SPLITTING MULTIPLICATIVE SETS IN DEDEKIND DOMAINS

DAVID F. ANDERSON AND JEANAM PARK

ABSTRACT. Let D be a Dedekind domain with divisor class group $\mathcal{C}l(D)$. We show that there is a correspondence between the set of splitting multiplicative subsets in D and certain subgroups of $\mathcal{C}l(D)$.

Let D be an integral domain. As in [14] and [3], we say that a saturated multiplicative set S of D is a splitting multiplicative set if for each nonzero $d \in D$, d = sa for some $s \in S$ and $a \in D$ with $s'D \cap aD = s'aD$ for all $s' \in S$. Then $T = \{0 \neq t \in D | sD \cap tD = stD$ for all $s \in S\}$ is also a splitting multiplicative set, $ST = D - \{0\}$, and $S \cap T = U(D)$, where U(D) is the group of units of D. We call T the m-complement set for S.

Mott [13, Theorem 2.1] showed that there is a one-to-one correspondence between the set of saturated multiplicative subsets of D and the set of convex directed subgroups of G(D), the group of divisibility of D, given by $S \mapsto \langle S \rangle = \{s_1/s_2U(D)|s_1,s_2 \in S\}$. Moreover, for a saturated multiplicative set S of D, the subgroup $\langle S \rangle$ of G(D) is a cardinal summand of G(D) if and only if S is a splitting multiplicative set of D [14, Proposition 4.1].

Let S be a splitting multiplicative subset of D with T the m-complement set for S. In [4, Corollary 3.8], it was shown that the natural group homomorphism $\mathcal{C}l_t(D) \to \mathcal{C}l_t(D_S) \times \mathcal{C}l_t(D_T)$ is an isomorphism, where $\mathcal{C}l_t(D)$, the t-class group of D, is the group of (fractional) t-invertible t-ideals of D modulo its subgroup of principal ideals. We recover this result (for D a Dedekind domain) in Corollary 8.

Received May 4, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 13G05.

Key words and phrases: Dedekind domain, divisor class group, elasticity.

The second author's work was supported in part by funds from the Basic Science Research Institute program, Korea Research Foundation, 1998-015-D00017 and from the Inha University, 1999-2000.

In this paper, we show that if D is a Dedekind domain with divisor class group $\mathcal{C}l(D)$, then there is a correspondence between the set of splitting multiplicative sets of D and certain subgroups of $\mathcal{C}l(D)$. In particular, if D has no principal primes, then there exists a one-to-one correspondence between the set of splitting multiplicative subsets of D and the set of A-summands of $\mathcal{C}l(D)$ (see Definition 3).

An integral domain D is atomic if each nonzero nonunit of D is a product of irreducible elements. Following Zaks [16], we define D to be a half-factorial domain (HFD) if D is atomic and for any irreducible elements $x_1, ..., x_m, y_1, ..., y_n$ of D with $x_1 \cdots x_m = y_1 \cdots y_n$, then m = n. Following Valenza [15], we define the elasticity of an atomic integral domain D as

$$\rho(D) = \sup \{ \frac{m}{n} \mid x_1 \cdots x_m = y_1 \cdots y_n \text{ for irreducible } x_i, y_j \in D \}.$$

(Define $\rho(D) = 1$ if D is a field.) Notice that $1 \leq \rho(D) \leq \infty$, and $\rho(D) = 1$ if and only if D is an HFD. Thus $\rho(D)$ measures how far D is from being an HFD.

Let D be an atomic integral domain and let \mathcal{F} be a nonempty subset of $\mathcal{I}(D)$, the set of irreducible elements of D. Suppose that

$$(\dagger) x_1 \cdots x_m = u y_1 \cdots y_n,$$

where $u \in U(D)$ and $x_1, ..., x_m, y_1, ..., y_n \in \mathcal{I}(D)$. Set $\mathcal{F}(x) = \{i | x_i \in \mathcal{F}\}$ and $\mathcal{F}(y) = \{j | y_j \in \mathcal{F}\}$. Following [6], we say that \mathcal{F} is a factorization set (F-set) of D if for any equality (involving irreducibles) of the form (\dagger) , $|\mathcal{F}(x)| \neq 0$ implies that $|\mathcal{F}(y)| \neq 0$, and that \mathcal{F} is a half-factorial set (HF-set) if any equality of the form (\dagger) implies that $|\mathcal{F}(x)| = |\mathcal{F}(y)|$. Clearly an HF-set is also an F-set. F-sets and HF-sets are studied in detail in [6].

