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THE OSEEN-TYPE EXPANSION OF
NAVIER-STOKES FLOWS WITH AN
APPLICATION TO SWIMMING VELOCITY

Sun-CHUL K

ABSTRACT. A linearization owing to Oseen originally is performed
to study the recirculating Navier-Stokes flows at high Reynolds
numbers, The procedure is generalized to produce higher order
asymptotic expansion for the flow velocity. We call this the Oseen-
type expansion of the given flow. As a concrete example, the velocity
of a steady Navier-Stokes flow due to a swimming flexible sheet in
two-dimensional infinite strip domain is calculated by an asymp-
totic expansion technic with two-parameters, the Reynolds number
R and the perturbation parameter . We here expand the flow in
¢ first and then R secondly. The asymptotic result is up to second
order in €.

1. Introduction

High Reynolds number (R) flows have been a major topic of many
pure and applied mathematicians since the birth of the boundary layer
theory which dispalys the distinctive nature different from low Reynaolds
number flows. Briefly speaking, as the Reynolds number (R) becomes
very large, a singular thin layer along the boundary (this is the boundary
layer) emerges in the flow. Also, the flow becomes unstable in general
for such large R. These two properties are notable features of large
Reynolds number flows in general. However, under certain conditions
(for example, if the flow is absolutely stable for any positive Reynolds
number (Kim 1998)) we still have flows which stay laminar at quite large
Reynolds number. These flows are subjects of current study.
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In two-dimension, such laminar flows possess an important asymp-
totic property in steady state. As the Reynolds number B becomes
indefinitely large the vorticity of a closed nested streamline domain ap-
proaches to a constant. (Batchelor 1956) In the case of a circular domain
with one-eddy configuration, the {(uniform) vorticity value can be calcu-
lated by applying the matched asymptotic expansion technic to the two
overlapping regions. To be more specific, we consider two regions, one is
the outer flow residing in most part inside the disk and the other is the
critical flow in the boundary layer between the wall and the outer flow
with the O(1/v/R) thickness. The calculation is successfully executed
from the transcendental decay principle(Kim 1998) which guarantees
that the vorticity of any order in R decays exponentially to a (nonzero)
constant. The results are later confirmed by corresponding numerical
computations. (Kim and Lee 1999)

Meanwhile, the above considerations suggest us a linearization of
Navier-Stokes recirculating flows in which we recall Oseen’s lineariza-
tion (Oseen 1927) of the low Reynolds number fiow. Here, the only
nonlinear term u - Vu (called advection or convection term) in Navier-
Stokes momentum equation is linearized by substituting the convecting
velocity u by the given velocity U at the body for the flow due to a mov-
ing body. This idea is modified and then applied to the problem of high
R flows. Our linearization matches with Oseen’s in the leading order
but is more generalized to achieve any arbitrary order asymptotic result
by some successive calculations. We call this the Oseen-type ezpansion
according to Oseen’s first work of such expansion.

In addition, we study a concrete example of our theory in which the
asymptotic velocity of a low due to a moving thin flexible sheet is found.
The geometry is supposed to be periodic along z direction in the two-
dimensional plane. By the matched asymptotic expansion method with
two parameters, R and e(the perturbation parameter to be defined later)
we successfully obtain the second order result in € on the velocity. This
mode] describes a ciliary propulsion undergoing periedic deformations.
(Childress 1981, Chapter 3)

2. The Oseen-type expansion

The two-dimensional Navier-Stokes equations are
1

RV2u, V-u=0

(1) w+u-Vua+ Vp=
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where u = (u(z,y,t),v(z,y,t)), p = p(x,y,t) and R denote the flow
velocity, the pressure and the Reynolds number respectively. (The argu-
ments below are easily extended to three dimension, but we here focus on
the two dimension case.) Taking curl to each side of the first equation,
we obtain the vorticity equation for w, the z-component of 2 = V x u,

(2) wr+u-Vw= %Vzu.

