A NOTE ON INVARIANT PSEUDOHOLOMORPHIC CURVES

YONG SEUNG CHO AND DO SANG JOE

ABSTRACT. Let (X,ω) be a closed symplectic 4-manifold. Let a finite cyclic group G act semifreely, holomorphically on X as isometries with fixed point set Σ (may be empty) which is a 2-dimension submanifold. Then there is a smooth structure on the quotient X' = X/G such that the projection $\pi: X \to X'$ is a Lipschitz map. Let $L \to X$ be the $Spin^c$ -structure on X pulled back from a $Spin^c$ -structure $L' \to X'$ and $b_2^+(X') > 1$. If the Seiberg-Witten invariant $SW(L') \neq 0$ of L' is non-zero and $L = E \otimes K^{-1} \otimes E$, then there is a G-invariant pseudoholomorphic curve $u: C \to X$ such that the image u(C) represents the fundamental class of the Poincaré dual $c_1(E)$. This is an equivariant version of the Taubes' Theorem.

1. Cyclic group actions on 4-manifolds

Let X be an oriented, closed, smooth 4-manifold. Let G be a finite cyclic group. For simplicity, we assume that G acts smoothly, semifreely on X as orientation preserving isometries such that the fixed point set $\Sigma = X^G$ of G is a 2-dimensional submanifold of X.

As in [18], we may choose a smooth structure on the quotient space X' = X/G such that the projection $\pi: X \to X'$, on a tubular neighbourhood $N(\Sigma)$ of Σ given by $\pi(a,r,\theta) = (\pi(a),r,n\theta)$, is Lipschitz and smooth away from Σ , where n = |G| is the order of G, $a \in \Sigma$, and (r,θ) is the polar coordinate in the normal direction of Σ . The push down metrics or forms to X' of any smooth G-invariant ones on X are smooth away from Σ and have bounded coefficients near Σ with respect to the local coordinates of X'. Moreover, the projection π induces a one-to-one correspondence between G-invariant L^p metrics or forms on X and L^p metrics or forms on X'. To

Received September 1, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 58G10, 57N13.

Key words and phrases: cyclic group action, pseudoholomorphic curve, Seiberg-Witten invariant.

This research was supported by the MOST through National R & D program 2000 for Women's Universities, and the BK21 projects.

study the relations between G-invariant properties on X and ones on X', we will fix this smooth structure on X' in this note.

Let T(N) be the Thom space of the normal bundle $N \to \Sigma$, and let $\phi: H^0(\Sigma) \to H^2(T(N))$ be the Thom isomorphism. Let $c: X \to T(N)$ be the collapsing map in the Thom space.

THEOREM 1.1 [1]. The second Stiefel-Whitney classes satisfy the following formula:

$$w_2(X) - \pi^* w_2(X') = c^* \phi(1) \mod 2$$

where 1 is the standard generator in $H^0(\Sigma; \mathbb{Z})$.

REMARK. Consider the Thom isomorphism and the collapsing map

$$H^{0}(\Sigma) \xrightarrow{\phi} H^{2}(T(N)) \xrightarrow{c^{*}} H^{2}(X)$$

$$\downarrow u \mapsto e \downarrow \qquad \qquad \pi^{*} \uparrow$$

$$H^{2}(\Sigma) \longleftarrow H^{2}(X')$$

where *e* is the Euler class of $N \to \Sigma$.

By considering the restriction $H^2(X) \to H^2(\Sigma)$ we have $c^*\phi(1) = (n-1)$ $PD(\Sigma)$.

As in [4] and [18] we consider the following commutative diagram:

$$H^{2}(X'; \mathbb{Z}) \xrightarrow{\pi^{*}} H^{2}(X; \mathbb{Z})^{G}$$

$$|G| \cdot PD \downarrow \qquad \qquad PD \downarrow$$

$$H_{2}(X'; \mathbb{Z}) \xleftarrow{\pi_{*}} H_{2}(X; \mathbb{Z})^{G}.$$

Then we have the following consequences

Proposition 1.2 [4], [18].

- (1) The maps π^* and π_* are one-to-one.
- (2) The Euler characteristics : $\chi(X) = |G|\chi(X') (|G| 1)\chi(\Sigma)$.
- (3) The signatures : $\tau(X) = |G|\tau(X') (|G| 1)\Sigma \cdot \Sigma$.
- (4) The second Betti numbers:

$$b_2(X') = b_2^G(X),$$

 $b_2^+(X') = B_2^{G^+}(X) = \dim H^2_+(X; \mathbb{R})^G.$

Proof.

