ON THE MINKOWSKI UNITS OF 2-PERIODIC KNOTS

SANG YOUL LEE

ABSTRACT. In this paper we give a relationship among the Minkowski units, for all odd prime number including \(\infty \), of 2-periodic knot in \(S^3 \), its factor knot, and the 2-component link consisting of the factor knot and the set of fixed points of the periodic action.

1. Introduction

A knot \(k \) in \(S^3 \) is called an \(n\)-periodic knot (\(n \geq 2 \)) if there exists a \(\mathbb{Z}_n \)-action on the pair \((S^3, k) \) such that the fixed point set \(f \) of the action is homeomorphic to a 1-sphere in \(S^3 \) disjoint from the knot \(k \). It is well known that \(f \) is unknotted. Hence the quotient map \(p : S^3 \rightarrow S^3 / \mathbb{Z}_n \) is an \(n \)-fold cyclic branched covering branched over \(p(f) = f_* \) and \(p(k) = k_* \) is also a knot in the orbit space \(S^3 / \mathbb{Z}_n \cong S^3 \), which is called the factor knot of \(k \). Several relationships among the invariants of \(n \)-periodic knot \(k \), its factor knot \(k_* \), and the 2-component link \(\ell = k_* \cup f_* \) have been studied by many authors [2, 6, 7, 9, 10, 12].

The Minkowski unit for a tame knot was first defined by Goeritz for odd prime integers [1]. Such Minkowski units derived from knot diagrams are invariants of the linking pairing on the 2-fold branched covering space. In [11], Murasugi defined the Minkowski unit \(C_p(\ell) \) for an oriented tame link \(\ell \) by using his symmetric link matrix \(M \) [8] of \(\ell \) for any prime integer \(p \), including \(p = \infty \), which is a generalization of Goeritz’s, although the underlying quadratic form is quite different from the one used by Goeritz.

In section 2, we show that for any prime integer \(p \), including \(p = \infty \), the Minkowski unit \(C_p(H(L)) \) of the modified Goeritz matrix \(H(L) \) [13] associated to a regular diagram \(L \) of an oriented tame link \(\ell \) is also an

Received January 5, 2000.
2000 Mathematics Subject Classification: 57M25.
Key words and phrases: Goeritz matrix, Minkowski unit, 2-periodic knot.
This work was supported by Pusan National University Research Grant, 1999.
invariant of the link type \(\ell \) and it is equal to the Minkowski unit \(C_p(\ell) \) of the link \(\ell \), as defined by Murasugi.

In section 3, for any odd prime integer \(p \), including \(\infty \), we give a relationship among the Minkowski units \(C_p(k) \) of a 2-periodic knot \(k \), its factor knot \(k_* \), and the link \(\ell = k_* \cup f_* \) together with \(|\Delta_{k_*}(-1)| \) and \(|\Delta_{\ell}(-1, -1)| \), where \(\Delta_{k_*}(t) \) and \(\Delta_{\ell}(t_1, t_2) \) are the Alexander polynomials of \(k_* \) and the 2-component link \(\ell = k_* \cup f_* \), respectively.

2. The Minkowski units of the modified Goeritz matrices

Let \(\ell \) be an oriented link in \(S^3 \) and let \(L \) be its oriented link diagram in the plane \(\mathbb{R}^2 \subset \mathbb{R}^3 = S^3 - \{\infty\} \). Colour the regions of \(\mathbb{R}^2 - L \) alternately black and white. Denote the white regions by \(X_0, X_1, \ldots, X_w \) (We always take the unbounded region to be white and denote it by \(X_0 \)). Let \(C(L) \) be the set of all crossings of \(L \). Assign an incidence number \(\eta(c) = \pm 1 \) to each crossing \(c \in C(L) \) and define a crossing \(c \in C(L) \) to be of type I or type II as indicated in Figure 1.

\[
\begin{align*}
\text{Figure 1} \\
\begin{array}{cccc}
\eta(c) = +1 & \eta(c) = -1 & \text{Type I} & \text{Type II} \\
\end{array}
\end{align*}
\]

Let \(S(L) \) denote the compact surface with boundary \(L \), which is built up out of discs and bands. Each disc lies in \(S^2 = \mathbb{R}^2 \cup \{\infty\} \) and is a closed black region less a small neighbourhood of each crossing. Each crossing gives a small half-twisted band. Let \(b_0(L) \) denote the number of the connected components of the surface \(S(L) \).

