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ON A CHARACTERIZATION OF LINEAR OPERATORS

KIL-WoUNG JUN AND YANG HI LEE

ABSTRACT. We obtain a characterization of linear operators on
vector spaces and homomorphisms on algebras applying the stabil-
ity properties of functional equations.

1. Introduction

In 1941 Hyers [3] showed that if § > 0 and f : Fy — Eb, is a mapping
with E; and E; Banach spaces, such that

If(z+y)— fl@)—fll <9 forall =z,yeE,

then there exists a unique additive mapping T : By — E3 such that

If(z) = T(z)f <o

for all 2 € Ey, and if f(fz) is continuous in ¢ for each fixed z, then T is
3 linear mapping,

Rassias [7] and Gajda [1] gave some generalizations of the Hyers’
result in the following ways : Let f : By — E3 be a mapping such that
f(tz) is continuous in ¢ for each fixed x. Assume that there exist ¢ > 0
and p 5 1 such that

Ifz +y) - flz) ~ FWll
lzll? + Iyl -

for all z,y € E.

Then there exists a unique linear mapping T : E; — Eo such that

17 — f@I _ 26
T

for all z € E5.

Received November 30, 2000.

2000 Mathematics Subject Classification: 47H15.

Key words and phrases: additive mapping, linear mapping, homomorphism,
stability.

This work was supported by grant Ne. 2000-2-10100-003-5 from the KOSEY.



436 Kil-Woung Jun and Yang Hi Lee

However, it was showed that the similar result for the case p = 1 does
not hold(see [8]). Recently, Givruta [2] also obtained a further general-
ization of the Hyers-Rassias’ theorem. Székelyhidi [9] gave the following
result: Let X be a real or complex vector space, B a normed space and
let f,g,h: X — B be functions. Let

D(z,y,A) = f(Az +y) — Ag(z) — Aly)
for any z,¥ € X and scalar A. If ® is bounded for large A, then g is
linear. In this paper, we obtain a characterization of linear operators
on vector spaces and homomorphisms on algebras applying the stability
properties of functional equations.

2. Main results

Jun, Shin and Kim [6] generalized the result of Gavruta in the fol-
lowing theorem.

THEOREM 2.1. Let G be an abelian group and X a Banach space.
Denote by ¢ : G x G — [0,00) a mapping such that

o
Bz, y) = > _ 2 Fp(25z,2%y) < oo
k=0
for all z,y € G. Suppose f,g,h : G — X are mappings satisfying

(1) £z +y) — g(x) — Rl < (=, y)
for all z,y € G. Then there exists a unique additive mappingT : G — X
such that

1£() - T@I <Ig(O)ll + IRO)] + 55z, ) + 55(2,0) + 35(0,2)
forallz € G.

REMARK. In the proof of [6], they also showed that T'(z) = lim

0

f(2"z)/2" = lim g(2"z)/2" = lim h(2"z)/2". Furthermore, we have
n—od TT— 00
1. 1. 1.
lotz) = T(@) <NFO)I -+ RO + 56(22, —2) + 55(2,0) + 56(x, —x)
forall z € G.

Ih(z) = T@) <IF OV + 1Ol + 58(~ 20) + 55(0,2) + 56(~,2)
for all x € G.
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THEOREM 2.2, Let G be a real or complex vector space and X a
normed space. Let w(x,y) be as in Theorem 2.1. Suppose f,g,h: G —
X are mappings satisfying

(2) IF(2"z +y) — 2%9(z) - h(W)I| < ©(2"2,y)

for any z,y € G and for any positive integer n. Then g is an additive
mapping such that

() = g(@)I| < |A(0)]| + ¢(z,0) forall z€G.
In particular, g{z) = lim f(2"z)/2" for all z € G.
n—oo
Proof. Replacing y = 0, (2) gives

1) IOl (2'2,0)

1552 - g(@)l < ”

Since @(z,0) < oo, lim ¢(2"%,0}/2" = 0. From this lim f(2"z)/2"
n— 00 n—o0

exists for all fixed z in X and is equal to g(x). For the case n = 0, (2)

can be written by

If{z+y) —9(z) — (Y| < p(z,y) foral z,y€G.

We can regard f,g,h : G — X as f,g,h : G — X, where X is a
completion of X. By Theorem 2.1, lim f(2"z)/2" = g(zx) is additive.O]

CoOROLLARY 2.3. Let G, X and ¢ be as in Theorem 2.2. Suppose
f.g: G — X are mappings satisfying

(2) 1£(2"2 +y) — 2" f(z) — gl < (22, y)
for any z,y € G and for any positive integer n. Then f is additive.