Let D be an atomic integral domain and let S be a splitting multiplicative set of D with T the m-complement for S. Then D_S and D_T are also atomic [3, Corollary 2.2], and $\rho(D) = max\{\rho(D_S), \rho(D_T)\}$ [8, Theorem 2.3]. Moreover, the values $\rho(D_S) \leq \rho(D)$ may be arbitrary [8, Theorem 2.7] (i.e., for each $r, s \in [1, \infty]$ with $r \leq s$, there exists a Dedekind domain D with a splitting multiplicative set S such that $\rho(D_S) = r \leq s = \rho(D)$). However, if S is generated by an HF-set, then $\rho(D) = \rho(D_S)$ [8, Theorem 2.11].

Throughout, we will assume that D is a Dedekind domain with Cl(D) its divisor class group, [I] the ideal class of I in Cl(D), U(D) its group of

units, D^* its set of nonzero elements, $S \subseteq D^*$ a multiplicative subset of D, $X^{(1)}(D)$ its set of nonzero (maximal) prime ideals, and $\mathcal{I}(D)$ its set of irreducible elements. A multiplicative set S is generated by $C \subseteq D^*$, and written $\langle C \rangle$, if $S = \{uc_1 \cdots c_n | u \in U(D), \text{ each } c_i \in C, n \geq 0\}$. For a group G and $C \subseteq G$, we also denote by $\langle C \rangle$ the subgroup of G generated by G. To avoid trivialities, we will assume that G is not a UFD (PID), i.e., G i.e., G i.e., G is general references on factorization in integral domains, see [2, 5].

If for a given abelian group G and subset $A \subseteq G - \{0\}$ there exists a Dedekind domain D such that Cl(D) = G and $A = \{[P]|P$ is prime ideal of D and $[P] \neq 0\}$, then the pair $\{G, A\}$ is called *realizable* [12], [11]. For D a Dedekind domain with realizable pair $\{Cl(D), A\}$ and S a saturated multiplicative subset of D, set

$$\mathcal{A}[S] = \{ [P] \mid P \cap S \neq \emptyset \} \subseteq \mathcal{A}.$$

Let G[S] be the subgroup of $\mathcal{C}l(D)$ generated by $\mathcal{A}[S]$. It is possible that $\mathcal{A}[S] = \emptyset$ (for example, if S is generated by principal primes, or if S = U(D)). Note that $\mathcal{A}[S] = \emptyset$ if and only if $G[S] = \{0\}$. By Nagata's Theorem [10, Corollary 7.2], $G[S] = \ker \varphi$, where $\varphi : \mathcal{C}l(D) \to \mathcal{C}l(D_S)$ is the natural homomorphism.

For future reference, we include a result from [4, page 27].

LEMMA 1. Let D be a Dedekind domain and let S be a splitting multiplicative set with T the m-complement for S. If P is a nonzero prime ideal of D, then either $P \cap S \neq \emptyset$ or $P \cap T \neq \emptyset$, but not both.

Proof. We may assume that S is nontrivial. By definition, either $P \cap S \neq \emptyset$ or $P \cap T \neq \emptyset$. If both $P \cap S \neq \emptyset$ and $P \cap T \neq \emptyset$, then P contains irreducible elements $x \in S$ and $y \in T$. Then, by definition, $xD \cap yD = xyD$, and hence $P \supseteq (x,y) = (x,y)_v = D$, a contradiction. \square

THEOREM 2. Let D be a Dedekind domain with realizable pair $\{Cl(D), A\}$ and let S be a splitting multiplicative set with T the m-complement for S. Then

- (1) $A = A[S] \bigcup A[T]$ is a partition of A.
- (2) $Cl(D) = G[S] \bigoplus G[T]$.

