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THE ITERATION OF ENTIRE FUNCTION

JIANWU SUN

ABSTRACT. In this paper, we obtain the following results: Let f
be a transcendental entire function with log M{r, f) = O((logr)?
el®€™%) (0 < & < 1,8 > 1). Then every component of N(f) is
bounded. This result generalizes the result of Baker.

1. Introduction

Let f : C — C denote a nonlinear entire function and f*, n € N,
the nth iterate of f. The set of normality, N(f), is defined to be the set
of points, z € C, such that the sequence (f*) forms a normal family in
some neighbourhood of z. It is easy to see that N(f) is open and has
the property of complete invariance under f, that is z € N(f) if and
only if f(z) € N(f). The complement J(f), of N(f) is known as the
Julia set. This set is clearly closed and completely invariant under f.
More details of these and other basic properties of the sets N{f) and
J(f) can be found in [4] and [5].

Baker [1] obtained the following result:

THEOREM A. Let f(z) be a transcendental entire function with log

M(r, f) = O ((logr)?), where 1 < p < 3. Then every component of
N(f) is bounded.

In the paper, we generalize the condition log M{r, f) = O((log r)?)
(1 < p < 3) to the form log M(r, /) = O((logr)Pe8"*) (0 < a <
1,4 > 1) in Theorem A and obtain the following result:

THEOREM 1. Let f be a transcendental entire function with
log M(r, f) = O((log r)PelE"y (0 < a < 1,8 > 1).
Then every component of N(f) is bounded.
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2. Some lemmas

LEMMA 1 [2]. Let f be an entire function of order zero and z = ret.
Then
log | f(re®)| — N(2R) — log|c| < 4Q(2R)
for all z € {z: |z| < R}.

LEMMA 2 [2]. Let f be an entire function of order zero and z = retd.

Then for any ¢ > 0, n > 0, there exist Ry = Ro(¢,n), k¥ = k{{,n) such
that for all R > Ry,

log | f(re®) | —N(2R) —log | ¢ |> —kQ(2R),(R < r < R,

except in a set of circles enclosing the zeros of f, the sum of whose radii
is at most nR. Where Q(r) =1 [~° ﬂt—’t%mdt, N(r)y=f; ﬂ%ﬁldt.

Combining Lemma 1 and Lemma 2 and taking { = 1 to be small, we
obtain:

LEMMA 3. If f is an entire function of order zero then there exist
Ry = Ro(¢) > 0 and a constant B such that, for each R > Ry, there
exists r satisfying

CR<r<R

such that
logm(r, f) > log M(r, f) — BQ(2R).

LLEMMA 4 [5]. Suppose that f is a transcendental entire function and
that there exist sequences Ry, p, — oo and c¢(n) > 1 such that

1. Rus1 = M(Ry) = M(Rn, f)
2. Rp < pn < (Rp)™
3. m(pn) = m(pn, f) > (Rn1)°*Y for all sufficiently large n

Then N(f) contains no unbounded components.

LEMMA 5. Let ¢(r), H(r) be two positive functions tending to oo(as
r — o0), and A = A(r) > 1, and ¢(Ar)/d(r) — c(r — o0),(c = 1).
If H(r) = O(¢(r)), then there exists ry > 1, H(Ar)/H(r) is upper
bounded in [rg, +00).
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Proof. Suppose that H(Ar)/H(r) is not bounded from above in [rg,
+00), then there exists a sequence {r,}, r, — 0o(n — oo), for arbitrary
G > 0, there exists a natural number ng such that for n > ng, we have

(1) H(Ary)/H(ry) > G.
Since limy_,oo H(7)/¢p(r) = k (0 < k < +0o0), we see that

L If k # 0, then by (1) we obtain H(Ary)/¢(Ar,) > GL{a) 2n)
take G = 2¢, thus

—_ .—H(Tn) . ¢(Tn)
A H (A} 9lra) 2 G lim 00 S B8 5y
ie., k> 2¢(1/c)k = 2k, this is a contradiction.

2. If k =0, then lim, o, H(r)/¢(r} = 0 take G = 4c, when n > ny,
by (1) we get H(Arp)/H(r,) > 4c, so, when n > ng, for arbitrary
natural number m, we have
(2) H(A™r,) > dcH(A™ 1) > oo > (de)™H (ry).