Let \(G(L) = (g_{ij})_{1 \leq i, j \leq w} \), where \(g_{ij} = - \sum_{c \in C_L(X_i, X_j)} \eta(c) \) for \(i \neq j \) and

\[
g_{ii} = \sum_{c \in C_L(X_i)} \eta(c), \text{ where } C_L(X_i, X_j) = \{ c \in C(L) | c \text{ is incident to} \}
\]

\(X_i \)
both X_i and X_j} and $G_L(X_i) = \{c \in C(L) | c \text{ is incident to } X_i \}$. The symmetric integral matrix $G(L)$ is called Goeritz matrix of ℓ associated to $L[1,3]$.

Let $C_{II}(L) = \{c_1, c_2, \cdots, c_d \}$ denote the set of all crossings of type II in L and let $A(L) = \text{diag}(-\eta(c_1), -\eta(c_2), \cdots, -\eta(c_d))$, the $d \times d$ diagonal matrix. Then Traldi [13] defined the modified Goeritz matrix $H(L)$ of ℓ associated to L by $H(L) = G(L) \oplus A(L) \oplus B(L)$, where $B(L)$ denotes the $(\beta_0(L) - 1) \times (\beta_0(L) - 1)$ zero matrix.

Two integral matrices H_1 and H_2 are said to be equivalent if they can be transformed into each other by a finite number of the following two types of transformations and their inverses:

$T_1 : H \to UHU^t$, where U is a unimodular integral matrix,

$T_2 : H \to H \oplus \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

If L_1 and L_2 are link diagrams of ambient isotopic oriented links, then the modified Goeritz matrices $H(L_1)$ and $H(L_2)$ are equivalent. The signature $\sigma(\ell)$ and the nullity $n(\ell)$ of an oriented link ℓ in S^3 are given by the formulas: $\sigma(\ell) = \sigma(H(L))$, $n(\ell) = n(H(L)) + 1$, where $\sigma(H(L))$ and $n(H(L))$ are the signature and the nullity of the matrix $H(L)$, respectively [13]. The absolute value of the determinant, $\text{det}(H(L))$, of the modified Goeritz matrix $H(L)$ associated to a diagram L of a link ℓ is clearly an invariant of the link type ℓ. Let $\Delta_k(t)$ denote the Alexander polynomial of a knot k. Then it is well known that $|\Delta_k(-1)| = |\text{det}(G(K))| = |\text{det}(H(K))|$ for any diagram K of the knot k.

Now two symmetric rational matrices A_1 and A_2 are said to be R-equivalent if they can be transformed into each other by a finite number of the following two types of transformations and their inverses:

$Q_1 : A \to RAR^t$, where R is a nonsingular rational matrix,

$Q_2 : A \to A \oplus \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Any $n \times n$ nonzero symmetric rational matrix A can be transformed by Q_1 into a matrix of the form:

$\begin{pmatrix} B & 0 \\ 0 & O \end{pmatrix}$,

where B is a nonsingular matrix. In particular, if A is a symmetric integral matrix, then A may be transformed by T_1 into the same form. The matrix B is called a nonsingular matrix associated to A.

Let A be an $n \times n$ symmetric integral matrix of rank r and B a nonsingular integral matrix associated to A. Then there is a sequence
B_1, B_2, \cdots, B_r, called the σ-series of A, of principal minors of B such

that

(1) B_i is of order i and is a principal minor of B_{i+1},

(2) For $i = 1, 2, \cdots, r - 1$, no consecutive matrices B_i and B_{i+1} are

both singular.

Denote $D_i = \det(B_i)$. Then for any prime integer p, we define

$$c_p(B) = (-1, -D_r)_p \prod_{i=1}^{r-1} (D_i, -D_{i+1})_p,$$

where $(a, b)_p$ denotes the Hilbert symbol. If $D_{i+1} = 0$, then $(D_i, -D_{i+1})_p

(D_{i+1}, -D_{i+2})_p$ is interpreted to be $(D_i, -h)_p (h, -D_{i+1})_p$, where h is an

arbitrary nonzero integer. Note that $c_p(B)$ is independent of the choice

of σ-series of B [5, 11].