Proof. (1) follows from Lemma 1.

(2) Since \mathcal{A} generates $\mathcal{C}l(D)$, $\mathcal{C}l(D)=G[S]+G[T]$ by (1). Let $g\in G[S]\cap G[T]$. Since G[S] (resp., G[T]) is generated by $\mathcal{A}[S]$ (resp., $\mathcal{A}[T]$), we may write $g=\pm[P_1]\pm\cdots\pm[P_m]=\pm[Q_1]\pm\cdots\pm[Q_n]$, where each $[P_i]\in\mathcal{A}[S]$ and each $[Q_j]\in\mathcal{A}[T]$. Thus we may assume that $g=[P_1]+\cdots+[P_i]-[P_{i+1}]-\cdots-[P_m]=[Q_1]+\cdots+[Q_j]-[Q_{j+1}]-\cdots-[Q_n]$. Then $[P_1\cdots P_iQ_{j+1}\cdots Q_n]=[P_{i+1}\cdots P_mQ_1\cdots Q_j]$, so that

$$bP_1 \cdots P_i Q_{j+1} \cdots Q_n = aP_{i+1} \cdots P_m Q_1 \cdots Q_j$$

for some nonzero $a, b \in D$. Since S is a splitting multiplicative set, we have $a = s_1t_1$ and $b = s_2t_2$ for some $s_1, s_2 \in S$, $t_1, t_2 \in T$. Let $s_1D = I_1 \cdots I_e$, $t_1D = J_1 \cdots J_f$, $s_2D = I'_1 \cdots I'_l$, and $t_2D = J'_1 \cdots J'_k$ be prime factorizations, where each $[I_c], [I'_d] \in \mathcal{A}[S]$ and $[J_c], [J'_d] \in \mathcal{A}[T]$. Thus we have

$$(\ddagger) I_1' \cdots I_l' J_1' \cdots J_k' P_1 \cdots P_i Q_{j+1} \cdots Q_n$$

$$= I_1 \cdots I_e J_1 \cdots J_f P_{i+1} \cdots P_m Q_1 \cdots Q_j.$$

By (‡), the unique factorization of prime ideals, and Lemma 1, we have that $s_2P_1\cdots P_i=s_1P_{i+1}\cdots P_m$ and $t_2Q_{j+1}\cdots Q_n=t_1Q_1\cdots Q_j$. Thus $g=[P_1]+\cdots+[P_i]-[P_{i+1}]-\cdots-[P_m]=0$, so that $G[S]\cap G[T]=\{0\}$. Hence (2) holds. (Here is another proof: As mentioned earlier, $G[S]=\ker \varphi_1:\mathcal{C}l(D)\to\mathcal{C}l(D_S)$ and $G[T]=\ker \varphi_2:\mathcal{C}l(D)\to\mathcal{C}l(D_T)$ by Nagata's Theorem, where φ_1 and φ_2 are the natural homomorphisms. Then the natural map $\theta:\mathcal{C}l(D)\to\mathcal{C}l(D_S)\times\mathcal{C}l(D_T)$ is an isomorphism [4, Corollary 3.8], and $G[S]=\theta^{-1}(\{0\}\times\mathcal{C}l(D_T))$ and $G[T]=\theta^{-1}(\mathcal{C}l(D_S)\times\{0\})$ by the above comments. Hence $\mathcal{C}l(D)=G[S]\oplus G[T]$.

Hence, if $\mathcal{C}l(D)$ is indecomposable, then we may assume that $G[T] = \{0\}$. Thus $\mathcal{A}[T] = \emptyset$, and hence either T is generated by principal primes or T = U(D). If, in addition, D has no principal primes, then D has no nontrivial splitting multiplicative sets (cf., [8, Remark 2.6]).

Theorem 2 motivates the following two definitions.

