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STRICT STATIONARITY AND
FUNCTIONAL CENTRAL LIMIT
THEOREM FOR ARCH/GARCH MODELS

QOEsSOOK LEE AND JIHYUN KIM

ABSTRACT. In this paper we consider the {generalized) autoregres-

sive models with conditional heteroscedasticity (ARCH/GARCH mod-
els). We will give conditions under which strict stationarity, ergodic-

ity and the functional central limit theorem hold for the corresponding

models,

1. Introduction

Let n,,n € Z be a sequence of independent and identically dis-
tributed(i.i.d.) random variables. The generalized autoregressive con-
ditional heteroscedastic model of order p and ¢ (GARCH(p, ¢)} {Yx :
n € Z} is then given by ¥, = vV, and Vi, = 6 + 3.0 BV +
S Y2, neZ. Forp=0the process reduces to the autoregressive
conditional heteroscedastic model of order ¢ (ARCIH(g)}). ARCH process
was introduced by Engel(1982) and was extended to GARCH process by
Bollerslev(1986). While conventional time series and econometric mod-
els operate under the assumption of constant variance, ARCH/GARCH
process admits a nonconstant conditional variance given the past in-
formation. In ARCH(g) process the conditional variance is specified
as a linear function of the past sample variances only, whereas the
GARCH(p, q) process allows lagged conditional variance to enter as well.
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The ARCH/GARCH processes have been proved useful in modelling
various economic phenomena and have received a great amount of at-
tention in the economic literature. Statistical properties of this para-
metric class of models have been studied by many authors, for exam-
ple, Weiss(1984), Nelson(1990), Bera and Higgins(1992), Guégan and
Diebolt(1994), Borkovec(2000) and references therein. Given such mod-
els, interests are the conditions under which such a model has properties
such as strict stationarity, ergodicity, existence of moments and central
limit theorem. Those properties are of great importance in statistical in-
ference for time series models. These kinds of results for ARCH/GARCH
models can be found in Bollerslev(1986), Nelson(1990), Bougerol and Pi-
card(1992), Lu(1996), An, Chen and Huang(1997), etc.

Bollerslev(1986) showed that if 6 > 0, the GARCH model defines a
second order stationary solution if and only if 37 i + >0 | 3 < 1.
Nelson(1990) gave the necessary and sufficient conditions for the strict
stationarity and ergodicity for the GARCH(1,1) model. Guégan and
Diebolt(1994) proved the geometrical ergodicity and existence of mo-
ments of the 5—ARCH(1) model. Lu(1996) obtained a sharp condition
under which ARCH(p) process is geometrically ergodic. An, Chen and
Huang(1997) showed the geometric ergodicity and the existence of higher
order moments for 5—ARCH(p) model. Bougerol and Picard (1992) ex-
amined that the GARCH (p, ¢) has a unique strictly stationary ergodic
solution if and only if the Lyapounov exponent associated with the ap-
propriately given matrices {A,} is strictly negative. However, as they
pointed out in their paper, the conditions are very difficult to verify and
can only be estimated by Monte Carlo simulations. Therefore we need
to find conditions easy to check. There are a lot of literatures consid-
ering the functional central limit theorem for various types of nonlinear
time series. For example, see Bhattacharya and Lee(1988), Meyn and
Tweedie(1993), Glynn and Meyn(1996), Lee(1997), Benda(1998) etc.
Rudolph(1998) considered the central limit theorem for GARCH(p, ¢)
models.

In this paper, we consider the ARCH/GARCH models and give suf-
ficient conditions for the existence of a stationary ergodic solution and
then find a class of functions for which the functional central limit the-
orem holds. Toward this end, we rephrase the given process as a prop-
erly defined Markov chain and prove its asymptotic properties by using
Makov chain techniques and then induce the desired results.

A short overview of this paper is as follows. In Section 2, we represent
the GARCH(p, ¢) model as a Markov chain and obtain conditions under
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which the chain is stationary and ergodic. Section 3 is devoted to con-
sider the functional central limit theorem. The proofs of Theorem 2.1,
Corollary 2.1 Theorem 3.1 and Corollary 3.1 are presented in Section 4.

We refer to Meyn and Tweedie(1993) for general terminologies and
relevant results in Markov chain theory.

