ON A CHARACTERIZATION OF LINEAR OPERATORS

KIL-WOUNG JUN AND YANG HI LEE

ABSTRACT. We obtain a characterization of linear operators on vector spaces and homomorphisms on algebras applying the stability properties of functional equations.

1. Introduction

In 1941 Hyers [3] showed that if $\delta > 0$ and $f: E_1 \to E_2$, is a mapping with E_1 and E_2 Banach spaces, such that

$$||f(x+y)-f(x)-f(y)|| \le \delta$$
 for all $x, y \in E_1$,

then there exists a unique additive mapping $T: E_1 \to E_2$ such that

$$||f(x) - T(x)|| \le \delta$$

for all $x \in E_1$, and if f(tx) is continuous in t for each fixed x, then T is a linear mapping.

Rassias [7] and Gajda [1] gave some generalizations of the Hyers' result in the following ways: Let $f: E_1 \to E_2$ be a mapping such that f(tx) is continuous in t for each fixed x. Assume that there exist $\theta \geq 0$ and $p \neq 1$ such that

$$\frac{\|f(x+y) - f(x) - f(y)\|}{\|x\|^p + \|y\|^p} \le \theta \quad \text{ for all } x, y \in E_1.$$

Then there exists a unique linear mapping $T: E_1 \to E_2$ such that

$$\frac{\|T(x) - f(x)\|}{\|x\|^p} \le \frac{2\theta}{2 - 2^p}$$
 for all $x \in E_1$.

Received November 30, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 47H15.

Key words and phrases: additive mapping, linear mapping, homomorphism, stability.

This work was supported by grant No. 2000-2-10100-003-5 from the KOSEF.

However, it was showed that the similar result for the case p=1 does not hold(see [8]). Recently, Găvruta [2] also obtained a further generalization of the Hyers-Rassias' theorem. Székelyhidi [9] gave the following result: Let X be a real or complex vector space, B a normed space and let $f,g,h:X\to B$ be functions. Let

$$\Phi(x, y, \lambda) = f(\lambda x + y) - \lambda g(x) - h(y)$$

for any $x, y \in X$ and scalar λ . If Φ is bounded for large λ , then g is linear. In this paper, we obtain a characterization of linear operators on vector spaces and homomorphisms on algebras applying the stability properties of functional equations.

2. Main results

Jun, Shin and Kim [6] generalized the result of Găvruta in the following theorem.

THEOREM 2.1. Let G be an abelian group and X a Banach space. Denote by $\varphi: G \times G \to [0, \infty)$ a mapping such that

$$\tilde{\varphi}(x,y) = \sum_{k=0}^{\infty} 2^{-k} \varphi(2^k x, 2^k y) < \infty$$

for all $x, y \in G$. Suppose $f, g, h: G \to X$ are mappings satisfying

(1)
$$||f(x+y) - g(x) - h(y)|| \le \varphi(x,y)$$

for all $x, y \in G$. Then there exists a unique additive mapping $T: G \to X$ such that

$$||f(x) - T(x)|| \le ||g(0)|| + ||h(0)|| + \frac{1}{2}\tilde{\varphi}(x,x) + \frac{1}{2}\tilde{\varphi}(x,0) + \frac{1}{2}\tilde{\varphi}(0,x)$$
for all $x \in G$.

REMARK. In the proof of [6], they also showed that $T(x) = \lim_{n \to \infty} f(2^n x)/2^n = \lim_{n \to \infty} g(2^n x)/2^n = \lim_{n \to \infty} h(2^n x)/2^n$. Furthermore, we have

$$||g(x) - T(x)|| \le ||f(0)|| + ||h(0)|| + \frac{1}{2}\tilde{\varphi}(2x, -x) + \frac{1}{2}\tilde{\varphi}(x, 0) + \frac{1}{2}\tilde{\varphi}(x, -x)$$
for all $x \in G$.

$$||h(x) - T(x)|| \le ||f(0)|| + ||g(0)|| + \frac{1}{2}\tilde{\varphi}(-x, 2x) + \frac{1}{2}\tilde{\varphi}(0, x) + \frac{1}{2}\tilde{\varphi}(-x, x)$$
 for all $x \in G$.

THEOREM 2.2. Let G be a real or complex vector space and X a normed space. Let $\varphi(x,y)$ be as in Theorem 2.1. Suppose $f,g,h:G\to X$ are mappings satisfying

(2)
$$||f(2^n x + y) - 2^n g(x) - h(y)|| \le \varphi(2^n x, y)$$

for any $x,y \in G$ and for any positive integer n. Then g is an additive mapping such that

$$||f(x) - g(x)|| \le ||h(0)|| + \varphi(x, 0)$$
 for all $x \in G$.

