group
G with § # 0. Then X is normal edge-transitive if and only if Aut(G, )
Is transitive on S.

We close this section with some observations about lexicographic
products of graphs.

Given two graphs X and Y the lexicographic product, X [Y] is defined
as the graph with vertex set V(X) x V(Y') and the following adjacency
relation:

(z,y) is adjacent to {z',y') in X[V]
«= either z is adjacent to z’ in X,

orx =z, yis adjacent to y in Y.
We then have the following basic result.

LeMMA 2.2. Let X = Cay(G, S) be a Cayley graph for a finite group
G with 8§ # 0. If S is a union of cosets of a normal subgroup M of G of
order m, then X = Cay(G/M,S/M)[mK,], where S/M denotes the set
of cosets Ms, s € 5. -

Proof. Write Y for Cay(G/M,S/M) and Z for Cay(M,0). Then
Z = mK,. Let T be a set of coset representatives for M in G, so that
for every g € G there exists a unique ¢ € T such that Mg = Mt. Define
amapvy:G — G/M x M by v(g) = (Mg,gt™"). It is routine to show
that this map is an isomorphism from X onto Y [Z]. O

3. Proof of Theorem 1.1

For the first part of the theorem, let X = Cay(Z,, T} be a connected
normal edge-transitive circulant graph of order n. Then by Lemma 2.1,
Aut(Z,,,T) is transitive on T. Write S for the subgroup of U, corre-
sponding to Aut(Z,,T) under the identification of U, and Aut(Z,).
Since (T) = Z,, there exists ¢ in TNU,. Since the action of U, on Z,, 1s
by multiplication modulo n, it follows that T' = St. Therefore the map
i+ it, i € Z,, yields an auto morphism of Z,, that maps S onto 7', and
s0 Cay(Zy, S) is equivalent to Cay(Z,,T).

Let S be a subgroup of U,. Since 1 € S, we have Z, = (5) and so
Cay(Zy,, S) is connected. The subgroup {a € Up | Sa =S5 } acts on S by
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multiplication as Aut(Z,,S) doeson S. Since {a € U, | Sa=5} =5,
we see that Aut(Z,,S) is transitive on S. It follows from Lemma 2.1
that Cay(Z,, S) is normal edge-transitive.

We now consider the isomorphism problem of connected normal edge-
transitive circulant graphs. Ad4m [1] conjectured that if two circulant
graphs Cay(G, S) and Cay(G,T) are isomorphic then they are equiva-
lent; the conjecture was shown to be false in general (see for example,
[2]). While the conjecture is true if the number of vertices is either
square-free or twice square-free (see (6, 7]). We will show that the con-
jecture for our case is true, namely:

LEMmMA 3.1. If two connected normal edge-transitive circulant graphs
Cay(Zn, S) and Cay(Z,,T) are isomorphic, then they are equivalent.

We note that Klin and Pdéschel in [4] first applied the method of
Schur rings to solve isomorphism problems of circulant graphs and they
succeeded in solving the isomorphism problem for circulant graphs of
odd prime-power order in [5]. Our isomorphism problem can be solved
by using some basic properties of Schur ring theory.

Let X = Cay(Z,,S) be a Cayley graph of Z,, on a subset S. Let A be
the automorphism group of the graph X and let 4 be the subgroup of
all antomorphisms of X that fix 0. Let 51, S2,..., Si be all orbits of the
natural action of A on Z,. Let Z[Z,] be the group ring of Z,, over the
integer ring Z, which consists of the formal sums cp0+¢) 1+ - -+cp_1n—1,
where ¢; are integers. For each subset T = {fy,ts,...,t;} of Z,, we
denote ¢; +t2 + -« +¢; by T and call it a simple quantity. Then the
transitivity module Z(Z,,, Ap) belonging to Ay is the module generated
by 51,82, --., Sk, which are called the basic quantities. It is known as
Schur’s fundamental theorem (see [9]) that the transitivity module is a
subring of the group ring.

Let X = Cay(Z,,S5) and Y = Cay(Z,,T) be isomorphic circulants
with automorphism groups A and B, respectively. Let A : Z, — Z,,
be an isomorphism of X onto Y such that A(0) = 0. Since A4 is vertex-
" transitive we can choose such A. Obviously, we have B = AAA~! and
By = AApA~! is the group of all automorphisms of ¥ that fix 0. The
isomorphisin A extends to a linear operator of Z(Z,,, Ag) onto Z(Z,,, By).
Of course A sends each basic quantity of Z(Z,, 4p) to a basic quantity
of Z(Z,, By). Let z be an element of Z,, and let R{z) be the regular
representation of z defined by R(z)(i) = i+x forall iin Z,,. Then A(S;+
z) = RA@)AATIR(-A(@)AR(Z)(S:) = RO(z)Aeaol(S:) = MS;) +
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Mz) where ap = A"'R(—A(z))AR(z) is an automorphism of X such
that ap(0) = 0. Since A(S; - z) = A{S; + ), we have A(S; - z) = A(S) -
A(z). This implies that the linear operator A preserves multiplication
of the subring, and so A is a ring-isomorphism between Z(Z, Aqg) and
Z(Z,, Bo).

Let a be an automorphism of Z,,. By Theorem 23.9(a) in [9], 5;“ is a
basic quantity of Z(Zy, Ag). By the same idea of the proof of Theorem
23.9(a) in [9], we also have A(5;%) = A(S;)?. Since S is again a union of
some basic quantities S;, we have A(S%) = A(S)®. Since A(S) = T', we
have the following immediate consequence of this observation.