2. Strict stationarity and ergodicity

A sequence of univariate stochastic process ¥, n € Z is said to be a
GARCH(p, q) process if it satisfies the equation Y, = n,+/V;, with

by q
(2.1) Va=6+ BVasi+ Y ai¥il, nel,
i=1 i=1

where, 7,, n € Z are i..d. random variables with mean E(n,} = 0 and
variance 1. Assume that § > 0, p > 0 and ¢ > 0. If p = 0, then the
process is said to be an ARCH(g) process.

Following Bougerol and Picard(1992), for GARCH(p, ¢) process given
in (2.1), we define a (p + ¢ — 1) x (p+ g — 1) matrix A,:

Trs Bpa &, Gy

_ Ip_l, 0, 0, 0
(22) =1 e 0 o ol
0, 0, Ia 0
where

™h = (ﬂl + 01177121,62, e !ﬁp*l) € Rp_l:

gn = (U;Q;:Oa 01 e 10) € RPWIs

a = (QQ,OZ'Q,, o 7aqél) € Rq_2:
and I, and I,y are the identity matrices of size p — 1 and ¢ — 2,
respectively. Then {A,} are independent and identically distributed

random matrices. We will always assume that p,g > 2, by adding some
o; or [3; equal to zero if needed. Now let

B =(4,0,0,--- ,0)t ¢ RPT¢ L

Xy = (Vn+11 T aVn—P+21 Yn?! to :YnQ—q-y-z)t'
Then Y, is a solution of (2.1) if and only if X,, is a solution of
(2.3) Xni1i=AnanXn+B, ne€ei

Since Ag, k > n + 1 are independent of X,,, {X, : n > 0} with
arbitrarily specified random vector X; independent of {n, : n > 1} can
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be regarded as a Markov chain with its transition probability function,
say, p(z, dy).

Let T be the transition operator on the linear space of all real valued
bounded measurable functions on RPT7~! defined by

(2.4) Tf(z) = f F(w)p(a, dy).

Its adjoint T* is defined on the space of all finite signed measures on the
Borel sigma-field B(RP*91) of RPHe-1 by

(2.5) (T*w)(C) = / p(z, C)u(dz), C € BRPH).

Note that if the distribution of Xj is u, then the T*u in (2.5) is the
distribution of X; = A; X+ B and T*"u = (T")*1 is the distribution of
Xn, since {X, : n > 0} is the Markov chain with transition probability
function p(z, dy).

We define for any = € RP"%!, ||z|| = (z'z)?, where z! denotes the
transpose of z and define a matrix norm || - || for (p+¢—1} x (p+¢—1)
matrix A by [|A]| = SUPgg UWAE“T”-E[.

Let Ty = T'o(RPTI1) denote the set of probability measures with
finite second moments defined on the Borel sigma-field of RF7¢~1, On
the space T'y, define the distance dy by

(2.6) do(p,v) = inf{(E||X — Z||1)2; X ~ p, Z ~ v},

The symbol ~ denotes the equality in distribution. It is known (see,
e.g., Bickel and Freedman(1981)) that the infimum in (2.6} is attained,
(T2, d2) is a complete separable metric space, and the dy convergence is
equivalent to the weak convergence and the convergence of the second
norm moments.

THEOREM 2.1. Assume |[E(A{A1)|| < 1. Then for any p,v € Ty,
(1) do(T*p, T < rdy(y, v), where r = ||E(AL A < 1,
(2) there exists a unique probability measure m € 'y, such that
(2.7) do(T™"pt, ) — O
as n — oo at exponential rate. Here 7 is independent of u.
(3) Xy, n>0in (2.3) with Xy ~ = is a strictly stationary and ergodic
Markov chain.

It could occur that || E[(Am - -+ A1) (Am - - A1)]l] < 1 for some m > 0,
but |E(ALA)]] > 1.
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COROLLARY 2.1. If for some m > 0, ||E{(Anm - - A1) (Am - - A}l <
1, then there exists a unique invariant probability measure w € I's and
X,, n > 0in (2.3) with Xy ~ «© is a strictly stationary and ergodic
Markov chain.

Recall that for ii.d. sequence of random matrices {A,}, top Lya-
pounov exponent associated to {A,} is defined, provided E(log™ ||| Aol|}
is finite, by

y=inf {E( L ogllAnArs - Aill), ne N},

It is proved by Bougerol and Picard(1992) that if v < 0 if and only if
X, in (2.3) has a strictly stationary solution. However, v < 0 is difficult
to verify and can only be estimated by computer simulation. Note that
o+ Zf=1 3 < 1 implies that v < 0.