- (1) By the above diagram and the Universal coefficients theorem.
- (2) and (3) By the Atiyah-Singer G-index Theorem.
- (4) By the above diagram and (1). \Box

To see the $Spin^c$ -structures on X and X', we consider the \mathbb{Z}_2 coefficient reduction on cohomologies:

$$H^{2}(X';\mathbb{Z}) \xrightarrow{\pi^{*}} H^{2}(X;\mathbb{Z})^{G}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{2}(X';\mathbb{Z}_{2}) \xrightarrow{\pi^{*}} H^{2}(X;\mathbb{Z}_{2})^{G}.$$

Since G acts on X as orientation preserving isometries, for all $h \in G$, $h^*w_2(TX) = w_2(h^*TX) = w_2(TX)$, and so $w_2(TX) \in H^2(X; \mathbb{Z}_2)^G$. The set of $Spin^c$ -structures on X' is $(P')^{-1}(w_2(TX'))$, and the set of the G-invariant ones on X is $P^{-1}(w_2(TX)) \subset H^2(X; \mathbb{Z})^G$.

Let $L' \to X'$ be a $Spin^c$ -structure on X', then $c_1(L') = w_2(TX') \mod 2$. By Thoerem1.1, $\pi^*w_2(TX') = w_2(TX) + (|G|-1) PD([\Sigma])$. And $P\pi^*c_1(L') = \pi^*P'c_1(L') = \pi^*w_2(TX')$.

There is an element α' in $H^2(X'; \mathbb{Z})$ such that $\pi^*(\alpha') \in P^{-1}(w_2(TX)) \subset H^2(X; \mathbb{Z})^G$ is a G-invariant $Spin^c$ -structure on X, and then

$$\pi^* P'(\alpha') = P \pi^* (\alpha') = w_2(TX)$$

= $\pi^* w_2(TX') + (|G| - 1)PD([\Sigma]).$

PROPOSITION 1.3. If $(|G|-1)PD([\Sigma]) \subset 2H^2(X;\mathbb{Z})$, then π^* pull-backs the $Spin^c$ -structures on X' to G-invariant ones on X.

2. Invariant Seiberg-Witten invariant

Let a cyclic group G act smoothly, semifreely on X as orientation preserving isometries with the fixed point set Σ , which is a 2-dimensional submanifold of X. Let $L' \to X'$ be a $Spin^c$ -structure on X' and $(|G| - 1)[\Sigma] \in 2H_2(X;\mathbb{Z})$. Then the pull-back $L = \pi^*L' \to X$ is a $Spin^c$ -structure on X. Let A be the set of U(1)-connections on L. Let W^{\pm} be the associated spinor bundles of L. Let A_0 be a G-invariant connection of L, then $A = A_0 + \Omega^1(i\mathbb{R})$ is affine space with the origin A_0 . Let $\omega_s^1(i\mathbb{R}) = \{ia \in \omega^1(i\mathbb{R}) | d^*a = 0\}$ be the infinitesimal slice of the gauge

group $\mathcal{T} = \{g : X \to U(1)\}$ action on \mathcal{A} . For a pair $(A, \phi) \in \mathcal{A} \times \Gamma(W^+)$, the Seiberg-Witten equations are a pair of equations:

$$\begin{cases} D_A \phi = 0 \\ F_A^+ = q(\phi). \end{cases}$$

We review the Seiberg-Witten theory to use our applications, for details see [14], [19]. The space of the gauge equivalence classes of the solutions of the Seiberg-Witten equations is called the moduli space $\mathcal{M}(L)$.

For a fixed G-invariant connection A_0 of L, the Seiberg-Witten equations define a map

$$F: \Omega^1_s(i\mathbb{R}) \times \Gamma(W^+) \to \Omega^2_+(i\mathbb{R}) \times \Gamma(W^-),$$

$$F(ia, \phi) = (F_{A_0}^+ + d^+(ia) - q(\phi), D_{A_0}\phi + ia \cdot \phi).$$

The moduli space $\mathcal{M}(L)$ can be identified with $F^{-1}(0)/S^1$. We can write $F = F_0 + R$, where $F_0 = (d^+, D_{A_0})$, which has index:

$$index F = index F_0 = \frac{1}{4}(c_1(L)^2 - (2\chi(X) + 3\sigma(X))).$$

If $b_2^+ > 1$, then for generic $v \in \Omega^2_+(i\mathbb{R})$ the moduli space $F^{-1}(v)/S^1 = \mathcal{M}(L)$ is a smooth compact manifold with dimension $2d = \mathrm{index}F$. Let e be the Euler class of the free S^1 -action on $F^{-1}(v)$, then the Seiberg-Witten invariant:

$$SW(L) = \int_{\mathcal{M}(L)} e^d$$

is independent on the choice of metric on X.