Definition 2.1. Let B be a nonsingular integral matrix of order r. Then the Minkowski units $C_p(B)$ of B is defined as follows:

(1) For $p = 2$, $C_2(B) = c_2(B)(-1)^{\beta}$, where

$$\beta = \left[\frac{r}{4}\right] + \left\{1 + \left[\frac{r}{2}\right]\right\} \frac{(d + 1)}{2} + \frac{(d^2 - 1)m}{8},$$

and [] denotes the Gaussian symbol, m the power of 2 occurring

in $\det(B)$, and $d = 2^{-m}\det(B)$.

(2) For any odd prime integer p,

$$C_p(B) = c_p(B)(\det(B), p)_{p}^{\alpha},$$

where α denotes the exponent of p occurring in $\det(B)$.

(3) For $p = \infty$, $C_{\infty}(B) = \prod C_p(B)$, where the product extends over

all prime integer p's.

Let A be an $n \times n$ symmetric integral matrix of rank r and let B and

B' be any two nonsingular integral matrices of order r associated to A. Then $C_p(B) = C_p(B')$ for any prime integer p, including $p = \infty$. The Minkowski unit $C_p(A)$ of A is defined to be the Minkowski unit $C_p(B)$

of B.

Theorem 2.2. Let ℓ be an oriented link in S^3 and let $H(L)$ be

the modified Goeritz matrix associated to a diagram L of ℓ. Then the Minkowski unit $C_p(H(L))$ of $H(L)$ is an invariant of the link type ℓ, denoted by $C_p(\ell)$, for any prime integer p, including $p = \infty$.
Proof. Let L_1 and L_2 be two diagrams of the link ℓ and let $H(L_1)$ and $H(L_2)$ be the modified Goeritz matrices associated to L_1 and L_2, respectively. By [11, Lemma 2.4], it suffices to show that $H(L_1)$ and $H(L_2)$ are R-equivalent matrices.

T_1: Suppose that $H(L_2) = UH(L_1)U^t$ with unimodular integral matrix U. Then it is obvious from Q_1 that $H(L_1)$ and $H(L_2)$ are R-equivalent.

T_2: Suppose that $H(L_2) = \begin{pmatrix} H(L_1) & O & O \\ O & 1 & 0 \\ O & 0 & -1 \end{pmatrix}$. Observe that

\[
\begin{pmatrix}
I & O & O \\
O & 1 & -1 \\
O & \frac{1}{2} & \frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
H(L_1) & O & O \\
O & 1 & 0 \\
O & 0 & -1
\end{pmatrix}
\begin{pmatrix}
I & O & O \\
O & 1 & \frac{1}{2} \\
O & -1 & \frac{1}{2}
\end{pmatrix}
= \begin{pmatrix} H(L_1) & O & O \\ O & 0 & 1 \\ O & 1 & 0 \end{pmatrix},
\]

where I denotes the identity matrix with the same order as $H(L_1)$.

By Q_2, \(\begin{pmatrix} H(L_1) & O & O \\ O & 0 & 1 \\ O & 1 & 0 \end{pmatrix} \) is R-equivalent to $H(L_1)$. Since $H(L_1)$ and $H(L_2)$ are transformed into each other by a finite sequence of T_1, T_2, or their inverses, they are R-equivalent matrices from the above observations. This completes the proof.

\[\square\]

Remark 2.3. (1) The set of modified Goeritz matrices H obtained from the various diagrams of a link ℓ contains $M + M^t$ for some Seifert matrix M of ℓ. This implies that $C_p(\ell) = C_p(H)$ is equal to the Minkowski unit $C_p(\ell)$ defined by Murasugi [11].

(2) Let A be a symmetric integral matrix and let B be a nonsingular matrix associated to A. Let ν denote the number of odd primes of the form $4s + 3$ occurring with odd powers in the prime factor decomposition of $\det(B)$. It follows that $C_{\infty}(A) = (-1)^\gamma$, where $\gamma = \left\lceil \frac{\sigma(A) - 2\nu}{2} \right\rceil + \left\lceil \frac{\sigma(A) - 2\nu}{4} \right\rceil$ [4].