DEFINITION 3. Let D be a Dedekind domain with realizable pair $\{Cl(D), A\}$. For a subgroup G of Cl(D), we call G a direct summand under A of Cl(D), or just an A-summand of Cl(D), if there exists a

partition $\mathcal{A} = \mathcal{G} \bigcup \mathcal{H}$ of \mathcal{A} with the property that $G = \langle \mathcal{G} \rangle$ and $\mathcal{C}l(D) = G \bigoplus \mathcal{H}$, where $H = \langle \mathcal{H} \rangle$. We denote this by $\mathcal{C}l(D) = G \bigoplus_{\mathcal{A}} \mathcal{H}$ or $\mathcal{C}l(D) = \langle \mathcal{G} \rangle \bigoplus_{\mathcal{A}} \langle \mathcal{H} \rangle$.

DEFINITION 4. Let D be a Dedekind domain with realizable pair $\{Cl(D), A\}$. For a subset \mathcal{B} of A, we say that \mathcal{B} is *subrealizable* if there exists an irreducible element coming from \mathcal{B} , i.e., there is an irreducible $x \in D$ such that $xD = P_1 \cdots P_n$ with each $[P_i] \in \mathcal{B}$.

If \mathcal{B} is subrealizable, set

$$S[\mathcal{B}] = \langle \{x \in \mathcal{I}(D) | xD = P_1 \cdots P_n \text{ and each } [P_i] \in \mathcal{B} \} \rangle,$$

the multiplicative set generated by the set of all irreducibles coming from the classes in \mathcal{B} . For completeness, we define $S[\emptyset] = U(D)$ and accept \emptyset as subrealizable. Clearly S[A] is the multiplicative subset of D generated by the set of all irreducible, but not prime, elements of D. Therefore, if D has no principal primes, then $S[\emptyset] = U(D)$ and $S[A] = D^*$. Let $G = \langle \mathcal{G} \rangle$ be an A-summand of $\mathcal{C}l(D)$. Then \mathcal{G} is subrealizable (cf., Theorem 5). If Cl(D) is torsion, then each $\mathcal{B} \subseteq \mathcal{A}$ is subrealizable. In general, if $\mathcal{B} = \{[P]\}$, then \mathcal{B} is subrealizable if and only if P is nonprincipal with $|P| < \infty$. In this case, we denote S[B] by S[P]. Let P be a nonzero prime ideal of D. Following [6], we set $\mathcal{H}_P = P \cap \mathcal{I}(D)$ and $\mathcal{H}_{[P]} = \bigcup \{\mathcal{H}_Q | Q \in X^{(1)}(D) \text{ and } [Q] = [P] \}$. Then $\mathcal{H}_{[P]}$ is an Fset [6, Theorem 1.7]. As in [1], we say that a saturated multiplicative set $S \neq U(D)$ of D is a GCD-set if each pair of elements $x, y \in S$ has a gcd(x,y) in D (and hence in S). It is known that if $\mathcal{B} = \{[P]\}$ is subrealizable, then S[P] is a GCD-set if and only if [P] contains exactly one prime ideal, if and only if $S[P] = \langle x \rangle$, where $xD = P^n, n = |[P]|$ [1, Proposition 3.2]. On the other hand, if Cl(D) is torsion, then S[P]is a splitting multiplicative set of D if and only if $\mathcal{H}_{[P]}$ is an HF-set [9, Theorem 3.8], if and only if $S[P] \cap \mathcal{I}(D) = \mathcal{H}_{[P]}$ [6, Corollary 3.10].

Let $\mathcal{A} = \mathcal{G} \bigcup \mathcal{H}$ be a partition of \mathcal{A} and let G (resp., H) be the subgroup of $\mathcal{C}l(D)$ generated by \mathcal{G} (resp., \mathcal{H}). We next show that if D has no principal primes and $\mathcal{C}l(D) = G \bigoplus H$, then $S[\mathcal{G}]$ is a splitting multiplicative set and $S[\mathcal{H}]$ is the m-complement set for $S[\mathcal{G}]$. Also, Theorem 5 generalizes [8, Theorem 3.1].

