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A NOTE ON INVARIANT
PSEUDOHOLOMORPHIC CURVES

YONG SEUNG CHO AND DO SANG JOE

ABSTRACT. Let {X,w) be a closed symplectic 4~-manifold. Let a finite
cyclic group G act semifreely, holomorphically on X as isometries with
fixed point set & (may be empty) which is a 2-dimension submanifold.
Then there is a smooth structure on the quotient X’ = X /G such that
the projection m : X — X' is a Lipschitz map. Let L — X be the
Spint-structure on X pulled back from a Spint-structure L' — X'
and b (X’) > 1. If the Seiberg-Witten invariant SW(L’) # 0 of L' is
non-zero and L = E® K~ ! @ E, then there is a G-invariant pseudo-
holomorphic curve w : € — X such that the image »{C) represents the
fundamental class of the Paoincaré dual ¢; (E). 'This is an equivariant
version of the Taubes’ Theorem.

1. Cyclic group actions on 4~manifolds

Let X be an oriented, closed, smooth 4-manifold. Let G be a finite cyclic
group. For simplicity, we assume that G acts smoothly, semifreely on X as
orientation preserving isometries such that the fixed point set & = X& of
G is a 2-dimensional submanifold of X.

As in [18], we may choose a smooth structure on the quotient space X’ =
X/G such that the projection = : X — X', on a tubular neighbourhood
N(X) of ¥ given by n(a,r,8) = (w(a),r,n#), is Lipschitz and smooth away
from X, where n = |G| is the order of G, a € %, and (r,8) is the polar
coordinate in the normal direction of £. The push down metrics or forms
to X' of any smooth G-invariant ones on X are smooth away from ¥ and
have bounded coefficients near % with respect to the local coordinates of X'.
Moreover, the projection 7 induces a one-to-one correspondence between
G-invariant LP metrics or forms on X and L? metrics or forms on X'. To
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study the relations between G-invariant properties on X and ones on X,
we will fix this smooth structure on X’ in this note.

Let T(N) be the Thom space of the normal bundle N — X, and let
¢ : H°(Z) —» H2(T(N}) be the Thom isomorphism. Let ¢: X — T(N) be
the collapsing map in the Thom space.

THEOREM 1.1 [1]. The second Stiefel-Whitney classes satisfy the fol-
lowing formula:

wa(X) — m wy(X') = ¢"¢$(1) mod 2

where 1 is the standard generator in H°(Z; Z).

REMARK. Consider the Thom isomorphism and the collapsing map
HO(Z) —2f— HY(T(N)) —<— H(X)

1= (1)=u
el ]
HAZ) — H2(X")

where e is the Euler class of N — X.
By considering the restriction H%(X} — H?(Z) we have c*¢(1) = (n—1)
PD(%).

As in [4] and [18] we consider the following commmutative diagram :
HY(X';7) —T— HX(X;Z)°
|G|-PDl PDl
Hy(X';Z) «—— Hy(X;Z)C.

Then we have the following consequences

ProposITION 1.2 [4], [18].

(1) The maps n* and . are one-to-one.

(2} The Euler characteristics : x(X} = |G|x(X") — (|G| — 1}x(Z).
(3} The signatures : 7(X)} = |G|7(X’) — (G} — 1)E - Z.

(4) The second Betti numbers :

ba(X') = b5 (X),
bi(X') = B§T(X) = dimH2 (X; R)C.
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Proof.

(1) By the above diagram and the Universal coeflicients theorem.

{2) and (3) By the Atiyah-Singer G-index Theorem.

(4) By the above diagram and (1). O

To see the Spinc-structures on X and X', we consider the Zy coefficient
reduction on cohomologies:

HY(X',Z) —— H*(X;Z)¢

P’l pl
H2(X; Zy) —~— H2(X;Z3)C.

Since G acts on X as orientation preserving isometries, for all h € G,
h*wa(TX) = wa(R*TX) = wa(TX), and so wo(TX) € H2(X;Z5)®. The
set of Spint-structures on X’ is (P')~Y(w2(TX')), and the set of the G-
invariant ones on X is P~ (w(TX)) C H3(X;Z)°.

Let L' — X' be a Spin®-structure on X', then ¢; (L') = wo(TX’) mod2.
By Thoereml.1, 7w (T X') = wo(TX) +(|G|-1) PD([Z]). And Pr*c1(L/)
=m*Pley (L) = mrw (T X').