Here, from the incompressibility condition we introduce the streamfunc-
tion ¥ = ¢(z,y) such as

(3) u= (uav) = (wyﬁ_¢r) = vJ.w
We then rewrite w = — V2. We linearize the vorticity equation in the
similar manner of Oseen
1
(4) ‘ wy + U, Vw = -év?w,

where u, is the linearization velocity. Let us consider a flow due to a
body moving through fluid of infinite extent. Assuming that the flow
relative to the body is steady, Oseen chose the steady velocity of the
moving body for an appropriate u,. (Look at Oseen(1927) or Batchelor
(1967) pp. 240-241.) In fact, this is the beginning term of the expansion
of the flow velocity in R of the matched asymptotic expansion. {Lager-
strom 1988) Here we modify this idea and expand u(z, y) asymptotically
in an arbitrary parameter € (In fact, we choose ¢ as the perturbation pa-
rameter on velocity in the next section). Let us suppose the following
expansions of ¥, u,v,w in € :

(5) ¥(z, y; R;¢) ~ Yolx, y; R) + et (@, y; R) + *9a (2, 3, R) +---

(6) u(z,y; R;e) ~ ug(z,y; R) + eur (z,y; R) + 2ug(z,y; R) + - --

(7) v{z,y; By e) ~ Uo(x,y; R) +eni(z,y; R) + ezvg(w,y;R) +

(8) wix,y; R;e) ~ wolz, u; R) + eun(z, 4, R) + walz,y; R) + - -

In addition, we assume that each term of the above expressions ¥;, ug, v, w;
(¢=0,1,2,---) is expanded similarly in R. Taking the first term of the

expansion of u = {u,v) as up{z,y) = velocity at the body, we choose
the linearization velocity

uo=u=u0+eu1+e2u2+---.

Substituting this into (4) and gathering terms in the order of €, we
successively determine each order terms of the asymptotic expansion of
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the velocity. We here explain this procedure in detail. Substituting the
chosen v, into (4) and rearranging the results in powers of ¢ we obtain,

(9)

(uoam+v06y —EV )V 0 e(vla—y—ula—x)v P+ 0(e”) = 0.
Again substituting the expansion (5) into (9) and rewriting the result in
the order of e yields,

(10) o) : (L:O — %EVQ) Vi =0

(11)  O(e) : (co - %{vﬂ) Vi + L1V = 0

02) 0@ ¢ (Lo 572} P+ LT+ LoV =0
(13) etc.

where we introduce the notation

Uig + Uz’é‘;:
This admits an iterative procedure to determine ¥ if 51 (or ug—1,vik—1)
is known. Thus we need the zeroth order velocity ug, vg to start this ex-
pansions. It is here that we adopt Oseen’s idea for ug, vp, namely we take
the velocity of the body as ug, vg. Of course, if more accuracy is desired,
we proceed to adopt higher order terms in the expansion of u. Present
choice of u, produces the first nonzero contribution at the second order
term in €? in the following example.

3. An Example: Periodic swimming sheet

The above expansion has an important application to study a swim-
ming thin flexible sheet. The pioneering work of Taylor(1951) deals
with the ciliary models and swimming microorganisms. To make the
matters easy, we assume 2m-periodicity along z-axis on which the sheet
is placed. The sheet is infinite and undergoing two-dimensional periodic
deformations about an unperturbed position ¥ = 0 (Look at Figure 1
below). The velocity of the sheet is u(x,0) = 1+ ef(z), v(z,0) =0
where f(x) = Zn#, cn€™® is the perturbing function which has zero
average along the wall( 0 < z < 27). We will determine the free stream
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Y

Ficure 1. Swimming periodic sheet

velocity due to the effect of the wall value of u = (1 4 €f(x),0). See
Figure 2.

We now regard R, the Reynolds number as fixed and sufficiently large,
and let the perturbation parameter for wall data |¢|] << 1. From the
physical setting, it is reasonable to take (ug,vp) = (1,0) to start the
Oseen-type expansion which is just the zeroth order perturbed velocity
of the sheet.

We first substitute the velocity driven by the perturbation in the
form,

w(z,y) =1+ ey + -
—u(z,y) = 0+ et + -
These are inserted into the vorticity equation (2) to produce,
d 1 _2\ o2 0 a 2 2
1 _— = — — — U =0.
(15) (39: RV)V@b e(vlay 5 VY +0()=0

We ignore higher-order terms than O(¢) and obtain the linearized prob-
lem.
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U = ¢,(z,00)

=8

u=1+ef(z) %
v=0 :

FIGURE 2. Determine U asymptotically for B >> 1

6 ]. 2 2 _ 8_“ _a— 2 _
(%—EV)V'J) E(’Ula—y UI6$)V¢_O
Py (2,0) = 1+ €f ()
0<z<2m7, 05y

8y
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3.1. Zeroth-order term

Let the flow velocity at ¥ = oo be u = (U,0) ie. U = u(z,+0).
Applying the momentum conservation at y = 0 and y = oo,

2
(16) / w?(z,0)dz = 27U?
0

we deduce the boundary condition at ¥ = 400,

= 1 2 2
(17) U=u(a:,+oo)=\/1+e2f2=1+52|cn| e+

n#0

where the bar( ™) implies the average on 0 <z < 27 i.e.