THEOREM 5. Let D be a Dedekind domain with realizable pair $\{Cl(D), A\}$ and let $G \cup \mathcal{H}$ be a partition of A. Suppose that $Cl(D) = \langle G \rangle \bigoplus_{A} \langle \mathcal{H} \rangle$. Then

- (1) \mathcal{G} and \mathcal{H} are each subrealizable.
- (2) $S[\mathcal{G}]$ and $S[\mathcal{H}]$ are each splitting multiplicative subsets of D.
- (3) $\rho(D) = \max\{\rho(D_{S[\mathcal{G}]}), \rho(D_{S[\mathcal{H}]})\}.$

In particular, if D has no principal primes, then $S[\mathcal{H}]$ is the m-complement for $S[\mathcal{G}]$.

- *Proof.* (1) Assume that $\mathcal{G}, \mathcal{H} \neq \emptyset$. (Note that if $\mathcal{G} = \emptyset$, then $\mathcal{H} = \mathcal{A}$ and \emptyset and \mathcal{A} are each subrealizable.) Suppose that \mathcal{G} is not subrealizable. Then there exists an irreducible $x \in D$ having $xD = P_1 \cdots P_m Q_1 \cdots Q_n$, where each $[P_i] \in \mathcal{G}$, each $[Q_j] \in \mathcal{H}$, and $m, n \geq 1$. Then $0 \neq [P_1] + \cdots + [P_m] = -[Q_1] \cdots [Q_n] \in \langle \mathcal{G} \rangle \cap \langle \mathcal{H} \rangle$, a contradiction. Thus \mathcal{G} and \mathcal{H} are each subrealizable.
- (2) We may assume that D has no principal primes. Write $\langle \mathcal{G} \rangle = G$, $\langle \mathcal{H} \rangle = H$. Since $G \cap H = \{0\}$, there is no irreducible element having prime divisors from both \mathcal{G} and \mathcal{H} . Thus $S[\mathcal{G}]$ and $S[\mathcal{H}]$ are saturated and for each nonzero nonunit d of D, d=st, where $s \in S[\mathcal{G}], t \in S[\mathcal{H}]$. We claim that $tD \cap s'D = ts'D$ for all $s' \in S[\mathcal{G}]$. To see this, select $w \in tD \cap s'D$. Thus $w = tr_1 = s'r_2$ for some $r_1, r_2 \in D$. Let $tD = Q_1^{k_1} \cdots Q_n^{k_n}$, $s'D = P_1^{l_1} \cdots P_m^{l_m}$, where each $[Q_j] \in \mathcal{H}$ and each $[P_i] \in \mathcal{G}$. Then $Q_1^{k_1} \cdots Q_n^{k_n}(r_1D) = P_1^{l_1} \cdots P_m^{l_m}(r_2D)$. Since $\mathcal{G} \cap \mathcal{H} = \emptyset$, $r_1D \subseteq P_1^{l_1} \cdots P_m^{l_m} = s'D$ by the unique factorization of prime ideals in the Dedekind domain D. Thus $w \in ts'D$; so we have equality. Hence $S[\mathcal{G}]$ is a splitting multiplicative set of D.
- (3) Since principal primes play no role in determining $\rho(D)$ [8, Theorem 4.1], we have $\rho(D) = \max\{\rho(D_{S[\mathcal{G}]}), \rho(D_{S[\mathcal{H}]})\}$ by [8, Theorem 2.3(2)].

The "in particular" statement follows since $G \cap H = \{0\}$ implies that $\langle \mathcal{I}(D) - S[\mathcal{G}] \rangle = S[\mathcal{H}]$. Thus $S[\mathcal{H}]$ is the m-complement splitting set for $S[\mathcal{G}]$.

Let G be an abelian group and $C \subseteq G$. We say that C is an independent set in G if $n_1c_1 + \cdots + n_lc_l = 0$, $n_i \in \mathbb{Z}$, distinct $c_i \in C$, implies that each $n_ic_i = 0$.

COROLLARY 6. Let D be a Dedekind domain with realizable pair $\{Cl(D), A\}$. If $G \subseteq A$ is independent and each element of G is torsionfree, then G is not subrealizable; so $G = \langle G \rangle$ is not an A-summand of Cl(D).