There is an element o in H2(X'; Z) such that n* (&) € P~} (wo(TX)) C
H?(X;Z)% is a G-invariant Spin‘-structure on X, and then

a*P'(a') = Pr*{a’) = wa(TX)
= m*w(TX") + (iG] — 1)PD([Z]).

ProrosITION 1.3. If(|GI—-1)PD([%]) C 2H?(X;Z), then n* pull-backs
the Spin®-structures on X' to G-invariant ones on X.

2. Invariant Seiberg-Witten invariant

Let a cyclic group G act smoothly, semifreely on X as orientation pre-
serving isometries with the fixed point set £, which is a 2-dimensional
submanifold of X. Let L' — X' be a Spint-structure on X’ and (|G| —
1)[Z} € 2H2(X;Z). Then the pull-back L = n*L’ — X is a Spin®-
structure on X. Let A be the set of U(1)-connections on L. Let W
be the associated spinor bundles of L. Let Ay be a G-invariant connec-
tion of L, then A = Ay + Q!(iR) is affine space with the origin Ay. Let
wl(iR) = {ia € w!(iR)|d*a = 0} be the infinitesimal slice of the gauge
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group T = {g : X — U(1)} action on .A. For a pair (4,¢) € Ax I'(WT),
the Seiberg-Witten equations are a pair of equations:

Dap=0
{ Fi =a(9).

We review the Seiberg-Witten theory to use our applications, for details
see [14], [19]. The space of the gauge equivalence classes of the solutions of
the Seiberg-Witten equations is called the moduli space M(L).

For a fixed G-invariant connection Ag of L, the Seiberg-Witten equations
define a map

F:QIUGR) x T(WT) = Q2 (4R) x (W),

F(ia,¢) = (F, +d"(ia) — ¢(¢), Da,d + ia- 4).

The moduli space M(L) can be identified with F~1(0)/S'. We can write
F = Fy + R, where Fy = (d*, D4,), which has index :

indexF' = indexFy = E(EI(L)Q - (2x(X) + 30(X))).

If b > 1, then for generic v € 2 (iR) the moduli space F~'(v)/S! =
M(L) is a smooth compact manifold with dimension 2d = index#. Let e
be the Euler class of the free S'-action on F~!(v), then the Seiberg-Witten

invariant:
SWI(L)= f et
ML)

is independent on the choice of metric on X,
If 7 (X)¢ = bJ(X/G) > 1, then we can choose a G-invariant 2-form
v € (Q2(R))“\ imd+® such that the perturbed moduli space F1{v)/8t
is a G-space with no reducible singularities, but may not be smooth.
However, if we consider the following G-invariant map

FC : [0}GR) x T(W)|€ — (02 (R) x (W )],

then for a generic G-invariant v, the G-invariant moduli space (FG)_1 (v) /
S = M© (L) is a smooth compact manifold. We can define the G-invariant
Seiberg-Witten invariant: SW(L) = [0 L)(ec)d' where 2d' = dimMS (L)
and €€ is the Euler class of the free S'-action on (F%)~!(v) and we use
the orientation M%(L) given by (2) of the following theorem.
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THEOREM 2.1. If bJ(X)® > 1, then the G-invariant moduli space
MG (L) has the following properties.
(1) MG (L) has a natural orientation by choosing an orientation of det{ H*(X;
R)Y) ® det(H'(X;R)®) @ det(H2(X;R)7).
(2) For generic G-invariant v € £33 ({R)¢ — im d*+“, the moduli space ME
(L,v) is a compact smooth manifold.
(3) MS(L) has a virtual dimension

(L (a0 + 39030} ~ (0~ DEX(E) + 353
= Lot - {2X) + 30000
= dimM(L'),

where M(I/) is the Seiberg-Witten moduli space of the guotient L/ —
X'

(4) The G-invariant Seiberg-Witten invariant SWC(L) is independent on
the choice of the generic G-invariant metrics on X.

Proof. (2) Since b3 (X)¢ = dim [H%€ (X;R)] > 1, the image dt (Q"¢
(iR))¢ C Q2 (GR)® has a codimension greater than one. The generic G-
invariant i{R-valued self-dual 2-forms are path connected.