_ 2 1
7= /0 o f(z)d.

This relation coincides with Batchelor-Wood formula(Kim 1998) which
gives the core constant vorticity of a flow inside a circular cylinder.

Let us write asymptotically, for sufficiently large R,
(18) U ~ Uy(R) + U (R) + €2Uz(R) + - --

Our aim is to calculate the unknown coefficients Up(R), U1 (R}, Ua{ R).
We will calculate U;(¢ = 0,1,2) by averaging each term u; in (6) on &
from 0 to 27 and then letting ¥ — co. In the beginning, we easily solve
the asymptotic behavior of #o(z,y). From the given physical situation
and R >> 1,

Yo(z,y) ~y 88 y— o0

Thus it follows that Up(R} = up = 1.

3.2. First-order term

In the sequel, proper boundary conditions for y — oo are derived
from the expansion of u{x, +o0}. Thus, for 1;, we come to the problem,

8 1 _o\w2, _
(19) (a—-}%v)vwl_o
(20) $1(2,0,R) =0, 4y(2,0,R) =) cpe™
n#0

(21) wly(ma va) =0 as Yy — o0
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We obtain the exact solution as,

(22) Y1z, y)
_Z £in® (e—jnly . e—\/nz-}-inRy)
s vn? +inR — |n|

(23) w(r,y)

- Cn i
—Zv‘n2+inR—| | "“(

n#l

Inle ||y + \/n2 + ZnRe—\/n +mRy)

(24) n(z,y)

Z \/n2 +inR — |n|

Note that we adopt the following convention :

eine (e-—|n|y _ e—\/n§+mRy)

4 ifn>0
vin = \/_ 1 if
W if n <.

Averaging (24) on z from 0 to 27 yields ¥, (x,00) = U1(R) = 0.

3.3. Second-order term

Similarly we go to the next order terms and obtain,

0 1o\ oz, _ KA 9\ o2
(8m RV)V%—(WB +’U13)V1/)1
1)02(‘7"!0: R) =0, ¢2y($,O,R) =0
1
/f,DQy(I',OO,R) =§§]rcn|2 as R — oo.

It seems to be very messy to solve this problem directly. Instead, by
averaging on z the above system is transformed into a simple problem
for the averaged 1,

%y(oo) = E Z Icn|2
n#0
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where

nFZd
% {n e=2nly _ 2= (nl+vn2+inR)y

_ (n2 _ inR)e—(lnH\/n?—inR)y

+ (nfl _ inR)ef(v’n2+mR+v’n2—mR)y}_

Solving this equation for 155 we obtain, as y — oo,

P, (y) = Ua(R)
2

_ 2 n {
%lcﬂi (vn? +inR — |n|)2 L(Vn? + inR + |n|)?
N n? —inR 3 n? —inR }
(ViZ—iR+|n))?2  (VrZ+inR+vn?—inR)32)

3.4. Result of the expansion

We combine the above calculations to conclude,

in n?
~ 1+ Z |Cn|2 - { ;
e (vrZ+inR — |n|)2 L{(vn? +inR + |n|)?
n? —inR n? - inR }
(VaZ—inR+in))? (Vn?+inR+ vn?2—inR)?

For a special case f(z) = sinz, this yields explicitly,

1 V2
44\/_

which shows the absence of the first order contribution in this series.

+

(25) U(R)~1+( 0(1))e +O(e)

4. Concluding remarks

We first note that the condition of momentum conservation (16)
recovers the Batchelor-Wood formula(Kim 1998) giving the core con-
stant limit vorticity in the circular domain. Here, we derived the same
equation under a different situation which then predicts the velocity as

y — oo in a periodic strip domain.
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For practical application, certain condition on the orders of mag-
nitude of two parameters ¢ and R are necessary. In fact, the calcu-
lated expansions above are asymptotic and valid under some restric-
tions. (e.g € <« ET; in (25)) For more details we refer the book by

Lagerstrom(1988).

The linearization we study in this paper may be generalized to three
dimensions. Then, it would be better to use the velocity equation {1)
instead of the vorticity equation (2). In two dimension, the vorticity
equation is a scalar equation, which greatly simplifies the matter.
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