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ON THE FEKETE-SZEGO PROBLEM
AND ARGUMENT INEQUALITY FOR
STRONGLY QUASI-CONVEX FUNCTIONS

Nak Eun CHO

ABSTRACT. Let Q(3) be the class of normalized strongly quasi-
convex functions of order § in the open unit disk. Sharp Fekete-
Szegd inequalities are obtained for functions belonging to the class
Q(3). We also consider the integral preserving properties in a sec-
tor.

1. Introduction

Let A denote the class of functions f of the form
[ o]
(1.1) f@)=z+4) a2
n=2

which are analytic in the open unit disk 4 = {2z : 2 € C and |2| < 1}
and let S be the subclass of A consisting of all univalent functions. We
also denote by 8*, K and C the subclasses of .A consisting of functions
which are, respectively, starlike, convex and close-to-convex in U (see,
e.g., Srivastava and Owa [17]).

For analytic functions g and h with g(0) = h(0), g is said to be
subordinate to h if there exists an analytic function w(z) such that
w(0) = 0,|w(z)] <1 {(z € U), and g¢(z) = h{w(z)). We denote this
subordination by g < h or g(z) < h{z).

A classical result of Fekete and Szegé [5] determines the maximum
value of |ag — paZ|, as a function of the real parameter p, for functions
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belonging to S. There are now several results of this type in the litera-
ture, each of them dealing with |as — pa3| for various classes of functions
(see, e.g., [1, 7, 9]).

Denote by Q(3) the class of strongly quasi-convex functions of order
B(8 > 0). Thus f € Q(B) if and only if there exists g € K such that for

z €U,
(2f'(z)) m
MM L« 23,
lmg { gz JI~ 2"
In particular, @(1) is the class of quasi-convex functions introduced by
Noor [13]. We also note that every quasi-convex function is close-to-
convex and hence univalent in .
In the present paper, we derive sharp Fekete-Szegd inequalities for
functions belonging to the class Q(8). Furthermore, the integral pre-
serving properties are considered for functions in the class Q(3).

2. Results

To prove our main results, we need the following lemmas.

LeMMA 2.1. Let p be analytic in U and satisfy Re {p(z)} > 0 for
z € U, with p(z) =1+ p1z +pez®+---. Then

(2.1) ol €2 (n2>1)
and
2 2
¥4 |P1|
. -—| 2= —,
(2.2) lpz 5 <2 5

LEMMA 2.2. Let h be convex(univalent) function in 4 and w be an
analytic function in U with Re {w(z)} = 0. If p is analytic in U and
p(0) = h(0), then

p(z) +w(2)zp'(2) < h(z) (z €lU)

implies

p{z) < h(z) (z € U).
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LEMMA 2.3. Let p be analytic in U with p(0) = 1 and p(z) # 0 in
U. Suppose that there exists a point zy € U such that

(2.3) |arg {p(z)}’ < gn for |z| < |z
and

(2.4) |arg {pa0)}| = Zn@<n<1).
Then

(2.5) %X)O) = ikn,

where

(26) k22 (ot ) when arg (p(0)} = on,
(2.7) k< —%(a+ %i) when arg {p(z)} = —gn:
and

(2.8) (p(z0)}* = Lia (a > 0).

The inequality (2.1) was first proved by Carathéodory [3](also, see
Duren [4, p. 41]) and the inequality (2.2) can be found in [15, p. 166].
Lemma 2.2 are the result proved by Miller and Mocanu [11], which has
a number of important applications in the theory of univalent functions.
Also Lemma 2.3 was proved by Nunokawa {14] as a new modification of
well known Jack’s Lemma [6].

With the help of Lemma 2.1, we now derive
THEOREM 2.1. Let f € Q(3) and be given by (1.1}. Then for 3 > 0,

we have

2
(14 UsBPG-90 #5 (e

28-9p)
1+26+ 8—,6(87‘5#) if 9(1+ﬁ) <p<sg,

. 8(2+5)
1428 if %S,ugg(Hﬁ),
14+8)° (9u—8 . 8(2+8
| —14 QB 0n=8)  gp p> g

9|a3—,ua2| < 4
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For each p, there is a function in Q(f3) such that equality holds in all
cases.

Proof. Let f € @(3). Then it follows from the definition that we
may write

(zf'(=))

— P
700 P (2),

(2.9)

where g is convex and p has positive real part. Let g(z) = z + bo2® +
bsz® + .-~ and let p be given as in Lemma 2.1. Then by comparing the
coefficients of both sides of (2.9), we obtain

daz = f3p) + 2b;

and

-1
9az = @P? + Bpa + 3b3 + 28p1ba.