Since limy 00 ¢(Ary,) /d(rn} = ¢, take eg = ¢ > 0, there exists a n; > ng,
such that for n > n; we obtain

| (Ara)/$lrm) —c|< o= ¢, ie., B(Ar,) < 2eh(ry),
thus, for arbitrary natural number m, we get

(3) BA™Tn) < 2e9(A™Mry) < -o- < (20)B(rn),
take n = na > n; > nyg, by (2) and (3) we have
(4)
(A1) 0(A7 1) > ST ) _ g Blws) | ooy, o),

(2¢)™¢(rp, ) ¢(rn,)
As m — oo, we obtain A™r,, — o0, so, (4) is a contradiction with
lim, oo H(r}/¢(r) = 0.
This completes the proof of the Lemma 5. g

LEMMA 6. Let f be a transcendental entire function with log M(r, f)
= O((logr)? e(°8")") (0 < a < 1, 8> 1). Then
log M(&r, f) ~log M(r,f)  (r — 00,62 2).

Proof. (i) We may assume f(0) = 1, otherwise, we only need to make
a transformation

F(z) = f(z) - f0) + 1.
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By Jensen’s theorem

n(t,1/f) ,

NG/ = [

(5) 1 27 ,
- fo log | f(re®®) | d8 < log M(r, f),

for r > 1 and A > 1, by (5) we have

e/ Plog A< [ Y gy < N(ar,1/5) < 108 M (41, ).

T

So

© atr1/1) < ELRD,
Since

(7) log M(r, f) = O((logr)%e('&7°).

Take A = r°() and a(r) = IToT;—r')E‘ By (6) we have

log M(r!+e("), f)

® n(r1/f) < 2 h

Therefore, there exists rq > 1 and k& > 0, such that for r > rg, and put
r = ¢e*, by(7) we obtain

log M (r1+0(r), f) _ k(log pltatr))B llogritoM)e

r1/2¢(r)logr

<
- r1/25(r}logr

B+ goegs)? (log r)Pe )" tos "
- ri/2(logr)i-«

k(]_ + 1/u0)ﬁuﬂe(1+1/u“)‘*ua < k0B Ba—1,2%u>
- (eu)1/2ul—a = /2
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. 1tolr)
Since o < 1, %{,(T—’fl decreases when r > 71 > ry, and by (8) we

o{r)logr
have
+co
Q(’J") = 1'/,: Wdt
<r /‘+m 10gM(t1+a(t), f)
-/ t20(t)logt
©) ~ i [ EMET0, )

b—+oo f,  t2o(t)logt
1/2 1 +o0
r!/2log M(r'*+o, ) f 32
a(r)logr r
_ 2log M(ritet) f)
- o(r)logr

Let ¢(r) = (logr)?el 8™ (0 < o < 1,8 > 1), A = r°®) and o(r) =
Toary= Then
Og‘r

(10)
_ (log rlta(r) )ﬁe(bg rlto(r})e
¢(Ar)/d(r) = (g PPl

= (1 4 o(r))Pellogn)*[(1+o(r)=-1]

=1+ o.(,,.))ﬁe(log1")"‘&0(1")(1+°(1))

— (1t —
0 (logr)e
So, from (7) log M(r, f} = O(¢(r)).

On the other hand, from (9), (10), and Lemma 5, there exists L > 0,
for r > r1 > rg we have

Q) 2logM(r*+0), 1)
log M(r, f) — o(r)logrlog M(r, f)
_log M(Ar, f) 2
~ log M(r,f) o(r)logr
< 2L _ 2L
~o(r)logr (logr)l—e

)ﬁe(logr)“aﬁlﬁa(l+u(1)) N ea(z 1) (7‘ - OO)

— 0{r — o0).

So,
(11) Q(r) = o(log M(r, f)).
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(ii) Since log M (r, f) = O((log r)?e!°8 ")), the order p of f is equal
to zero, and n(r,1/f) = o(r) and
+o0

log M(r, f) <log [J(1+7/ra)

n=1

_ f " Jog(1 + r/t)dn(t, 1/f)
4]

+007.
< [ fance /)
(12) =7'/ (tl/fdt

tEt+7)

— / /*“’ n(i i/f))

n(t,1/f) T n(t,1/f) 11
< ng ; — 1 dt+r /r —Z

= N(r) + Q(r)
= N(r,1/)+Q(r,1/f).
So, from Lemma 2, (11), and (12), we obtain
+log |f(re”’)] > N(2R) -kQ(2R) ~ (CR<r<R)
= N{(2R) + Q(2R) — (k + 1)Q(2R)
> log M(2R, f) — (k+1) o (log M(2R, f))

(13) =log M(2R, f)(1 — o(1})
(14) > log M(r, f)(1 — o(1)).
On the other hand,

(15)  log|f(z)| <logM(r,f) <logM(ér,f)  (lzl =7 622).
In (13), let 2R = &r,§ > 2. Then from (13), (14), and (15), we get

(16) log|f(2)| ~log M(ér, f}  (r — o0)
(17) log |f(z)] ~logM(r,f)  (r—o0).

