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SPLITTING MULTIPLICATIVE
SETS IN DEDEKIND DOMAINS

Davip . ANDERSON AND JEANAM PARK

ABSTRACT. Let D be a Dedekind domain with divisor class group
Cl{D). We show that there is a correspondence between the set
of splitting multiplicative subsets in D and certain subgroups of
Cl{D).

Let D be an integral domain. As in [14] and [3], we say that a
saturated multiplicative set S of D is a splitting multiplicative set if
for each nonzero d € D, d = sa for some s € § and a € D with
¢DaD = s'aD for all s’ € S. Then T = {0 # t € D|sD(tD = stD
for all s € S} is also a splitting multiplicative set, ST = D — {0}, and
ST = U(D), where U(D) is the group of units of D. We call T the
m-complement set for S.

Mott [13, Theorem 2.1} showed that there is a one-to-one correspon-
dence between the set of saturated multiplicative subsets of D and the
set of convex directed subgroups of G(D), the group of divisibility of D,
given by S — (S) = {s1/s2U(D)|s1, 32 € S}. Moreover, for a saturated
multiplicative set S of D, the subgroup (S} of G(D) is a cardinal sum-
mand of G(D) if and only if § is a splitting multiplicative set of D [14,
Proposition 4.1].

Let .S be a splitting multiplicative subset of D with T the m-comple-
ment set for S. In [4, Corollary 3.8}, it was shown that the natural group
homomorphism Cly(D} — Cly{Ds) x Cli(Dr) is an isomorphism, where
Cl(D), the t-class group of D, is the group of (fractional) t-invertible
t-ideals of D modulo its subgroup of principal ideals. We recover this
result (for D a Dedekind domain) in Corollary 8.
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In this paper, we show that if D is a Dedekind domain with divisor
class group CI(D), then there is a correspondence between the set of
splitting multiplicative sets of D and certain subgroups of CI(D). In
particular, if D has no principal primes, then there exists a one-to-one
correspondence between the set of splitting multiplicative subsets of D)
and the set of .A-summands of CI(D) (see Definition 3).

An integral domain D is atomic if each nonzero nonunit of D is a
product of irreducible elements. Following Zaks {16], we define D to
be a half-factorial domain (HFD) if D is atomic and for any irreducible
elements &1, ..., Ty, Y1, -, Y f Dwith zy -+ - Ty = Y1+ -+ Yn, then m = n.
Following Valenza [15], we define the elasticity of an atomic integral
domain I} as

p(DY} = sup{ % |Z1 - Tm = Y1+ Y for irreducible ;,3; € D},

(Define p(D) = 1 if D is a field.) Notice that 1 < p(D) < oo, and
p(D) = 1 if and only if D is an HFD. Thus p{D) measures how far D is
from being an HFD.

Let D be an atomic integral domain and let F be a nonempty subset
of Z(D), the set of irreducible elements of D. Suppose that

() T Ly = UYL Yny

where u € U(D}and 1, ..., T, Y1, -y Yn € Z{D). Set F(z) = {i|z: € F}
and F(y) = {jly; € F}. Following [6], we say that F is a factorization
set (F-set) of D if for any equality (involving irreducibles) of the form
(1), |F(x)| # O implies that |F(y)| # 0, and that F is a half-factorial
set (HF-set) if any equality of the form (}) implies that |F(z)| = {F(y)|-
Clearly an HF-set is also an F-set. F-sets and HF-sets are studied in
detail in [6].

Let D be an atomic integral domain and let S be a splitting multi-
plicative set of D with T the m-complement for §. Then Dg and Dr
are also atomic [3, Corollary 2.2, and p(D) = max{p(Ds), p(Dr)} [8,
Theorem 2.3]. Moreover, the values p(Dg) < p(D) may be arbitrary
[8, Theorem 2.7] (i.e., for each r,s € [1,00] with 7 < s, there exists
a Dedekind domain D with a splitting multiplicative set S such that
p(Ds) = r < s = p(D)). However, if S is generated by an HF-set, then
p(D) = p(Ds) [8, Theorem 2.11].