In particular, $g(x) = \lim_{n \to \infty} f(2^n x)/2^n$ for all $x \in G$.

Proof. Replacing y = 0, (2) gives

$$\|\frac{f(2^nx)}{2^n} - g(x)\| \le \frac{\|h(0)\|}{2^n} + \frac{\varphi(2^nx,0)}{2^n}.$$

Since $\tilde{\varphi}(x,0) < \infty$, $\lim_{n \to \infty} \varphi(2^n x,0)/2^n = 0$. From this $\lim_{n \to \infty} f(2^n x)/2^n$ exists for all fixed x in X and is equal to g(x). For the case n = 0, (2) can be written by

$$||f(x+y) - g(x) - h(y)|| \le \varphi(x,y)$$
 for all $x, y \in G$.

We can regard $f,g,h:G\to X$ as $f,g,h:G\to \overline{X}$, where \overline{X} is a completion of X. By Theorem 2.1, $\lim_{n\to\infty}f(2^nx)/2^n=g(x)$ is additive. \square

COROLLARY 2.3. Let G, X and φ be as in Theorem 2.2. Suppose $f,g:G\to X$ are mappings satisfying

(2)
$$||f(2^nx+y) - 2^nf(x) - g(y)|| \le \varphi(2^nx,y)$$

for any $x,y\in G$ and for any positive integer n. Then f is additive.

THEOREM 2.4. Let G, X and φ be as in Theorem 2.2. If $f,g,h:G\to X$ are mappings satisfying

(3)
$$||f(\lambda x + y) - \lambda g(x) - h(y)|| \le \varphi(\lambda x, y)$$

for any $x, y \in G$ and scalar λ , then g is a linear mapping such that

$$\|f(x)-g(x)\|\leq \|h(0)\|+\varphi(x,0)\quad \text{ for all } x\in G.$$

Proof. By Theorem 2.2, g is additive and $\lim_{n\to\infty} f(2^n x)/2^n = g(x)$ for all $x\in G$. Let μ be a fixed nonzero scalar. Replacing y=0 and $\lambda=2^n\mu$, (3) gives

 $\left\| \frac{f(2^n \mu x)}{2^n} - \mu g(x) \right\| \le \frac{\|h(0)\|}{2^n} + \frac{\varphi(2^n \mu x, 0)}{2^n}.$

From this we have

(4)
$$\lim_{n \to \infty} \frac{f(2^n \mu x)}{2^n} = \mu g(x).$$

On the other hand,

(5)
$$\lim_{n \to \infty} \frac{f(2^n \mu x)}{2^n} = g(\mu x).$$

By (4) and (5),

$$g(\mu x) = \mu g(x).$$

 \Box

Since q is additive, q is linear.

COROLLARY 2.5. Let G, X and φ be as in Theorem 2.2. If $f,g:G\to X$ are mappings satisfying

(6)
$$||f(\lambda x + y) - \lambda f(x) - g(y)|| \le \varphi(\lambda x, y)$$

for any $x, y \in G$ and scalar λ , then f is linear.

The above technique can be employed for a stability-type characterization of homomorphism on algebras.

THEOREM 2.6. Let G be a real or complex algebra with the identity e and X a normed algebra with identity. Let φ be as in Theorem 2.2. Let $f, g, h, k : G \to X$ be mappings where g(e), h(e) are invertible. If

(7)
$$||f(\lambda xy + z) - \lambda g(x)h(y) - k(z)|| \le \varphi(\lambda xy, z)$$

for any $x,y,z\in G$ and scalar λ , then $g(e)^{-1}g$ and $h(\cdot)h(e)^{-1}$ are homomorphisms from G into X such that

$$||f(x) - g(x)h(e)|| \le ||k(0)|| + \varphi(x, 0)$$
 for all $x \in G$.

Proof. Putting y = e in (7), we obtain

$$||f(\lambda x + z) - \lambda g(x)h(e) - k(z)|| \le \varphi(\lambda x, z)$$

for any $x, z \in G$. By Theorem 2.4, we obtain $g(\cdot)h(e)$ is linear,

(8)
$$\lim_{n \to \infty} \frac{f(2^n x)}{2^n} = g(x)h(e) \quad \text{for all} \quad x \in G$$

and

$$||f(x) - g(x)h(e)|| \le ||k(0)|| + \varphi(x, 0)$$
 for all $x \in G$.