Proof. Let \mathcal{G} be an independent set of \mathcal{A} . Suppose that \mathcal{G} is subrealizable. Then there exists $x \in \mathcal{I}(D)$ with $xD = P_1^{k_1} \cdots P_n^{k_n}$, where $[P_1], ..., [P_n] \in \mathcal{G}$ are distinct; so $k_1[P_1] + \cdots + k_n[P_n] = 0$. Thus $k_1 = \cdots = k_n = 0$, a contradiction. Hence there are no irreducible elements coming from \mathcal{G} . Thus, by Theorem 5(1), $G = \langle \mathcal{G} \rangle$ is not an \mathcal{A} -summand.

Combining Theorem 2 and Theorem 5, we have

THEOREM 7. Let D be a Dedekind domain with realizable pair $\{Cl(D), A\}$ and let S be a splitting multiplicative subset of D. Then there is a partition $A = \mathcal{G} \bigcup \mathcal{H}$ of A such that S is generated by $S[\mathcal{G}]$ with some set of principal primes, and the m-complement set T for S is generated by $S[\mathcal{H}]$ with the set of all principal primes not in S. In particular, if D has no principal primes, then there is a one-to-one correspondence between the set of splitting multiplicative subsets of D and the set of A-direct summands of Cl(D).

COROLLARY 8. ([4, Corollary 3.8]) Let D be a Dedekind domain with realizable pair $\{Cl(D), A\}$. Let G(resp., H) be a subgroup of Cl(D) generated by a subset G(resp., H) of A and let $Cl(D) = G \bigoplus_A H$. Then

- (1) $Cl(D)/G \cong Cl(D_{S[G]})$ and $Cl(D)/H \cong Cl(D_{S[H]})$.
- $(2) \ \mathcal{C}l(D) \cong \mathcal{C}l(D_{S[\mathcal{G}]}) \bigoplus \mathcal{C}l(D_{S[\mathcal{H}]}).$

Proof. (1) Note that $ker(\mathcal{C}l(D) \to \mathcal{C}l(D_{S[\mathcal{G}]})) = G$ and $ker(\mathcal{C}l(D) \to \mathcal{C}l(D_{S[\mathcal{H}]})) = H$ by Nagata's Theorem [10, Corollary 7.2]; so (1) holds. (2) This is clear from $\mathcal{C}l(D)/G \cong H$ and $\mathcal{C}l(D)/H \cong G$.

REMARK 9. Let D_i be a Dedekind domain with realizable pair $\{G_i, \mathcal{A}_i\}$, i = 1, 2, and let $0 \to G_1 \to G \to G_2 \to 0$ be a split short exact sequence. Then there exists a Dedekind domain D such that $\mathcal{C}l(D) = G$ (this is also known by Claborn's Theorem [10, Theorem 14.10]). To see this, let $\mathcal{A} = \{(\pm g, 0), (0, \pm h) | g \in \mathcal{A}_1, h \in \mathcal{A}_2\}$. By [12, Theorem 1.4], $\{G, \mathcal{A}\}$ is a realizable pair. Thus there exists a

Dedekind domain D such that $\mathcal{C}l(D) = G$. Let $\mathcal{G}_1 = \{(\pm g, 0) | g \in \mathcal{A}_1\}$, $\mathcal{G}_2 = \{(0, \pm h) | h \in \mathcal{A}_2\}$. Then $\mathcal{A} = \mathcal{G}_1 \bigcup \mathcal{G}_2$ is a partition of \mathcal{A} . By Theorem 5, $S[\mathcal{G}_1]$ and $S[\mathcal{G}_2]$ are each splitting multiplicative subsets of D, and if D has no principal primes, then $S[\mathcal{G}_2]$ is the m-complement set for $S[\mathcal{G}_1]$. In particular, if G_1 and G_2 are torsion abelian groups, then we may take $\mathcal{A} = \{(g,0),(0,h)|g \in \mathcal{A}_1,h \in \mathcal{A}_2\}$ since $\{G,\mathcal{A}\}$ is realizable if and only if \mathcal{A} generates G [12, Corollary 1.5]. In this case, $\rho(D) = \max\{\rho(D_1),\rho(D_2)\}$ (cf., [8, Theorem 3.1]).

The following corollary generalizes [7, Theorem 2.5].