3. The Minkowski units of 2-periodic knots

Let $\ell = k_* \cup f_*$ be a 2-component oriented link in S^3 such that the component f_* is unknotted and the linking number λ of k_* and f_*, denoted by $\lambda = \text{link}(k_*, f_*)$, is an odd integer. Then the inverse image $k = p_2^{-1}(k_*)$ of k_* in the 2-fold cyclic branched covering $p_2 : \Sigma^3 \to S^3$ branched over f_* is a 2-periodic knot in $\Sigma^3 \cong S^3$ whose factor knot is
the knot k_*. Conversely, every 2-periodic knots in S^3 arises in the this manner.

Now let $L = K_* \cup F_*$ be a regular diagram of $\ell = k_* \cup f_*$ in \mathbb{R}^2 which has the form as shown in Figure 2, where the points a_1, a_2, \ldots, a_m are identified with the points b_1, b_2, \ldots, b_m. Colour the regions of $\mathbb{R}^2 - L$ alternately black and white. Let w denote the number of white regions in the coloured diagram which does not intersect with the trivial component F_* and let a and b denote the number of the crossings of type II in $K_* = L - F_*$ with incidence number $+1$ and -1, respectively.

In [6, Section 3], the authors discovered a relationship among the modified Goeritz matrices of the 2-periodic knot (or link) k_*, its factor k_*, and the link $\ell = k_* \cup f_*$ which can be summarized as the following Theorem 3.1.

Theorem 3.1. Let $\ell = k_* \cup f_*$ be an oriented 2-component link in S^3 such that f_* is unknotted and $\lambda = \text{link}(k_*, f_*)$ is an odd integer. Let L be a link diagram of ℓ as shown in Figure 2. Then

1. The modified Goeritz matrix $H(L)$ of ℓ associated to L equivalent to the symmetric integral matrix of the form:

$$H(L) = \begin{pmatrix}
M & P & Q & O \\
P^t & N_1 & R & J \\
Q^t & R^t & N_2 & J \\
O & J^t & J^t & S
\end{pmatrix} \oplus (-I_a \oplus I_b) \oplus E_r,$$
where \(M \) (a \(w \times w \) matrix), \(P, Q, R, N_1, N_2 \) are some integral matrices, \(S = \begin{pmatrix} O & O \\ O & 2 \end{pmatrix} \), \(r \) is the positive integer with \(\lambda = 2r - m \), \(E_r = -I_r \oplus I_{m-r-1} \) if \(r \) is even, \(E_r = -I_{r+1} \oplus I_{m-r} \) if \(r \) is odd, and \(J \) is the \(\frac{m-1}{2} \times \left(\frac{m-1}{2} + 1 \right) \)
matrix of the form: for \(m = 1 \), \(J = \emptyset \) and for \(m > 1 \),

\[
J = \begin{pmatrix}
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & -1
\end{pmatrix}.
\]

(2) The modified Goeritz matrix \(H(K_*) \), \(K_* = L - F_* \), of the component \(k_* \) of \(\ell \) is given by

\[
H(K_*) = \begin{pmatrix} M & P + Q \\ P^t + Q^t & N_1 + N_2 + R + R^t \end{pmatrix} \oplus (-I_a \oplus I_b).
\]

(3) Let \(p_2 : \Sigma^3 \to S^3 \) be the 2-fold cyclic branched covering space branched over \(f_* \). Then the modified Goeritz matrix \(H(K) \) of the 2-periodic knot \(k = p_2^{-1}(k_*) \) in \(\Sigma^3 \cong S^3 \) is given by the symmetric matrix of the form:

\[
H(K) = \begin{pmatrix} M & P & O & Q \\ P^t & N_1 + N_2 & Q^t & R + R^t \\ O & Q & M & P \\ Q^t & R + R^t & P^t & N_1 + N_2 \end{pmatrix} \oplus (-I_a \oplus I_b) \oplus (-I_a \oplus I_b).
\]

Lemma 3.2. Let \(H(L) \), \(H(K_*) \), and \(H(K) \) be the modified Goeritz matrices in Theorem 3.1. Then

(1) There exists a nonsingular rational matrix \(R \) such that

\[
R(H(K) \oplus T(r))R^t = 2\{H(K_*) \oplus H(L)\} \oplus -I_{2a} \oplus I_{2b},
\]

where \(T(r) \) denotes the diagonal matrix given by

\[
T(r) = \begin{cases}
4(-I_{\frac{m-1}{2}} \oplus I_{\frac{m-1}{2}+1}) \oplus 2(-I_{2a+r} \oplus I_{2b+m-r-1}) & \text{if } r \text{ even,} \\
4(-I_{\frac{m-1}{2}} \oplus I_{\frac{m-1}{2}+1}) \oplus 2(-I_{2a+r+1} \oplus I_{2b+m-r}) & \text{if } r \text{ odd.}
\end{cases}
\]