(3) To compute the virtual dimension of the G-invariant moduli space,
we may use the Atiyah-Singer G-index Theorem. |

Let L' — X' be the quotient of the Spin®-structure L — X on X. Then
L’ is also a Spin°-structure on X’ under our assumption.

Since m* : H*(X";R) — H™(X;R) is an isomerphism for all n. We
may choose an orientation of the moduli space M(L’) as the one of the
M(L)®. By using the finite approximation method of Furuta(9], we have
the following theorem.

THEOREM 2.2. Under the above situation, we have that the G-invariant
Seiberg-Witten invariant SWY(L) of L on X is the same as the Sieberg-
Witten invariant SW(L') of the quotient L' on X’. '

Sketch of Proof. Essentially the map F : Q1(iR) x T{W¥) — Q2 (iR) x
T'(W~) has the restriction F& : [QL(iR) x D(W+)]¢ — [QL({R) x T(W 7)]¢
on the G-invariant part which is the same as F' : [QL(iR) x T(W*)] —
(Q2 (R) x I'(W ™))" which is induced from the Seiberg-Witten equations
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on the quotient L’ - X’. As we know, the projection map = : X — X'
induces a one-to-one correspondence between G-invariant LP-settings on X
and LP-ones on X'.

Both moduli spaces M%(L) and M(L’) have the same dimensions and
the same orientations, and are compact smooth manifolds. The operators
DiDy4, DyD% and didy, dyd} induced by ¥ G and F’ have the same
eigenvalues. The Seiberg-Witten invariants SW¢(L) and SW(L’) are the
degrees of the maps which are induced by finite dimensional approximation,
(by compactness of moduli space) and chipping out by the moduli space.
Thus the G-invariant Seiberg-Witten invariant SW(L) of L on X is the
same as the Seiberg-Witten invariant SWE(L’) of L' on X', O

By Theorem 1.1, if (|G| — 1)[X] € 2H2(X;Z), then the pull-backs of the
Spint-structures on X’ are G-invariant Spin®-structures on X. In partic-
ular, if either G has odd order or the homology class [Z] is divisible by 2,
then this is the case.

COROLLARY 2.3. Let (|G| — 1)[E] € 2H2(X;Z). If the G-invariant
SWE = 0 are identically zero, then the Seiberg-Witten invariants SW =0
are identically zero on the quotient manifold X/G = X'.

REMARK. If L’ — X' is a Spin®-structure on X’ such that SW (L") # 0,
then the pull-back L — X is a Spin®- structure on X with G-action.

By Theorem 2.2 SWCE(L) # 0, there is an irreducible G-invariant solu-
tion of Seiberg-Witten equations which may not be generic. However there
is no guarantee that the Seiberg-Witten invariant of L is non-trivial.

3. G-invariant pseudo-holomorphic curves

Let (X,w) be a closed symplectic 4manifold with a symplectic form
w on X. Let J be a tamed almost complex structure on X. As before
we assume that a cyclic group G acts semifreely, holomorphically on X as
isometries with fixed point set ¥ which is a 2-dimensional submanifold. We
assume that L — X is the Spin®-structure induced by the pull-back of a
Spinc-stucture L' — X' = X/G via the projection 7 : X — X',

Since X be a symplectic 4-manifold, there is an element e € H*(X; Z)
such that e = ¢;(F) and L = E? @ K~!, Wt = E® K~! ® E, where
K = A*%(T*X ® C) is the canonical complex line bundle on X. Since
the actions of G on X are holomorphic, each element of G acts on K as a
holomorphic bundle isomorphism. Thus h*c1{K) = ¢1(h*K) = ¢;1(K) for



Invariant pseundoholomorphic curves 353

any h € G, and ¢, (L) = 2¢;(E) — ¢ (K). Hence e = ¢, (E) € H*(X;Z)° is
G-invariant.