LEmMMA 3.2. If Cay(Z,,S) and Cay(Z,,T) are isomorphic, then
Aut(G, S) = Aut(G,T).

Now let X = Cay(Z,,S) and ¥ = Cay(Z,,T) be isomorphic con-
nected normal edge-transitive circulant graphs. As we have shown in
the first part of this section, X and Y are equivalent to Cay(Z,, S5} and
Cay(Z,,T") respectively for some subgroups S’ and T’ of U,,. Then by
Lemma 3.2, Aut{(G,S) = Aut(G,T”), that is S’ = 7". This completes
the proof of Lemma 3.1, and so Theorem 1.1 is now proved.

4. Proof of Theorem 1.2

Let p be an odd prime. Then U, is a cyclic group of order (p—1)pm L.
Let S be a subgroup of Uym and let B be the Sylow p-subgroup of
S. Then B = {1+ kp* | k& = 0,1,2,...,p™""—1} for some integer
i=1,2,..,mand |B| = p™ " Let M := {kp' | k=0,1,2, e, p™ T -1
Then M is the subgroup of Z,m of order p™ =%, and B =1+ M. We see
that

8 =Ugeg aB = Uges a(l + M) =Uges a+ M.

So § is a union of cosets of M in Z,m. Let r denote |S/B|, which
is a divisor of p—1. ¥ a+ M = o + M for some a,a’ in S, then
a~la’ € 1+ M = B, and so aB = a’'B. Therefore |S/M| = r. By
Lemma 2.2, we have

Cay(Zym, ) = Cay(Zym /M, S/M)[p™ 'Ki].
We want to show that

Cay(Zym /M, S/M)[p™ " Ky] = X(p',r).
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Let 6 : Zpm — Z, be the natural homomorphism, namely 8(z) =
z mod p'. Then Ker@ = M and #(S) is a subgroup of U,: since ¢ pre-
serves the multiplication as well. The homomorphism @ induces the
isomorphism @ from Z,~/M onto Z,. Note that 8(S/M) = 6(5).
Therefore § is also an isomorphism between Cay(Z,~/M,S/M) and
Cay(Z,:,8(S)). Since §(S) is the unique subgroup of order r in Uy,
it follows that Cay(Z,:,8(S)) = X (p',r). The proof of (i) of the theo-
rem is now complete.

First consider the case when n = 2™. We assume that m > 3. It is
well known that Ugm = (—1)-(5) & Zg X Zgm-2. Foreach i = 2,3, ...,m,
let

S;={1+k2|k=0,1,..,2™ " -1},

Then Sz, 53, ..., Sm consist of all subgroups of {5). For each i = 2,...,m—
1, let

Ti=8mU{-1+k2|1<k<2™ -1, k: odd}.

Then T; is a subgroup of Uz~ such that |T;| = |S;| = 2™, Let T be
a subgroup of U, and let = be the natural projection from U, onto
(5). Then m(T) = §;, for some i = 2,3,...,m. Then there exits a
homomorphism & from S;-to (-1)/({—1) N T) such that T" = {st |
B(s) =t+{(-1)NT, s € S5} If T contains —1, then the only such
homomorphism is trivial; therefore T is the direct product of S; and
{—1). Suppose that T does not contain —1. If 8(S;) = (1), then 8
is the trivial homomorphism, and hence T = S;. If §(S;) = (-1}, it
follows from Kerf = S;,1 and 0(S;) = (=1} = Z5 that T = T} for some
¢ = 2,...,m—1. Consequently, we have the following lemma.

LEMMA 4.1, {S;, T;, (-1)-5;1i=2,3,....,m, 1=2,3,..m—1} is
the set of all subgroups of Usm.

We then consider (ii) of the theorem. We first assume that m > 3.
Let § be a subgroup of Us~. Then S is one of those listed in Lemma
4.1. Write B for 5N (5). Then B = {1+ k2" | k =0,1,..,2m* -1}
for some i = 2,3,...,m. Let M :={k2' | k=0,1,2,...,2™ -1}, Then
M is a subgroup of order 2™~% of Zym. Since B = 1+ M, S is a
union of some cosets of M in Zo~. In fact either i) § = 1+ M, or ii)
S=(1+MU(-14+M),oriii) § = 1+ M)U(~1+2"14 M), 3<i<m
from Lemma 4.1. Let 6 : Zom — Zy: be the natural homomorphism
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such that #(z) = z mod 2°. Then Kerf = M, and (S} = {1} for
i), 8(S) = {1,—1} for ii) and 6(S) = {1,-1+2""'}, 3 < ¢ < m for
iii). Since Cay(Zam/M,S/M) = Cay(Z,:,8(S)), it follows from Lemma
2.2 that Cay(Zgm, S) & Cay(Zs:,8(S))[2™ *K], where i varies from 2
to m for i) and ii), while ¢ varies from 3 to m for iii). We observe
that Cay(Zy:,0(8)) = X(2,1), 2 < ¢ < m for i), Cay(Zy:,0(5)) =
X(2¢,2), 2 <1 < mforii), and Cay(Z,:,6(S)) = X(2%,3), 3<i<mfor
iii). Consequently Cay(Zom,S) & X(2¢,7)[27 K] where 3 < < m,
1<j<3,0ori=2 j=12 Form=2orl, §={1},0r §={1,-1},
and so Cay(Zgm,S§) = X(2™,;) where 1 < j < m. This proves (ii) of
the theorem.
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