Throughout, we will assume that D is a Dedekind domain with CI(D)
its divisor class group, [I] the ideal class of I in CI(D), U(D) its group of
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units, D" its set of nonzero elements, § C D* a multiplicative subset of
D, X}(D) its set of nonzero (maximal) prime ideals, and Z(D) its set
of irreducible elements. A multiplicative set S is generated by C C D*,
and written (C}, if § = {uey - cp|u € U(D), eachc; € C,n > 0}. Fora
group G and C C G, we also denote by (C) the subgroup of G generated
by C. To avoid trivialities, we will assume that D is not a UFD (PID),
i.e., Cl{D) # {0}. For general references on factorization in integral
domains, see [2, 3].

If for a given abelian group G and subset A C G — {0} there exists
a Dedekind domain D such that CI(D} = G and A = {[P]|P is prime
ideal of D and [P} # 0}, then the pair {G, A} is called realizable [12],
[11]. For D a Dedekind domain with realizable pair {CI(D), A} and S a

gaturated multiplicative subset of D, set
A[S) = {[P)| PN S #0} C A

Let G[S] be the subgroup of Ci(D) generated by A[S]. It is possible
that A[S] = @ (for example, if S is generated by principal primes, or if
S = U(D)). Note that A[S] = @ if and only if G[S] = {0}. By Nagata’s
Theorem (10, Corollary 7.2], G[S] = ker ¢, where ¢ : CI{D) — Cl(Dg)
is the natural homomorphism.

For future reference, we include a result from [4, page 27].

LEMMA 1. Let D be a Dedekind domain and let § be a splitting
multiplicative set with T the m-complement for S. If P is a nonzero
prime ideal of D, then either P(S # @ or P[\T # 0, but not both.

Proof. We may assume that S is nontrivial. By definition, either
PNS # @ or PNT # @. If both PNS # ¢ and PNT # @, then
P contains irreducible elements x € S and y¥ € T. Then, by definition,
zD(yD = zyD, and hence P 2 (z,y) = (z,¥), = D, a contradiction.OJ

THEOREM 2. Let D be a Dedekind domain with realizable pair {CI(D),
A} and let S be a splitting multiplicative set with T the m-complement
for §. Then

(1) A= A[S]U.A[T] is a partition of A.
(2) €i(D) = CG{S| P GIT).
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Proof. (1) follows from Lemma 1. .

(2) Since A generates Ci(D), CI(D) = G[S] + G[T] by (1). Let g €
G[S]N G[T). Since G[S] (resp., G{T]) is generated by A[S] (resp., A[T]),
we may write g = £[P] £ - £ [P,] = £[@Q1] £ - - £ [@.], where each
[P;] € A[S] and each [Q;] € A[T]. Thus we may assume that g =
[P+ [P~ (Pear] ~ -~ [P = Q]+ +[Qs] = [Qyar] = Qs
Then [Py PiQj41++ @n] = [Piy1+ - Pn@Q1--- Qy], so that

bPL - PiQyi1++ Qn = aPig1 - PrQ1 - Q)

for some nonzero a,b € D. Since § is a splitting multiplicative set,
we have a = s1¢; and b = s5t, for some $1,82 € 8, t1,t3 € T. Let
31D=11"'Ie, t1D=J1"'Jf, 32D=I{I{, and t2D= J{J;g be
prime factorizations, where each [I],[I]] € A[S] and [J.], [J}] € A[T].
Thus we have

) O BJ - kPro - PiQjt1+ Qn
L Ly TP PaQ Q.

By (1), the unique factorization of prime ideals, and Lemma 1, we have
that 82P1 e .P% = SIP,;+1 v Pm and t2Qj+1 te Qn = tlQl T Qj- Thus
9= [Pil++[P]— [Psa] — - — [Pn] = 0, s0 that G[S]\GIT] =
{0}. Hence (2) holds. (Here is another proof: As mentioned earlier,
G[S] = ker 1 : CI(D) — Cl(Dg) and G[T'] = ker ¢, : CI(D) — Cl(Dr)
by Nagata’s Theorem, where ¢; and @3 are the natural homomor-
phisms. Then the natural map @ : Ci(D) — CI(Dg) x Cl{Dy) is an
isomorphism [4, Corollary 3.8], and G[S] = 87'({0} x CI{D7)) and
G[T] = 67(CI(Ds) x {0}) by the above comments. Hence CI(D) =
G[S) B G[T). a

Hence, if C{(D) is indecomposable, then we may assume that G[T] =
{0}. Thus A[T] = #, and hence either T is generated by principal primes
or T'=U(D). If, in addition, D has no principal primes, then D has no
nontrivial splitting multiplicative sets (cf., [8, Remark 2.6]).