So, with x = (8 — 9u)/4, we have

9 az ~ pas) = 3 (b3 + %(m - 2)b§)
(2.10) .
+ 8 (Pz + 4Bz~ 2)??) + Bzpibs.

Since rotations of f also belong to Q(3), without loss of generality,
we may assume that az — ua? is positive. Thus we now estimate Re

(as — pa3).

Since g € K, there exists h(z) = 1+ kyz + ko2? + -+ (2 € U) with
positive real part, such that ¢'(z) + z¢”(z) = ¢'(2)h(z). Hence, by
equating coefficients, we get that by = ki1/2 and by = (ko + k{)/6.
Therefore, letting by = pei®(0 < p < 1) and p; = 2re??(0 < r < 1) in
(2.10), and applying Lemma 2.1, we obtain

9Re(as — pa3) < (1 — p*) + (z + 1)p* cos 2¢
(2.11) +28(1 — r%) 4 B%r? cos 20 + 2Bzrpcos(f + ¢)
= ¢(z), say.
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We consider first the case 83/(9(1 + 3)) < p £ 8/9. In this case, we
see that 0 < z < 2/(1+ 3). Then we obtain

P(z)

=1-p*+ (x4 1)p?cos 2 + B(2(1 — r?) + Bar® cos 28
+ 2arpcos(8 + ¢))

<z + 14 B(2—2r? + Brr? cos 20 + 2zr).

Since the expression —-2t2 + Bxt? cos 20 + 2zt is the largest when ¢ =
z/(2 — Bz cos 28), we have

2 I2

— 2t t2 cos 20 t < < :
+ ot cos 26 + 3¢ — 2—fPBxcos28 — 2— [z

Thus
2

@
Pz} < m+1+ﬁ(2+'('§7$))
2(8 — 9u)
8- B(8—9p)’
and from (2.11), we obtain the second inequality of the theorem. Equal-
ity occurs only if

=1+28+

2(8 — 9y

71 8- B(8—9p)’ P2 1 02 =103 ’

and the corresponding function f is defined by

z —Z 5
O = s (M a- NI ) S0 -0

where
L8 (1-8)8—m
16 — 23(8 — %)

We now prove the first inequality. Let p < 83/(9(1 + 3)}). Then we
obtain that z > 2/(1 + 3) = zo, and

W(z) = P(xg) + (T ~ aso)(p2 cos 2¢ + §%r? cos 28 + 26pr cos(8 + ¢))
< (zo) + (2 — zo)(1 + B)°

(1 +8)*(8 — 9
4 b

<1+
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as required. Equality occurs only if ¢; = ¢2 = 2, by = bs = 1, and the
corresponding function f is defined by

o 1 [1+2)°
G @) = 5= (1 _j) . F(0)=0.
Let z; = —2/(1 + B8). At first, we will show that ¥(z;) < 1+ 28.

Then the remaining inequalities follow easily from this one. We have

z2p? cos?(0 + ¢)
2 — Bz cos 26

(—2 + By cos 20)t% + 2z tpcos(f + ¢) <

for all real t. Hence we obtain
Ylx1) — (1+20)

< p? (—1 + (z1 + 1)} cos2¢ +

Bz3(1 + cosz(9+¢)))
2(2 — Bz cos 26) '

Thus we consider the inequality
Bzi(1+ cos2(8 + ¢)) + 2(2 — Bz cos 20)(—1 + (w1 + 1) cos 2¢) < 0,
which is true if
(2.12) 28?% cos® B sin? ¢ + 20 cos 6 sin 8 cos Psin ¢ + cos® ¢ > 0.
Now, for all real ¢,
2t% + 2t sin @ cos ¢ + cos? ¢ > 0,
so, by taking ¢ = B cos fsin ¢, we obtain (2.12). Thus 9(z;) <1+ 25.

Next, we consider two possibilities. We suppose that z; < z < 0,
that is, 8/9 < g < 8(2 + 8)/(9(1 4 B)). Note that for 0 < A < 1,

WAz} = Ap(z1) + (1 — A)p(0) = 14 26

Hence we have ¥(z) < 14 28 and this proves the third inequality of the
theorem. Equality occurs only if py = by =0, p: =2, b3 =1/3, and
the corresponding function f is defined by

iy — A+ _
(zf'(z)) —(—1—:—;_-5‘)“1':;5, fo)y=o.
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Secondly, we suppose that = < 1, that is, u > (8(2 + 3))/(9(1 + 3)).
Then we have
W(zo) = ¥(z1) + (z — 31)(p* cos 26 + F%r cos 26 + 2Bpr cos(6 + ¢))
<d(z) + (@ —2)(1+ B)°
(14 8)*(9 — 8)
4 1
and this is the last inequality of the theorem. Equality occurs only if

p1 = 2i, po = —2, by =4, bg = —1, and the corresponding function f is
defined by

< -1+

1 (1+z'z

! f B
e =gl o fO=0

1 -1z
Therefore we complete the proof of Theorem 2.1.