If $b_2^{\perp}(X)^G = b_2^{\perp}(X/G) > 1$, then we can choose a G-invariant 2-form $v \in (\Omega_+^2(i\mathbb{R}))^G \setminus \operatorname{im} d^{+G}$ such that the perturbed moduli space $F^{-1}(v)/S^1$ is a G-space with no reducible singularities, but may not be smooth.

However, if we consider the following G-invariant map

$$F^G: [\Omega^1_s(i\mathbb{R}) \times \Gamma(W^+)]^G \to [\Omega^2_+(i\mathbb{R}) \times \Gamma(W^-)]^G,$$

then for a generic G-invariant v, the G-invariant moduli space $(F^G)^{-1}(v) / S^1 \equiv \mathcal{M}^G(L)$ is a smooth compact manifold. We can define the G-invariant Seiberg-Witten invariant: $SW(L) = \int_{\mathcal{M}^G(L)} (e^G)^{d'}$ where $2d' = \dim \mathcal{M}^G(L)$ and e^G is the Euler class of the free S^1 -action on $(F^G)^{-1}(v)$ and we use the orientation $\mathcal{M}^G(L)$ given by (2) of the following theorem.

THEOREM 2.1. If $b_2^+(X)^G > 1$, then the G-invariant moduli space $\mathcal{M}^G(L)$ has the following properties.

- (1) $\mathcal{M}^G(L)$ has a natural orientation by choosing an orientation of $\det(H^0(X;\mathbb{R})^G) \otimes \det(H^1(X;\mathbb{R})^G) \otimes \det(H^2_+(X;\mathbb{R})^G)$.
- (2) For generic G-invariant $v \in \Omega^2_+$ $(i\mathbb{R})^G \text{im } d^{+,G}$, the moduli space \mathcal{M}^G (L,v) is a compact smooth manifold.
- (3) $\mathcal{M}^G(L)$ has a virtual dimension

$$\frac{1}{4|G|}[c_1(L)^2 - \{2\chi(X) + 3\sigma(X)\} - (n-1)\{2\chi(\Sigma) + 3\Sigma \cdot \Sigma\}
= \frac{1}{4}[c_1(L')^2 - \{2\chi(X') + 3\sigma(X')\}]
= \dim \mathcal{M}(L'),$$

where $\mathcal{M}(L')$ is the Seiberg-Witten moduli space of the quotient $L' \to X'$

- (4) The G-invariant Seiberg-Witten invariant $SW^G(L)$ is independent on the choice of the generic G-invariant metrics on X.
 - *Proof.* (2) Since $b_2^+(X)^G = \dim [H_+^{2,G}(X;\mathbb{R})] > 1$, the image $d^+(\Omega^{1,G}(i\mathbb{R}))^G \subset \Omega_+^2(i\mathbb{R})^G$ has a codimension greater than one. The generic Ginvariant $i\mathbb{R}$ -valued self-dual 2-forms are path connected.
 - (3) To compute the virtual dimension of the G-invariant moduli space, we may use the Atiyah-Singer G-index Theorem.

Let $L' \to X'$ be the quotient of the $Spin^c$ -structure $L \to X$ on X. Then L' is also a $Spin^c$ -structure on X' under our assumption.

Since $\pi^*: H^n(X';\mathbb{R}) \to H^n(X;\mathbb{R})^G$ is an isomerphism for all n. We may choose an orientation of the moduli space $\mathcal{M}(L')$ as the one of the $\mathcal{M}(L)^G$. By using the finite approximation method of Furuta[9], we have the following theorem.

THEOREM 2.2. Under the above situation, we have that the G-invariant Seiberg-Witten invariant $SW^G(L)$ of L on X is the same as the Sieberg-Witten invariant SW(L') of the quotient L' on X'.