By (16) and (17), we get

(18) log M (67, f) ~ log M(r, f) (r — 00,8 > 2).

So, from (18}, Lemma 6 is proved. a
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3. Proof of Theorem 1

By Lemma 6, we have

(19) log M({ér, f) ~ log M(r, f) = O((log 7)Pe8™*) (r — 00,8 > 2),
thus, for € € (0,1) and § > 2 we get

(1 —¢)log M(r, f) < log M(dr, f)
(20) < (1+¢€)logM(r, f)

< 2log M(r, f).
By (6) and (20), for r > 1 and A > 2, we obtain
an=r [ 2
10 Jog M (At f)

< T'/ — et
- t?log A

< 2r /*“’logM(t,f)
logA J, t2

Therefore, by (19) there exists ro > 1 and K > 0, such that for r > g,
and put r = e* we have

(21) dt.

log M(r, f) _ K(logr)Pelloer)®
<
= =Y
_ KpPe”
o e#/z ’

Since a < 1, log M(r./) Jecreases when r > r; > rq, by (21) we get

7172
2r /*‘” log M(t, f)
log A J, 12
1/2

dt

Q(r) <

+00
< log M{(r, f) / £=32q¢

log A r
_ JoeM(. )
- logA

Thus, by Lemma 3 and (22), there exists Ry and a constant ¢ > 1, such
that, for each R > Ry and each A > 2, there exists » satisfying

R/i§<r<R

(22)
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with
(23) logm(r, f) > log M(r, f) — c%}_

On the other hand, since f is transcendental there exists ry such that
for all r > ro > 11, M(r, f) > 72, take

(24) Ry > max(e®,r2)  and  Rps1 = M(R,, f).

We now separate two cases:
Case 1. Suppose that

(25) log M((Ry)***/" /8, ) > 410g M(Rq, ).
Put A = €%, by (23) for sufficiently large n there exists p,, satisfying
(26) R < G(Ra)™ /% < o < (R
and
logm(pn, £) > og Mi(pn, ) — ¢ EMCET ),

log e8¢
By (20), for sufficiently large n we have

log M (2(R,)*1/™, f)
= log M(16(R,,)**/"/8, f)
< 2log M((Rn)**'/" /8, f).
So
log m(pn, ) > g M(p, £) — ;1o M((Ra)**/"/8, f)

> glog M((R,)>Y/8, f).
By (25), we get

logm(py, f) > 3log M(Ry, f).
Thus

@7) M, f) > (M(Bn, ))* = (Rut1)* > (Ruga) 701
Case 2. Suppose that

(28) log M{(R,)**'/"/8, f) < 4log M(R,, f).
Put A = e, by (23) for sufficiently large n, there exists p,, satisfying

(29) R, < (Rn)2+1/nf1/n3 < 6i4(Rn)2+1/n < pn < %(Rn)2+1/n
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and

log M(2(R,,)**'/"/8, f)
log e’ )

logm(pn, f) > log M{pn, f) — ¢

By (20) and (28), for sufficiently large n, we obtain

2log M(5(Rn)*t'/", f)
n3

logm(pmf) > log M(pn:f) -

_ 8log M(Ry, f)

(30) > log M(Pna f) n3

By (29), pn > (Ry)2+1/m=1/"* and log M(r, f) is a convex function of
log r, for sufficiently large n, we have

log M(pn, f) > (2+1/n—1/n®)[log M(Ry, f)—log M(1, f)]+log M(1, f)

(31) > (24 1/n — 1/n*)log M(Ry, f).
Thus, by (30) and {31), for sufficiently large n, we get
logm(pn, f) > (2+ 1/n — 2/n® — 8/n°) log M(R,, f)

>(2+

1
1) g M{Bn, f)

80

(32) My f) > (Rog1) 2o,

Hence, by (24), (26), and (27) or (24), (29), and (32), we obtain the
following result:

If f is a transcendental entire function with log M({r, f} = O((log 7)”
ellos 1")ﬂ) (0 < a < 1,8 > 1), then there exists sequences Ry, pp, — o0
such that

1. Rpoy1 = M(Ry, f),

2. for sufficiently large n,

R, <p, < (Rn)2+1/n and m(on, f) > (Rn+1)2+?a"1ﬁ_

Put ¢(n) = 2+ 1/n > 1, by Lemma 4, we get every component of
N(f} is bounded.
Theorem 1 is proved. a
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