COROLLARY 10. Let D be a Dedekind domain with realizable pair $\{Cl(D), A\}$. Suppose that $Cl(D) = \langle \mathcal{G} \rangle \bigoplus_{\mathcal{A}} \langle \mathcal{H} \rangle$ and \mathcal{G} is an independent subset of \mathcal{A} . Then

- (1) $\langle \mathcal{G} \rangle$ is a torsion subgroup of Cl(D).
- (2) $S[\mathcal{G}]$ is a splitting multiplicative set generated by an HF-set.
- (3) $\rho(D) = \rho(D_{S[G]}).$

In particular, if A is independent, then Cl(D) is torsion and D is an HFD.

- *Proof.* (1) Let g = [P] be a torsion free element in \mathcal{G} . For irreducible $x \in P$, we write $xD = P^nQ_1^{n_1}\cdots Q_k^{n_k}$, where $[P], [Q_1], ..., [Q_k]$ are distinct and $n_i \in \mathbb{Z}^+$. Assume that each $[Q_1], ..., [Q_j] \in \mathcal{G}$ and each $[Q_{j+1}], ..., [Q_k] \in \mathcal{H}$. Now, $n[P] + n_1[Q_1] + \cdots + n_j[Q_j] = -n_{j+1}[Q_{j+1}] \cdots n_k[Q_k] = 0$ since $\langle \mathcal{G} \rangle \bigcap \langle \mathcal{H} \rangle = \{0\}$. Since \mathcal{G} is independent, n[P] = 0, and hence n = 0, a contradiction. Thus $\langle \mathcal{G} \rangle$ is a torsion subgroup of $\mathcal{C}l(D)$.
- (2) By Theorem 5(2), $S[\mathcal{G}]$ is a splitting multiplicative set of D. Let $x_1 \cdots x_m = y_1 \cdots y_n$ with each $x_i, y_j \in D$ irreducible, but not prime. If the splitting multiplicative set $S[\mathcal{G}]$ contains exactly $x_1, ..., x_i$ and $y_1, ..., y_j$, then $x_1 \cdots x_i D = y_1 \cdots y_j D$ by [3, Corollary 1.4]. Since \mathcal{G} is independent, each irreducible r coming from the ideal classes in \mathcal{G} is of the form $rD = P_1 \cdots P_n$, where $[P_1] = \cdots = [P_n]$ and $n = |[P_i]|$ by (1). Hence $\{x \in \mathcal{I}(D) | xD = P_1 \cdots P_n, \text{ each } [P_i] \in \mathcal{G}\}$ is an HF-set (cf., [7, Theorem 2.5]).
 - (3) It follows directly from [8, Theorem 2.10].

The "in particular" statement now follows since $\mathcal{A} = \mathcal{A} \bigcup \emptyset$ and $S[\mathcal{A}]$ is the multiplicative set generated by the set of all irreducible, but not prime, elements of D.

We close with a corollary.

COROLLARY 11. ([9, Theorem 3.8]) Let D be a Dedekind domain with torsion divisor class group $\{Cl(D), A\}$. Then the following statements are equivalent.

- (1) A is independent.
- (2) For each subset \mathcal{B} of \mathcal{A} , $S[\mathcal{B}]$ is a splitting multiplicative set.
- (3) For each nonprincipal prime ideal P of D, S[P] is a splitting multiplicative set.
- (4) For each nonprincipal prime ideal P of D, $\mathcal{H}_{[P]}$ is an HF-set.
- (5) For each $\emptyset \neq \mathcal{C} \subseteq \mathcal{A}$, $\bigcup_{[P] \in \mathcal{C}} \mathcal{H}_{[P]}$ is an HF-set.
- (6) For each nonprincipal prime ideal P of D, $\mathcal{H}_{[P]} = S[P] \cap \mathcal{I}(D)$.