Sketch of Proof. Essentially the map $F: \Omega^1_s(i\mathbb{R}) \times \Gamma(W^+) \to \Omega^2_+(i\mathbb{R}) \times \Gamma(W^-)$ has the restriction $F^G: [\Omega^1_s(i\mathbb{R}) \times \Gamma(W^+)]^G \to [\Omega^2_+(i\mathbb{R}) \times \Gamma(W^-)]^G$ on the G-invariant part which is the same as $F': [\Omega^1_s(i\mathbb{R}) \times \Gamma(W^+)]' \to [\Omega^2_+(i\mathbb{R}) \times \Gamma(W^-)]'$ which is induced from the Seiberg-Witten equations

on the quotient $L' \to X'$. As we know, the projection map $\pi : X \to X'$ induces a one-to-one correspondence between G-invariant L^p -settings on X and L^p -ones on X'.

Both moduli spaces $\mathcal{M}^G(L)$ and $\mathcal{M}(L')$ have the same dimensions and the same orientations, and are compact smooth manifolds. The operators $D_A^*D_A$, $D_AD_A^*$ and $d_+^*d_+$, $d_+d_+^*$ induced by F^G and F' have the same eigenvalues. The Seiberg-Witten invariants $SW^G(L)$ and SW(L') are the degrees of the maps which are induced by finite dimensional approximation, (by compactness of moduli space) and chipping out by the moduli space. Thus the G-invariant Seiberg-Witten invariant $SW^G(L)$ of L on X is the same as the Seiberg-Witten invariant $SW^G(L')$ of L' on X'.

By Theorem 1.1, if $(|G|-1)[\Sigma] \in 2H_2(X;\mathbb{Z})$, then the pull-backs of the $Spin^c$ -structures on X' are G-invariant $Spin^c$ -structures on X. In particular, if either G has odd order or the homology class $[\Sigma]$ is divisible by 2, then this is the case.

COROLLARY 2.3. Let $(|G|-1)[\Sigma] \in 2H_2(X;\mathbb{Z})$. If the G-invariant $SW^G \equiv 0$ are identically zero, then the Seiberg-Witten invariants $SW \equiv 0$ are identically zero on the quotient manifold X/G = X'.

REMARK. If $L' \to X'$ is a $Spin^c$ -structure on X' such that $SW(L') \neq 0$, then the pull-back $L \to X$ is a $Spin^c$ - structure on X with G-action.

By Theorem 2.2 $SW^G(L) \neq 0$, there is an irreducible G-invariant solution of Seiberg-Witten equations which may not be generic. However there is no guarantee that the Seiberg-Witten invariant of L is non-trivial.

3. G-invariant pseudo-holomorphic curves

Let (X,ω) be a closed symplectic 4-manifold with a symplectic form ω on X. Let J be a tamed almost complex structure on X. As before we assume that a cyclic group G acts semifreely, holomorphically on X as isometries with fixed point set Σ which is a 2-dimensional submanifold. We assume that $L \to X$ is the $Spin^c$ -structure induced by the pull-back of a $Spin^c$ -structure $L' \to X' = X/G$ via the projection $\pi: X \to X'$.

Since X be a symplectic 4-manifold, there is an element $e \in H^2(X;\mathbb{Z})$ such that $e = c_1(E)$ and $L = E^2 \otimes K^{-1}$, $W^+ = E \oplus K^{-1} \otimes E$, where $K = \Lambda^{2,0}(T^*X \otimes \mathbb{C})$ is the canonical complex line bundle on X. Since the actions of G on X are holomorphic, each element of G acts on K as a holomorphic bundle isomorphism. Thus $h^*c_1(K) = c_1(h^*K) = c_1(K)$ for

any $h \in G$, and $c_1(L) = 2c_1(E) - c_1(K)$. Hence $e = c_1(E) \in H^2(X; \mathbb{Z})^G$ is G-invariant.