THEOREM 2.4. Let G, X and ¢ be as in Theorem 2.2. If f,g,h
G — X are mappings satisfying

) 1f(Az + ) — dglz) — h(y)ll < oAz, y)

for any z,y € G and scalar A, then g is a linear mapping such that

(£ (@) — g(z)|| < RO} + ¢(2,0) forall =€ G.
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Proof. By Theorem 2.2, g is additive and lim f(2"z)/2" = g(z) for
all z € G. Let u be a fixed nonzero scalar. Replacing y = 0 and A = 2%y,
(3} gives

f(2%ux h{0 w(2" px, 0
L) RO o0
2 2 2

From this we have

. 2" ux
(4) Jim f(2—,iu) = py().
On the other hand,

. 2%ux
) tim T2 _ o)

n—oed
By (4) and (5),
g(pz) = pg(z)-

Since g is additive, g is linear. O

COROLLARY 2.5. Let G, X and ¢ be as in Theorem 2.2. If f,g :
G — X are mappings satisfying

(6) | f(Az +y) = Af(z) — g}l < w(Az,y)

for any z,y € G and scalar A, then f is linear.

The above technique can be employed for a stability-type character-
ization of homomorphism on algebras.

THEOREM 2.6. Let G be a real or complex algebra with the ideniity
e and X a normed algebra with identity. Let ¢ be as in Theorem 2.2.
Let f,g,h,k : G — X be mappings where g(e), h(e) are invertible. If

(7) If (Azy + 2) — Agl@)h(y) — k(2| < p(Azy, 2)

for any z,vy,z € G and scalar )\, then g(e)~1g and h(-)h(e)~! are homo-
morphisms from G into X such that

I1f (=) — g@)h(e)ll < KO} + ¢(z,0) forall z€G.
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Proof. Putting y = e in (7), we obtain
£ (Az + z) — Ag(x)h(e) — k(2)|| < @(Az,2)

for any z,z € G. By Theorem 2.4, we obtain g(-}h(e) is linear,

(8) lim f(Z'2) = g(z)h(e) foral zeG

n—oo 2N

and
[ f(z) — g(@)h(e)ll < [kO)]| + ¢(z,0) forall z €.

By symmetry, g(e)h is linear and

(9) lim F2y) =g(e)h(y) forall yeG.

n—oo 21

Let y be any fixed element of G. Replacing z by 2y in (7), we obtain

Ilf (Azy -+ 2y} — Ag(z)h(y) — k(zv)]| < e(Azy, zy)

for any =,z € G. Define fi,01,h1 : G — X by fi(z) = f(zy), q1(z) =
g{z)h(y) and ki (z) = k(zy). Define ¢ : G x G — [0,00) by ¢1(x, 2) =
w(zry, zy). We obtain

[f1(Az + 2) — A1 (2) — k1 (2) |} < o1(Az, 2)

for any z,2 € G and @((z,2) = @(zy,zy) < oo for all z,z € G. By
Theorem 2.4,

(10) lim f(2"z) =gq(z) forall ze€G.

n—oo 27
From (8), (9) and (10),
(11)  glzy)h(e) = gle)h(zy) = g(z}h(y) forany z,y€G.

Let v : G — X be defined by ¥(x) = gle)~'g(z) = h{z)h(e)~!. Then
3 is a well-defined linear map and

P(zy) = gle) ' glzy) = gle) 'g(z}h(y)hle)?
= g(e) 'g(z)g(e) " g(y) = ¥(z)¥(y)

since g(e) and h(e) are invertible. This completes the proof. O
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COROLLARY 2.7. Let G, X and ¢ be as in Theorem 2.6. Let f,g,h:
G — X be mappings where f(e), g(e) are invertible. If

I (xey + 2) = AMf(@)g(y) — A2)l| < w(Azy, 2)

for any x,y, 2 € G and scalar A, then g is a homomorphism.

Proof. By Theorem 2.6, f(e)~'f and g(-)g(e)~" are homomorphisms.

By (9), fzme)
. 2%e
fle) = nh_.IEog—n = f(e)gle)-
From this, g(e) is an identity and g is a homomorphism. d

COROLLARY 2.8. Let G, X and ¢ be as in Theorem 2.6. Let f,g:
G — X be mappings where f(e) is invertible. If

IfAzy + 2) = A (2)f(y) — 9(2)|| < p(Azy, 2)
for any z,y,z € G and scalar A, then f is a homomorphism.

REMARKS. (I) Let X be a commutative normed algebra with identity.
In Theorem 2.6, we can replace the condition that g(e), h(e) are invert-
ible by the condition that there exist zo,yo € G such that g(zo), h(yo)
are invertible. (IT) Let X be a set of complex numbers. In Theorem 2.6,
we can replace the condition that g(e) and h(e) are invertible by the
condition that g, h are nonidentically zero function.
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