(2) \(\det(H(K)) = \frac{1}{2} \det(H(K_*)) \det(H(L)) (-1)^{\frac{m-1}{2}} \).
Proof. (1) Let
\[U = \begin{pmatrix}
I_w & O & O & -QD & O \\
O & I_s & -I_s & (N_2 - R_1)D & O \\
O & 0 & I_s & O & D \\
O & O & O & O & Z \\
O & O & O & 1 & 1
\end{pmatrix} \oplus I_{a+b} \oplus I_{t(r)}, \]
where \(s = \frac{m-1}{2}, Z = (1 \, 1 \, \cdots \, 1), D = (d_{ij})_{1 \leq i, j \leq s} \) such that \(d_{ij} = 1 \) for \(i \geq j \), otherwise all zero, and \(t(r) = m + 1 \) or \(m - 1 \) according as \(r \) is odd or even.

Now define \(V = I_{w+s} \oplus U \oplus I_{a+b} \oplus I_{a+b} \) and
\[W = \begin{pmatrix}
I_{w+s} & I_{w+s} & O \\
I_{w+s} & -I_{w+s} & O \\
O & O & I_{2(a+b)}
\end{pmatrix} \oplus \begin{pmatrix}
I_s & -\frac{1}{2}N_2 + I_s & O \\
I_s & -\frac{1}{2}N_2 - I_s & O \\
O & O & 1
\end{pmatrix}^{-1} \oplus I_{2(a+b)+t(r)}. \]

Then \(V \) and \(W \) are nonsingular rational matrices and we obtain that
\[
W \{ H(K) \oplus 4(I_s \oplus -I_s \oplus (1)) \oplus 2(-I_a \oplus I_b \oplus -I_a \oplus I_b \oplus E_r) \} W^t
= (XV)\{2(H(K_s) \oplus H(L)) \oplus (-I_a \oplus I_b \oplus -I_a \oplus I_b) \}(XV)^t
\]
for an appropriate permutation matrix \(X \). This implies the result.

(2) By (1), \(\det(H(K)) \det(R)^2 = 2^{2w-1} \det(H(K_s)) \det(H(L))(\det(R))^{\frac{m-1}{2}} \).

Since \(2|\det(H(K))| = |\det(H(K_s))||\det(H(L))| \) [6] and \(\det(R)^2 = 2^{2w} \).
This implies the result. \(\square \)

Lemma 3.3. Let \(A \) be an \(n \times n \) nonsingular integral matrix and let \(m \) denote the power of 2 occurring in \(\det(A) \).

(1) Let \(d = 2^{-m} \det(A) \). Then
\[
C_2(2A) = \begin{cases}
C_2(A)(-1)^{(\frac{d^2-1}{8})n} & \text{if } n \text{ is odd}, \\
C_2(A)(2, d)_2 & \text{if } n \text{ is even}.
\end{cases}
\]

(2) Let \(p \) be any odd prime integer and let \(\alpha \) be the power of the odd prime \(p \) occurring in \(\det(A) \). Then
\[
C_p(2A) = C_p(A)(-1)^{(\frac{p^2-1}{8})\alpha}.
\]

(3) \(C_\infty(2A) = C_\infty(A) \).

Proof. Let \(B_1, B_2, \cdots, B_n \) be a \(\sigma \)-series of \(A \), where \(B_n = A \), and let \(D_i = \det(B_i)(i = 1, 2, \cdots, n) \). Then \(2B_1, 2B_2, \cdots, 2B_n \) is a \(\sigma \)-series of \(2A \). Let \(\tilde{D}_i = \det(2B_i) \). Then \(\tilde{D}_i = 2^i D_i \) and so, for any prime integer \(p \),
On the Minkowski units of 2-periodic knots

\[
c_p(2A) = (-1, -\bar{D}_n)_p \prod_{i=1}^{n-1} (\bar{D}_i, -\bar{D}_{i+1})_p
\]
\[
= \{(1, -D_n)_p \prod_{i=1}^{n-1} (D_i, -D_{i+1})_p \} \epsilon(p)
\]
\[
= c_p(A) \epsilon(p),
\]

where
\[
\epsilon(p) = (-1, 2^n)_p \prod_{i=1}^{n-1} (2^i, -2^{i+1} D_{i+1})_p (2^{i+1}, D_i)_p
\]
\[
= \begin{cases}
1 & \text{if } n \text{ is odd}, \\
(2, \det(A))_p & \text{if } n \text{ is even}.
\end{cases}
\]