Theorem 2 motivates the following two definitions.

DEFINITION 3. Let D be a Dedekind domain with realizable pair
{€i(D), A}. For a subgroup G of CI(D), we call G a direct summand
under A of CI(D), or just an A-summand of CI(D), if there exists a
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partition A = G|JH of A with the property that G = (G) and CI(D) =
G H, where H = (H). We denote this by Cl(D) = G4 H or

Cl(D) = (G) D 4(R)-

DEFINITION 4. Let D be a Dedekind domain with realizable pair
{Cl(D), A}. For a subset B of A, we say that B is subrealizable if there
exists an irreducible element coming from B, i.e., there is an irreducible
x € D such that xD = P, -- - P,, with each {P;] € B.

if B is subrealizable, set
S[B]={{zx € Z(D)|zD = P, - - - P, and each [P} € B} ),

the multiplicative set generated by the set of all irreducibles coming from
the classes in B. For completeness, we define S[f] = U(D) and accept @
as subrealizable. Clearly S{.4] is the multiplicative subset of D generated
by the set of all irreducible, but not prime, elements of D. Therefore,
if D has no principal primes, then S[@} = U(D) and S[A] = D*. Let
G = {G) be an A-summand of CI{D). Then G is subrealizable (cf.,
Theorem 5). If CI(D) is torsion, then each B C A is subrealizable.
In general, if B = {[P]}, then B is subrealizable if and only if P is
nonprincipal with |[P]| < co. In this case, we denote S[B] by S[P]. Let
P be a nonzero prime ideal of D. Following [6], we set Hp = PNI(D)
and Hip) = U{Hg|Q € XM(D) and [Q] = [P]}. Then H;p) is an F-
set [6, Theorem 1.7]. As in [1], we say that a saturated multiplicative
set S # U{D) of D is a GCD-set if each pair of elements z,y € S has
a ged(z,y) in D (and hence in S). It is known that if B = {[P]} is
subrealizable, then S[P] is a GCD-set if and only if [P] contains exactly
one prime ideal, if and only if S[P] = (z}, where zD = P n = |[P]|
[1, Proposition 3.2]. On the other hand, if CI(D) is torsion, then S[P}
is a splitting multiplicative set of D if and only if H;p) is an HF-set 9,
Theorem 3.8], if and only if S[P}NZ(D) = H(p) [6, Corollary 3.10].

Let A = G|JH be a partition of A and let G (resp., H) be the
subgroup of Cl{D) generated by G (resp., H). We next show that if D
has no principal primes and Cli(D) = G @ H, then S[G] is a splitting
multiplicative set and S[H] is the m-complement set for S[G]. Also,
Theorem 5 generalizes [8, Theorem 3.1].
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THEOREM 5. Let D be a Dedekind domain with realizable pair {CI(D),
A} and let G| JH be a partition of A. Suppose that Cl(D) = (G) B ,(H).
Then

(1) G and H are each subrealizable.
(2) S[G] and S[H] are each splitting multiplicative subsets of D.

(3) p(D) = maz{p(Dgig)), (Dsiny) }-
In particular, if D has no principal primes, then S[H| is the m-
complement for S{G|.

Proof. (1) Assume that G, H # 0. (Note that if G = 0, then H = A
and @ and A are each subrealizable.) Suppose that G is not subrealizable.
Then there exists an irreducible z € D having zD = Py -+ P, Q1 -+ @,
where each [P;] € G, each [Q;] € H, and m,n > 1. Then 0 # [P]+---+
[Pr]) = —[@Q1] — -+ — [@n] € (G)N{H), a contradiction. Thus G and H
are each subrealizable.