Suppose that the Seiberg-Witten invariant $SW(L') \neq 0$ of L' is non-zero and $b_2^+(X') \geq 2$. There is an irreducible solution $(A', \phi') \in \mathcal{A} \times \Gamma(W'^+)$ of the Seiberg-Witten equations:

$$\begin{cases} D_{A'} = 0 \\ F_{A'}^+ = q(\phi') + \nu', \end{cases}$$

where $\nu' \in \Omega^2_+(X';i\mathbb{R}) \setminus \operatorname{im} d'^+$ and $d'^+ : \Omega^1_s(X';i\mathbb{R}) \to \Omega^2_+(X';i\mathbb{R})$. Since $H^2_+(X';\mathbb{R}) \xrightarrow{\sim} H^2_+(X;\mathbb{R})^G$ and $\pi^* : \Omega^2_+(X';i\mathbb{R}) = H^2_+(X;i\mathbb{R}) \oplus \operatorname{im} d'_+ \to \Omega^2_+(X;i\mathbb{R})^G = H^2_+(X;i\mathbb{R})^G \oplus \operatorname{im} d^G_+$ are isomorphisms, there is a G-invariant self-dual 2-form $\nu \in \Omega^2_+(X;i\mathbb{R})^G \setminus \operatorname{im} d^G_+$ such that $\pi^*(\nu') = \nu$, where $d^G_+: \Omega^1_s(X;i\mathbb{R})^G \to \Omega^2_+(X;i\mathbb{R})$ is the restriction of d_+ . Let $\pi^*A' = A \in \mathcal{A}^G$, $\pi^*\phi' = \phi \in \Gamma(W^+)^G$. Then the Seiberg-Witten equations

$$\begin{cases} D_A = 0 \\ F_A^+ = q(\phi) + \nu \end{cases}$$

hold. Since $b_2^+(X') = b_2^+(X)^G = \dim(H^2_+(X;\mathbb{R})^G) > 1$, for a generic G-invariant self-dual 2-form $\nu \in \Omega^2_+(X;i\mathbb{R})^G$ the Seiberg-Witten equations have G-invariant solutions $(A,\phi) \in \mathcal{A}^G \times \Gamma(W^+)^G$.

LEMMA 3.1. If (A', ϕ') is a solution of the Seiberg-Witten equations for a $Spin^c$ -structure $L' \to X'$ on X', then the pullback (A, ϕ) via the projection $\pi: X \to X'$ is a solution of thoses for the $Spin^c$ -structure $L \to X$ on X pulled back by the π .

To examine the G-invariant solution $(A, \phi) \in \mathcal{A}^G \times \Gamma(W^+)^G$, let us split the solution: $A = A_0 + 2a \in \mathcal{A}^G(K^{-1} \otimes E^2)$ and $\phi = \sqrt{r}(\alpha, \beta) \in \Gamma(W^+ \equiv E \oplus K^{-1} \otimes E)^G$. As in [17], we consider the perturbed Seiberg-Witten equations:

(*)
$$\begin{cases} D_A \sqrt{r}(\alpha, \beta) = 0 \\ F_a^+ + \frac{ir}{8} (1 - |\alpha|^2 + |\beta|^2) \omega - \frac{r}{4} (\alpha \beta^* - \alpha^* \beta) = 0, \end{cases}$$

where $(\alpha \beta^* - \alpha^* \beta)$ belongs to the orthogonal complement of $\mathbb{C}\omega$ in $\Lambda^+ \otimes \mathbb{C}$, and r is a fixed real number.

THEOREM 3.2 (Taubes). Let X be a compact, minimal symplectic 4-manifold. If $W^+ = E \oplus K^{-1} \otimes E$ is the positive $spin^c$ -bundle with non-trivial complex line bundle E, then $SW(\det W^+) = Gr(PDc_1(E))$ where $Gr(PDc_1(E))$ is a weighted count of compact symplectic submanifolds whose fundamental class is the Poincaré dual $PD(c_1(E))$.

Let the $Spin^c$ -structure $L = E^2 \oplus K^{-1} \to X$ is the pull back of a $Spin^c$ -structure $L' \to X'$. The first Chern class $c_1(E)$ of E is G-invariant. The action of G on X lifts to the bundle E. Choose a section s of the bundle $E \to X$ such that s transverses the zero section. By averaging we have a new section $s_1 = \frac{1}{|G|} \sum_{h \in G} h^*s$ of E, which is G-invariant. The zero set $s_1^{-1}(0) = Z \subset X$ of s_1 is a G-invariant subset of X. Indeed, if $x \in s_1^{-1}(0)$, then for any element $h \in G$, $s_1(h(x)) = h(s_1(x)) = h(0) = 0$. For suitable choice of s and the lifting of G on E such that the section s_1 vanishes transversaly the zero set S. The S-invariant 2-dimensional submanifold S in S is the Poincaré dual to the S-invariant 2-dimensional submanifold S-invariant S-in

LEMMA 3.3. In the above argument, the Poincaré dual of the first Chern class $c_1(E)$ can be represented by a G-invariant submanifold in X.