In order to show (1), let \(m \) denote the power of 2 occurring in \(\det(A) \) and let \(d = 2^{-m} \det(A) \). Let \(\bar{m} \) be the power of 2 occurring in \(\det(2A) \) and let \(\bar{d} = 2^{-\bar{m}} \det(2A) \). Then \(\bar{m} = m + n \) and \(d = \bar{d} \). By Definition 2.1,

\[
C_2(2A) = c_2(2A)(-1)^\bar{\beta}
\]
\[
= \begin{cases}
c_2(A)(-1)^\bar{\beta} & \text{if } n \text{ is odd}, \\
c_2(A)(2, \det(A))_2(-1)^\bar{\beta} & \text{if } n \text{ is even},
\end{cases}
\]

where \(\bar{\beta} = \left[\frac{n}{4} \right] + \left\{ 1 + \left[\frac{n}{2} \right] \right\} \left(\frac{d+1}{2} \right) + \left(\frac{d^2-1}{2} \right) \bar{m} = \left(\left[\frac{n}{4} \right] + \left\{ 1 + \left[\frac{n}{2} \right] \right\} \left(\frac{d+1}{2} \right) + \left(\frac{d^2-1}{2} \right) \right) + \left(\frac{d^2-1}{2} \right) \bar{m} \). Since \(\det(A) = 2^m d \) and \((2,2)_2 = 1 \), we obtain that

\[
C_2(2A) = \begin{cases}
c_2(A)(-1)^{\left(\frac{d^2-1}{2} \right) m} & \text{if } n \text{ is odd}, \\
c_2(A)(2, d)_2 & \text{if } n \text{ is even}.
\end{cases}
\]

(2) Let \(\alpha \) denote the power of \(p \) occurring in \(\det(A) \). By Definition 2.1, for any odd prime integer \(p \),

\[
C_p(2A) = c_p(2A)(\det(2A), p)_p^\alpha = c_p(2A)(\det(A), p)_p^\alpha (2^n, p)_p^\alpha
\]
\[
= \begin{cases}
c_p(A)(2, p)_p^\alpha & \text{if } n \text{ is odd}, \\
c_p(A)(2, \det(A))_p & \text{if } n \text{ is even}.
\end{cases}
\]

Note that \((2, \det(A))_p = (2, p)_p^\alpha \) and \((2, p)_p = (-1)^{\frac{p^2-1}{8}} \). Hence \(C_p(2A) = c_p(A)(-1)^{\frac{(p^2-1)\alpha}{8}} \).
(3) Since \(\sigma(2A) = \sigma(A) \) and the number \(\nu \) of odd primes of the form \(4s + 3 \) occurring with odd powers in the prime factor decomposition of \(\det(2A) \) is equal to that of \(\det(A) \), it follows Remark 2.3(2) that \(C_\infty(2A) = C_\infty(A) \).

From Lemma 3.2, Lemma 3.3, [11, (2.5)], and the properties of Hilbert symbol [5], we obtain the following

Lemma 3.4. For any odd prime integer \(p \),

1. \(C_p(T(r)) = 1 \).
2. \(C_p(H(K) \oplus T(r)) = C_p(H(K)) \).
3. \(C_p(2\{H(K_* \oplus H(L))\}) = C_p(H(K_*) \oplus H(L))(-1)^{(p^2-1)\alpha \over 8} \), where \(\alpha \) denotes the power of \(p \) occurring in \(\det(H(K_*) \oplus H(L)) \).