(2) We may assume that D has no principal primes. Write (G) =
G,{H) = H. Since G| H = {0}, there is no irreducible element having
prime divisors from both G and H. Thus S[G] and S[H] are saturated
and for each nonzero nonunit d of D, d = st, where s € S[G],t €
S[H]. We claim that tD[s'D = ts'D for all s’ € S[G]. To see this,
select w € tD()s'D. Thus w = tr; = §'ry for some ry,r2 € D. Let
tD = Q¥...QF~, 'D = Pj*-.. Pl», where each [Q;] € ‘H and each
[P;] € G. Then Q% -..Q%~(r; D) = P ... Plm(ryD). Since G(VH = 0,
rD C Pf‘ e P,‘,;ﬂ = ¢'D by the unique factorization of prime ideals in
the Dedekind domain D. Thus w € ts’D; so we have equality. Hence
S[G] is a splitting multiplicative set of D.

(3) Since principal primes play no role in determining p(D) 8, The-
orem 4.1], we have p(D) = maz{p(Dgig). p(Dsprq)} by [8, Theorem
2.3(2)].

The “in particular” statement follows since G| H = {0} implies that
(Z(D) — S[G}) = S[H]. Thus S[H] is the m-complement splitting set for
S[G]. 0

Let G be an abelian group and C C G. We say that C is an indepen-
dent set in G if niey + - +me = 0, ngy € Z, distinet ¢; € C, implies
that each n;e; = 0.
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COROLLARY 6. Let D be a Dedekind domain with realizable pair
{Cl(D), A}. IfG C A is independent and each element of G is torsionfree,
then G is not subrealizable; so G = (G) is not an A-summand of CI(D).

Proof. Let G be an independent set of A. Suppose that G is subre-
alizable. Then there exists z € Z(D) with D = Pf*... P where

n !

[P1],...,[Pn] € G are distinct; so k[P1] + -+ + kn[Py] = 0. Thus

k, = --- = k, = 0, a contradiction. Hence there are no irreducible
elements coming from §. Thus, by Theorem 5(1), G = (G) is not an
A-summand. a

Combining Theorem 2 and Theorem 5, we have

THEOREM 7. Let D be a Dedekind domain with realizable pair {Cl1(D),
A} and let S be a splitting multiplicative subset of D. Then there is a
partition A = G|JH of A such that S is generated by S[G| with some
set of principal primes, and the m-complement set T' for S is generated
by S[H] with the set of all principal primes not in §. In particular, if
D has no principal primes, then there is a one-to-one correspondence
between the set of splitting multiplicative subsets of D and the set of
A-direct summands of CI(D).

COROLLARY 8. ([4, Corollary 3.8]) Let D be a Dedekind domain
with realizable pair {Cl(D), A}. Let G(resp., H) be a subgroup of C{(D)
generated by a subset G(resp., H) of A and let CI(D) = G 4, H. Then

(1) CI(D)/G = CE(DS[g]) and Cl(D)/H = Cl(DS[H]).
(2) CUD) = CU(Dsig)) D CUDsir)-

Proof. (1) Note that ker(Cl(D) — Cl{Dgig))) = G and ker(Cl(D) —
Cl{Dspw)) = H by Nagata’s Theorem [10, Corollary 7 .2]; so (1) holds.
(2) This is clear from CI(D)/G = H and CI(D)/H = G. O

REMARK 9. Let D; be a Dedekind domain with realizable pair
{Gi, A}, i = 1,2, and let 0 — G; — G — Gg — 0 be a split
short exact sequence. Then there exists a Dedekind domain D such
that CI(D) = G (this is also known by Claborn’s Theorem [10, The-
orem 14.10]). To see this, let A = {(+g,0},(0,+h}|lg € A1,h € A2}
By [12, Theorem 1.4|, {G, A} is a realizable pair. Thus there exists a
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Dedekind domain D such that C{(D) = G. Let G; = {(+g,0)|g € A1},
Ga = {(0,xh)|jh € Az}. Then A = G;|JG, is a partition of A. By
Theorem 5, S[G] and S[Gs] are each splitting multiplicative subsets of
D, and if D has no principal primes, then S[G>] is the m-complement
set for S[G,]. In particular, if G; and G, are torsion abelian groups,
then we may take A = {(g,0),(0,h})|g € A1, h € Ay} since {G, A} is
realizable if and only if A generates G [12, Corollary 1.5]. In this case,
p(D}) = maz{p(Dy), p(D2)} (cf., [8, Theorem 3.1]).