Proof. (1) \Rightarrow (2) Suppose that \mathcal{A} is independent. Since $\mathcal{C}l(D)$ is torsion, each subset \mathcal{B} of \mathcal{A} is subrealizable and $\mathcal{A} = \mathcal{B} \bigcup (\mathcal{A} - \mathcal{B})$ is a partition of \mathcal{A} . Now, we may assume that $\emptyset \neq \mathcal{A} - \mathcal{B} \subset \mathcal{A}$. Let G (resp., H) be a subgroup of $\mathcal{C}l(D)$ generated by \mathcal{B} (resp., $\mathcal{A} - \mathcal{B}$). We show that $\mathcal{C}l(D) = G \bigoplus H$. Select $g \in \mathcal{C}l(D)$. Since $\mathcal{C}l(D)$ is a torsion abelian group, \mathcal{A} generates $\mathcal{C}l(D)$ as a monoid; so $g = [P_1] + \cdots + [P_n]$, where each $[P_i] \in \mathcal{A}$. Since $\mathcal{B} \bigcup (\mathcal{A} - \mathcal{B})$ is a partition of \mathcal{A} , we have $g \in G + H$. Let $g \in G \cap H$. Thus $g = [P_1] + \cdots + [P_k] = [Q_1] + \cdots + [Q_l]$, where each $[P_i] \in \mathcal{B}$ and each $[Q_j] \in \mathcal{A} - \mathcal{B}$. This implies that $[P_1] + \cdots + [P_k] - [Q_1] - \cdots - [Q_l] = 0$. Since \mathcal{A} is independent, we have that g = 0. By Theorem 5, $S[\mathcal{B}]$ is a splitting multiplicative set. (2) \Rightarrow (3) and (5) \Rightarrow (4) are both clear. (3) \Rightarrow (4), (4) \Rightarrow (1), and (4) \Leftrightarrow (6) follow from [9, Theorem 3.8], while (4) \Rightarrow (5) follows from [6, Corollary 3.11].

ACKNOWLEDGEMENT. We would like to thank referee for several useful suggestions.

References

- D. D. Anderson, D. F. Anderson, and J. Park, GCD-sets in integral domains, Houston J. Math. 25 (1999), 15-34.
- [2] D. D. Anderson, D. F. Anderson, and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), 1-19.
- [3] _____, Factorization in integral domains, II, J. Algebra 152 (1992), 78-93.
- [4] _____, Splitting the t-class group, J. Pure Appl. Algebra 74 (1991), 17-37.
- [5] D. F. Anderson, Elasticity of factorizations in integral domains, a survey, Lecture Notes in Pure and Applied Mathematics, vol. 189, Marcel Dekker, New York, 1997, pp. 1–29.

- [6] D. F. Anderson, S. Chapman, and W. W. Smith, Factorization sets and half-factorial sets in integral domains, J. Algebra 178 (1995), 92-121.
- [7] ______, Overring of half-factorial domains II, Comm. Algebra 23 (1995), 3961–3976.
- [8] D. F. Anderson, J. Park, G. Kim, and H. Oh, Splitting multiplicative sets and elasticity, Comm. Algebra 26 (1998), 1257-1276.
- [9] D. F. Anderson and J. Park, Locally half-factorial domains, Houston J. Math. 23 (1997), 617-630.
- [10] R. M. Fossum, The Divisor Class Group of a Krull Domain, Springer, New York, 1973.
- [11] R. Gilmer, W. Heinzer, and W. W. Smith, On the distribution of prime ideals within the ideal class group, Houston J. Math. 22 (1996), 51-59.
- [12] A. Grams, The distribution of prime ideals of a Dedekind domain, Bull. Austral. Math. Soc. 11 (1974), 429-441.
- [13] J. L. Mott, Convex directed subgroups of a group of divisibility, Canad. J. Math. 26 (1974), 532-542.
- [14] J. L. Mott and M. Schexnayder, Exact sequences of semi-value groups, J. Reine Angew. Math. 283/284 (1976), 388-401.
- [15] R. J. Valenza, Elasticity of factorization in number fields, J. Number Theory 36 (1990), 212-218.
- [16] A. Zaks, Half-factorial domains, Israel J. Math. 37 (1980), 218-302.

DAVID F. ANDERSON, DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37996, U.S.A *E-mail*: anderson@math.utk.edu

Jeanam Park, Department of Mathematics, Inha University, Incheon 402-751, Korea

E-mail: jnpark@math.inha.ac.kr