For a function f belonging to the class A, we define the integral
operator F., as follows :

__'y+1
=—

@213) B = F ) | eirwa (204 zeu.

0
Many authors have studied the integral operator of the form (2.13) where
~ is a real constant and f belongs to some favored classes of functions.
Various interesting developments involving the operator (2.13}, for ex-
amples, can be found in {2, 8, 10]. We also denote the class K[A, B}
by

zf"(z) 14+ Az
(2 1+B2

ﬂABh{f&A:LP ueu;—lgB<Asn}.

Next, we prove

THEOREM 2.2. Let fe A If

e {0y

for some g € K[A, B], then

= (S ) <3

<%5m<551;zeu)
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where F., is given by (2.13) and n(0 < n < 1) is the solution of the
equation:

(2.14)
2 -1 TJSiﬂl(l—i(AaB,C)) _
5= n+ 5 tan ((}—‘}g+c)+§;cos %(l—t(A,B,c))) for B # -1,
7 for B=—1,
when
2 4 A-B
(2.15) t(A,B,c)—;sm (1—AB+c(1—Bz))'
Proof. Let
z(F,(f)) zF(g)
p(z) = —=~— and gq(z) =1 4+ —=L=2,
O="FH D=1

From the assumption for g and an application of Briot-Bouquet differ-
ential subordination [12, p. 81], we see that F,(g) € K[A, B]. Using the
equation

2FL()(2) +7Fy()(2) = A+7f(2)

and simplifing, we obtain

Since ¢ € K[A, B], we note [16] that

(2.16) (zﬁgéj)) LB AD eus By
and

(2.17) Re { (zg;((j)))’} 51 ;A (zelU; B=-1).

Then, from (2.16) and (2.17), we have

g(2) + ¢ = pe'¥?,
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where
i+B
—t{A,B,c) < ¢ < t(A,B,c) for B# -1,

where t(A, B, ¢} is given by (2.15), and

{i—:%+c<p<5ﬁ+c

%A-C < p < 00
-1 < ¢ < 1 for B=-1.

Here, we note that p is analytic in ¢ with p(0) = 1 and Re p(z) > 0 in
U by applying the assumption and Lemma 2.2 with w(z) = 1/(g(z) +c¢).
Hence p(z) # 0 in U.

If there exists a point zg € I such that the conditions (2.3) and (2.4)
are satisfied, then (by Lemma 2.3) we obtain (2.5) under the restrictions
(2.6-8).

At first, we suppose that

{p(z)} =ia  (a>0).

For the case B # —1, we then obtain

arg {(Zof’(zo))'}

9 (20)

B 1 zp'(20)
= arg {P(Zo) (1 + a(@0) + ¢ p(z0) )}
= arg {p(20)} +arg {1+ ink(pe’¥?) "1}

Cn o (_oksnl50-9)
SR (p+nk008[%(1—¢)])
m 1 nsin[5{1 — (4, B)}]
Z —n-+tan
oA ((}I_g_|_c) +nCOS[%{1—t(A,B)}])
=75
2 b

where § and £(A, B) are given by (2.14) and (2.15), respectively. Simi-
larly, for the case B = —1, we have

(z0f'(z0)) T
arg {W} z 31~ 3"
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These evidently contradict the assumption of the theorem.

Next, in the case p(zo)% = —ia (@ > 0), applying the same method as
the above, we also can prove the theorem easily. Therefore we complete
the proof of Theorem 2.2.

REMARK. From Theorem 2.2, we see easily that every function in
Q(d) (0 < § < 1) preserves the angles under the integral operator defined
by (2.13).

By letting ¢g(z} = z and B — A (A < 1) in Theorem 2.2, we have

CoRrROLLARY. If f € A and
larg {(zf"(2))'}] < %5 (0<6<1; zel)

then .
jarg {(zF(NY}] <

where F., is given by (2.13) and n(0 < n < 1) is the solution of the

equation:
2 7
§=n+ =tan™? :
n+ - tan (1 n C)
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