By symmetry, g(e)h is linear and

(9)
$$\lim_{n \to \infty} \frac{f(2^n y)}{2^n} = g(e)h(y) \text{ for all } y \in G.$$

Let y be any fixed element of G. Replacing z by zy in (7), we obtain

$$||f(\lambda xy + zy) - \lambda g(x)h(y) - k(zy)|| \le \varphi(\lambda xy, zy)$$

for any $x, z \in G$. Define $f_1, g_1, h_1 : G \to X$ by $f_1(x) = f(xy), g_1(x) = g(x)h(y)$ and $k_1(z) = k(zy)$. Define $\varphi_1 : G \times G \to [0, \infty)$ by $\varphi_1(x, z) = \varphi(xy, zy)$. We obtain

$$||f_1(\lambda x + z) - \lambda g_1(x) - k_1(z)|| \le \varphi_1(\lambda x, z)$$

for any $x, z \in G$ and $\tilde{\varphi}_1(x, z) = \tilde{\varphi}(xy, zy) < \infty$ for all $x, z \in G$. By Theorem 2.4,

(10)
$$\lim_{n \to \infty} \frac{f_1(2^n x)}{2^n} = g_1(x) \quad \text{for all} \quad x \in G.$$

From (8), (9) and (10),

(11)
$$g(xy)h(e) = g(e)h(xy) = g(x)h(y)$$
 for any $x, y \in G$.

Let $\psi: G \to X$ be defined by $\psi(x) = g(e)^{-1}g(x) = h(x)h(e)^{-1}$. Then ψ is a well-defined linear map and

$$\psi(xy) = g(e)^{-1}g(xy) = g(e)^{-1}g(x)h(y)h(e)^{-1}$$
$$= g(e)^{-1}g(x)g(e)^{-1}g(y) = \psi(x)\psi(y)$$

since g(e) and h(e) are invertible. This completes the proof.

COROLLARY 2.7. Let G, X and φ be as in Theorem 2.6. Let $f, g, h : G \to X$ be mappings where f(e), g(e) are invertible. If

$$||f(\lambda xy + z) - \lambda f(x)g(y) - h(z)|| \le \varphi(\lambda xy, z)$$

for any $x, y, z \in G$ and scalar λ , then g is a homomorphism.

Proof. By Theorem 2.6, $f(e)^{-1}f$ and $g(\cdot)g(e)^{-1}$ are homomorphisms. By (9),

$$f(e) = \lim_{n \to \infty} \frac{f(2^n e)}{2^n} = f(e)g(e).$$

From this, g(e) is an identity and g is a homomorphism.

COROLLARY 2.8. Let G, X and φ be as in Theorem 2.6. Let f, g: $G \to X$ be mappings where f(e) is invertible. If

$$||f(\lambda xy + z) - \lambda f(x)f(y) - g(z)|| \le \varphi(\lambda xy, z)$$

for any $x, y, z \in G$ and scalar λ , then f is a homomorphism.

REMARKS. (I) Let X be a commutative normed algebra with identity. In Theorem 2.6, we can replace the condition that g(e), h(e) are invertible by the condition that there exist $x_0, y_0 \in G$ such that $g(x_0), h(y_0)$ are invertible. (II) Let X be a set of complex numbers. In Theorem 2.6, we can replace the condition that g(e) and h(e) are invertible by the condition that g, h are nonidentically zero function.

References

- Z. Gajda, On stability of additive mappings, Internat. J. Math. Sci 14 (1991), 431-434.
- P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. of Math. Anal. and Appl. 184 (1994), 431-436.
- [3] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [4] G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings,
 J. Approx. Theory 72 (1993), 131-137.
- [5] _____, New results on the stability mappings, to appear.
- [6] K. W. Jun, D. S. Shin, and B. D. Kim, On the Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 239 (1999), 20-29.
- [7] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

- [8] Th. M. Rassias and P. Šemrl, On the behavior of mappings which does not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989–993.
- [9] L. Székelyhidi, On a characterization of linear operators, Acta Math. Hunger. 71 (1996), no. 4, 293-295.
- [10] S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Science eds., Wiley, Newyork, 1960.

Kil-Woung Jun, Department of Mathematics, Chungnam National University, Taejon 305-764, Korea

E-mail: kwjun@math.chungnam.ac.kr

YANG HI LEE, DEPARTMENT OF MATHEMATICS EDUCATION, KONGJU NATIONAL UNIVERSITY OF EDUCATION, KONGJU 314-060, KOREA

E-mail: lyhmzi@kongjuw2.kongju-e.ac.kr