Let \(\Delta_{k_*}(t) \) and \(\Delta_{k_* \cup f_*}(t_1, t_2) \) denote the Alexander polynomials of \(k_* \) and \(\ell = k_* \cup f_* \), respectively. Then

Theorem 3.5. Let \(k \) be a 2-periodic knot in \(S^3 \) with the fixed point set \(f \) and let \(k_* \) be its factor knot and \(f_* \) be the orbit of \(f \). Then

1. For any odd prime integer \(p \),
 \[
 C_p(k)(-1)^{(p^2-1)\alpha \over 8} = C_p(k_*)_C_p(k_* \cup f_*)(p, p)^{\alpha_1 \alpha_2},
 \]
 where \(\alpha, \alpha_1, \) and \(\alpha_2 \) denote the powers of \(p \) occurring in \(|\Delta_k(-1)| \), \(|\Delta_{k_* \cup f_*}(-1, -1)| \), and \(|\Delta_{k_*}(-1)| \), respectively.

2. \[
 C_\infty(k)(-1)^{n_k(2\nu_2 + 2\nu_1 + 2) \over 4} = C_\infty(k_*)_C_\infty(k_* \cup f_*)(-1)^{\sigma(k_*) - 2\nu_1 \over 4} + \sigma(k_* \cup f_*) - 2\nu_2 \over 4},
 \]
 where \(\nu, \nu_1, \) and \(\nu_2 \) be the number of odd primes of the form \(4s + 3 \) occurring with odd powers in the prime factor decomposition of \(|\Delta_k(-1)| \), \(|\Delta_{k_*}(-1)| \), and \(|\Delta_{k_* \cup f_*}(-1, -1)| \), respectively, and \([\] \) denotes the Gaussian symbol.

Proof. From [11, Lemma 2.4] and Lemma 3.2(1), for any prime integer \(p \), it follows that

\[
C_p(H(K) \oplus T(r)) = C_p(2\{H(K_* \oplus H(L)) \oplus -I_{2a} \oplus I_{2b}) \).
\]

1. By [11, (2.5)], Lemma 3.4, and the fact that \(C_p(-I_{2a} \oplus I_{2b}) = 1 \), we obtain that for any odd prime \(p \),
 \[
 C_p(H(K)) = C_p(H(K_* \oplus H(L))(-1)^{(p^2-1)\alpha \over 8},
 \]
where α denotes the powers of p occurring in $\det(H(K_*) \oplus H(L))$ and

$$C_p(H(K)) = C_p(H(K_*))C_p(H(L))(\det(H(K_*), p^{-\alpha_1}\det(H(L), p^{-\alpha_2})$$

$$(\det(H(K_*)), \det(H(L)))_p(-1)^{\frac{(p^2-1)(\alpha)}{8}},$$

where α_1 and α_2 denote the powers of p occurring in $\det(H(L))$ and $\det(H(K_*))$, respectively. Let $d(k_*) = p^{-\alpha_2}\det(H(K_*)), d(\ell) = p^{-\alpha_1}\det(H(L)).$ Then $\alpha_1 + \alpha_2 = \alpha$ and

$$\det(H(K_*), p^{-\alpha_1}\det(H(L), p^{-\alpha_2}\det(H(K_*)), \det(H(L)))_p$$

$$= (d(k_*), d(\ell))_p(p, p^{-\alpha_1\alpha_2} = (p, p)^{\alpha_1\alpha_2}.$$

It follows from Lemma 3.2(2) that α is equal to the power of p occurring in $\det(H(K)).$ This implies the result.

(2) Let ν, ν_1, ν_2 be the number of odd primes of the form $4s + 3$ occurring with odd powers in the prime factor decomposition of $\det(H(K))$, $\det(H(K_*)), \det(H(L))$, respectively, and let $\gamma = \left[\frac{\sigma(k) - 2\nu}{2}\right] + \left[\frac{\sigma(k) - 2\nu}{4}\right].$ Then $C_\infty(k) = C_\infty(H(K)) = (-1)^\gamma.$ Since $2\det(H(K)) = \det(H(K_*))$ and $\det(H(L))$ and $\sigma(k) = \sigma(k_*) + \sigma(\ell) + \lambda$ [6], $\nu = \nu_1 + \nu_2$ and $\gamma = \left[\frac{\sigma(k) - 2\nu_1}{2}\right] + \left[\frac{\sigma(k) - 2\nu_2}{2}\right] + \left[\frac{\sigma(k) - 2\nu + 2\lambda + 2}{4}\right].$ This implies the result and we complete the proof of Theorem 3.5.

References

Department of Mathematics, Pusan National University, Pusan 609-735, Korea

E-mail: sangyoul@hyowon.pusan.ac.kr