Suppose that the Seiberg-Witten invariant SW{L') # 0 of L’ is non-zero
and b4 (X') > 2. There is an irreducible solution (A',¢') € A x T(W'T) of
the Seiberg-Witten equations:

(D=0
Fi =qd)+v,
where o/ € Q2 (X';4R} \ imd't and &'t : Ql(X';iR) — Q3 (X';4R). Since
Hi(X";R) —%«r H3(X;R)® and 7 : Q3 (X';iR) = H3(X;iR) @ imd), —
02 (X;4R)® = H2(X;iR)° ®imd§ are isomorphisms, there is a G-invariant
self-dual 2-form v € 02 (X;4R)® \ imd$ such that 7*(v') = v, where d¥
QM X;iR)® — Q2 (X;iR) is the restriction of d,. Let 7*A’ = A € A®,
¢’ = ¢ € (WT)C. Then the Seiberg-Witten equations

hold. Since b {X') = b7 (X)© = dim{HZ (X;R)®) > 1, for a generic G-
invariant self-dual 2-form v € Qﬁ_(X ;iR)C the Seiberg-Witten equations
have G-invariant solutions (A4, $) ¢ A x T(WH)C.

LEMMA 3.1. If(A’, ¢') is a solution of the Seiberg- Witten equations for a
Spin®-structure L' — X' on X', then the pullback (A, ¢) via the projection
7 : X — X' is a solution of thoses for the Spin®-structure L — X on X
pulled back by the 7.

To examine the G-invariant solution (4, ¢) € A% x T{(W 7)€, let us split
the solution: A = Ag+2a € A°(K"! ® E?) and ¢ = \/7(e,3) e (W =
Eo K~ ! ® E)®. Asin [17], we consider the perturbed Seiberg-Witten
equations:

DA\/F(O‘v IB) =0
(%)

ir T N .
Fi 4+ L= ol + 18w - Z(ap" - a"B) =0,

where (a3* —a*(3) belongs to the orthogonal complement of Cw in AT ®C,
and 7 is a fixed real number.
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THEOREM 3.2 (Taubes). Let X be a compact, minimal symplectic 4-
manifold. f Wt = E® K~' ® E is the positive spin°-bundle with non-
trivial complex line bundle E, then SW(det W) = Gr(PD¢,(E)) where
Gr(PDc,(F)) is a weighted count of compact symplectic submanifolds
whose fundamental class is the Poincaré dual PD{c:(E)).

Let the Spin°-structure L = F?@ K ! — X is the pull back of a Spin®-
structure L’ — X’. The first Chern class ¢;(E) of F is G-invariant. The
action of G on X lifts to the bundle £. Choose a section s of the bundle
E — X such that s transverses the zero section. By averaging we have a
new section s, = fﬁ‘ > heg P*s of E, which is G-invariant. The zero set

8171(0) = Z C X of 5 is a G-invariant subset of X. Indeed, if z € 5;71(0),
then for any element k € G, s1(h{z)) = h{s;(z)} = h{0) = 0. For suitable
choice of s and the lifting of G on E such that the section s; vanishes
transversaly the zero set Z. The G-invariant 2-dimensional submanifold Z
in X is the Poincaré dual to the ¢, (E).

LEMMA 3.3. In the above argument, the Poincaré dual of the first Chern
class ¢1(F) can be represented by a G-invariant submanifold in X.

Let (A = Ap + 2a, a, B) be a solution of the Seiberg-Witten equations
(*) for a suffliciently larger ». By Taubes [Theorem 3.2] there is a compact
complex curve C with a pseudo-holomorphic map such that

(1) the image u.([C]) is the Poincaré dual of ¢, (E),
(2) as an element in the homology Ho(X;Z)%, u.([C]) = [ (0)] =
PD(e1(E)).

As in Lemma 3.3, we define a new section a; = 7y Yy it of E— X.

Then the section oy is G-invariant and its zero set «; ~*(0) is a G-invariant
subset in X. If (A = Ag + 2a, @, B) is a G-invariant solution of (*}, then
a = a; and ¢ 71(0) = a7 1{0).

THEOREM 3.4. Let (X,w) be a closed, symplectic 4-manifold. Let a
finite cyclic group G act semifreely, holomorphically on X as isometries
with fixed point set ¥ (may be empty) which is a 2-dimension submanifold.
Then there is a smooth structure on the quotient X' = X/G such that the
projection m : X — X' is Lipschitz.

Let L — X be the Spin®-structure on X by pull-backed a Spin®-structure
L' — X' and b3 (X’) > 1. If the Seiberg-Witten invariant SW (L") # 0 of
L' is non-zero and L = E @ K~ ® E, then there is a G-invariant pseudo-
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holomorphic curve v : C — X such that the image u(C) represents the
fundamental class of the Poincaré dual ¢ (E).
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