Let $(A = A_0 + 2a, \alpha, \beta)$ be a solution of the Seiberg-Witten equations (*) for a suffliciently larger r. By Taubes [Theorem 3.2] there is a compact complex curve C with a pseudo-holomorphic map such that

- (1) the image $u_*([C])$ is the Poincaré dual of $c_1(E)$,
- (2) as an element in the homology $H_2(X;\mathbb{Z})^G$, $u_*([C]) = [\alpha^{-1}(0)] = PD(c_1(E))$.

As in Lemma 3.3, we define a new section $\alpha_1 = \frac{1}{|G|} \sum_{h \in G} h^* \alpha$ of $E \to X$. Then the section α_1 is G-invariant and its zero set $\alpha_1^{-1}(0)$ is a G-invariant subset in X. If $(A = A_0 + 2a, \alpha, \beta)$ is a G-invariant solution of (*), then $\alpha = \alpha_1$ and $\alpha_1^{-1}(0) = \alpha^{-1}(0)$.

THEOREM 3.4. Let (X, ω) be a closed, symplectic 4-manifold. Let a finite cyclic group G act semifreely, holomorphically on X as isometries with fixed point set Σ (may be empty) which is a 2-dimension submanifold. Then there is a smooth structure on the quotient X' = X/G such that the projection $\pi: X \to X'$ is Lipschitz.

Let $L \to X$ be the $Spin^c$ -structure on X by pull-backed a $Spin^c$ -structure $L' \to X'$ and $b_2^+(X') > 1$. If the Seiberg-Witten invariant $SW(L') \neq 0$ of L' is non-zero and $L = E \oplus K^{-1} \otimes E$, then there is a G-invariant pseudo-

holomorphic curve $u: C \to X$ such that the image u(C) represents the fundamental class of the Poincaré dual $c_1(E)$.

References

- [1] N. Brand, Necessary conditions for the existence of Branched coverings, Invent. math. 54 (1979), 1-10.
- [2] G. Bredon, Introduction to Compact Transformation Groups, Academic Press (1972).
- [3] Y. S. Cho, Finite group actions on the moduli space of self-dual connections I, Trans. Amer. Math. Soc. **323** (1991), 233–261.
- [4] ______, Cyclic group actions on gauge theory, Diff. Geo. and its Applications 6 (1996), 87-99.
- [5] _____, Finite group actions on 4-manifolds, Jour. of Australian Math. soc. (series A) vol.66, part 3 (1999), 287-296.
- [6] _____, Seiberg-Witten invariants on non-symplectic 4-manifolds, Osaka J. Math. 34 (1997), 169-173.
- [7] _____, Equivariant metric for smooth moduli spaces, Topol. and Appl. 62 (1995), 77-85.
- [8] F. Fang, Smooth group actions on 4-manifolds and Seiberg-Witten invariants, Inter. Jour. of Math. 9 (1998), no.8 (1998) 957-973.
- [9] M. Furuta, Monopole equation and the $\frac{11}{8}$ conjecture, preprint.
- [10] R. Fintushel and R. Stern, Pseudofree orbifolds, Ann. of Math. 122 (1985), 335-364.
- [11] N. Kuiper, The quotient space of CP² by the complex conjugation is the 4-sphere, Math. Ann. 208 (1974), 175-177.
- [12] M. kontsevich, Enumeration of Rational curves Via Torus Actions, Hep-th/9405035 (1995).
- [13] M. Kontsevich and Y. Mannie, Gromov-Witten classes, quantum cohomology and enumerative geometry, Hep-th/9402147 (1994).
- [14] P. Kronheimer and T. Mrowka, The geneus of embedded surfaces in the projective plane, Math. Res. Letters I (1994), 794-808.
- [15] C. Taubes, The Geometry of the Seiberg-Witten invariants, preprint.
- [16] _____, The Seiberg-Witten and the Gromov invariants, Math. Res. Letters 2 (1995), 221-238.
- [17] _____, More constraints on symplectic forms from Seiberg-Witten invariants, Math. Res. Letters 2 (1995), 9-13.
- [18] S. Wang, Gauge theory and involutions, Oxford thesis, 1990.
- [19] E. Witten, Monopoles and four-manifolds, Math. Res. Letter1 (1994), 769-796.

DEPARTMENT OF MATHEMATICS, EWHA WOMEN'S UNIVERSITY, SEOUL 120-750, KOREA