The following corollary generalizes [7, Theorem 2.5].

CoOROLLARY 10. Let D be a Dedekind domain with realizable pair
{CU(D), A}. Suppose that CI(D) = (G) @ ,(H) and G is an independent
subset of A. Then

(1) {(G) is a torsion subgroup of CI(D).

(2) S[G] is a splitting multiplicative set generated by an HF-set.

(3) a(D) = p(Dsig))-

In particular, if A is independent, then CI(D) is torsion and D is an
HFED.

Proof. (1) Let ¢ = [P] be a torsion free element in G. For irre-
ducible x € P, we write D = P"QT"' --- Q7*, where [P, [Q1],-.., [Qx]
are distinct and n; € ZF. Assume that each [@1), ..., [@;] € G and each
[@Qj+1], .., [Qx] € H. Now, n[P]+n,[Q1]+-- +n;[Q;] = =111 [Qj41] -
-+ —n[Qx] = O since (G) [{H) = {0}. Since G is independent, n[P] = 0,
and hence n = 0, a contradiction. Thus (G) is a torsion subgroup of
cyD).

(2) By Theorem 5(2), S[G] is a splitting multiplicative set of D. Let
- Tm = Y1 Yn with each z;,y; € D irreducible, but not prime.
If the splitting multiplicative set S[G] contains exactly z1,...,z; and
Y1; - Yy, then zy -2, D =y - -y;D by (3, Corollary 1.4]. Since G is
independent, each irreducible » coming from the ideal classes in G is of
the form rD = P, .- P,, where [P}] =--- =[P,] and n = |[B}]{ by (1).
Hence {z € Z(D)|xD = P, -+ P,, each[P;] € G} is an HF-set (cf., |7,
Theorem 2.5]).

(3) 1t follows directly from [8, Theorem 2.10)].

The “in particular” statement now follows since A = .A|J# and S[A]
is the multiplicative set generated by the set of all irreducible, but not
prime, elements of D. O
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We close with a corollary.

COROLLARY 11. ([9, Theorem 3.8]) Let D be a Dedekind domain
with torsion divisor class group {Cl(D),.A}. Then the following state-
ments are equivalent.

(1) A is independent.

(2) For each subset B of A, S[B] is a splitting multiplicative set.

(3) For each nonprincipal prime ideal P of D, S[P) is a splitting
multiplicative set.

(4) For each nonprincipal prime ideal P of D, H|p| is an HF-set.

(5) For each 0 # C C A, |Jipjec Hip) is an HF-set.

(6) For each nonprincipal prime ideal P of D, H[p) = S{P][1Z(D).

Proof. (1) = (2) Suppose that A is independent. Since CI(D) is
torsion, each subset B of A is subrealizable and A = B|J(A — B) is a
partition of A. Now, we may assume that § # A—B C A. Let G (resp.,
H) be a subgroup of CI{D) generated by B (resp., A — B). We show
that Ci(D) = Gp H. Select g € CI(D). Since CI(D) is a torsion abelian
group, A generates CI{D) as a monoid; so g = [Py] + - -+ + [Py, where
each [P;] € A. Since B|J(A— B) is a partition of A, we have g € G+ H.
Let g € G H. Thus g = [Pi}+- -+ [P] = [@1] + - -+ [Q:], where each
[P;] € B and each [Q;] € A—B. This implies that [P1}+-- -+ [Px] - [Q1] -
---—[@i] = 0. Since A is independent, we have that g = 0. By Theorem
5, S[B] is a splitting multiplicative set. (2) = (3) and (5) = (4) are
both clear. (3) = (4), {4) = (1), and {4) & (6) follow from {9, Theorem
3.8, while (4) = (3) follows from [6, Corollary 3.11]. O
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