3. Functional central limit theorem

When we consider the strictly stationary ergodic Markov chain {X, :
n > 0} with invariant initial distribution 7, we are interested in the
limiting distribution of the following stochastic process: for each positive
integer n and fixed f € L2(RP*21 7),

[nt]
1 - [rt] =
(3.1) Fu(t) = 7n kzzg(f(Xk)—f)+(t—7)(f(X[nz]+1)—f) , t>0.
Here f = f fdr. We say that the functional central limit theorem
(FCLT) holds for f € L2(RP19 ! ) if the sequence of stochastic process
F,(t) in (3.1) converges in distribution to a Brownian motion.
We will denote the L2—norm on L2(RPT%~1 1) by || - ||z.

" THEOREM 3.1. Suppose ||E(AYA))|| < 1. Then the following asser-
tions hold.

(1) If Xo ~ =, then every Lipschitzian function f holds FCLT.

(2) If Xo =~ p for any pu € T'y, every Lipschitzian function f holds
FCLT. In particular, if Xy = x for any x, every Lipschitzian func-
tion f holds FCLT.

Here the variance parameter to the limit Brownian motion is ||g||3 —

|ITgll3 where g =—> T*(f — f).

n=0
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COROLLARY 3.1. If for somem > 0, || E[(Am - A1) (Am - Al <
1, then the conclusions of Theorem 3.1 hold.

COROLLARY 3.2. Suppose that one of the relations ||E(A}A1)]] <1
or for some m > 0, ||E[{(Am - A1) (Am - A1)]f| < 1 is satisfied. Let
W'n- = (VTH-].! T VTL*P“I‘z)t‘ Define for y= (ylsyza U 1yp+q—1)t:

m(C) =7({y : (.- )" € CH), (C € B(RY)).
Ifg: R? — R is a Lipschitzian function, then G,(t) = % EE:]O[Q(WA,) -

g| converges in distribution to a Brownian motion, where g = [ gdmy.

Proof. Fory = (y1,%2, " »Ypre-1)s let p1(y) = (30, -+ ,9p)" and let
f¥) = glm{y)) = g((v1, - s yp)"). If gis a Lipschitzian function on R?,
then f is a Lipschitzian function on RP*9~!. This together with Theo-
rem 3.1 implies the convergence in distribution of G,(t) to a Brownian
motion.

Note that g(yi, - ,¥p) = 2.0 tigi for some (ty,--- ,t,) € R is a
Lipschitzian function on RP. d

REMARK 3.1. Consider the ARCH(g) model. From (2.2) and (2.3),
A,, and X, are defined as follows:

G o g
A= | 2 0 0
0 I;» O

and

Xn = (Vata, Ynzs e 1Ynz—q+2)t-
The theorems and corollaries in Sections 2 and 3 can be applied directly
to the ARCH(q) process.

REMARK 3.2. Rudolph(1998) gives sufficient conditions under which
the central limit theorem holds for the process H, = (V,, Vh_1, -+,
Viems1)t, where m = max{p,q}. Results are obtained under the as-
sumption that H, is a Markov chain, but that assumption is not true.
And conditions given in Theorem 5 do not imply [[E(F4Ty){| < 1 which
is necessary to derive the central limit theorem for H,. Here I'y is
an m x m random matrix given as a function of 7., - ,Mp-m1 and
Hpp = I'nHp+ B.

REMARK 3.3. Theorem 3.1 extends the results of Benda(1998),
where it was shown that the FCLT holds for every Lipschitzian function
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fif B(J|A11)?) < 1 and E(]|z — A;12||*) < co. Notice that ||E(A*A)|| <
E(||A]I*), by Jensen’s inequality.

4. Proofs

In order to prove the Theorem 2.1, we need the following lemma in
matrix analysis (see Horn and Johnson(1990)).

LEMMA 4.1. Let A be a symmetric square matrix and {\;} be the
eigenvalues of A. Then

min{\;} < ‘”x — <

Proof of the Theorem 2.1. The basic idea of the proof follows that
of Theorem 1 in Burton and Résler(1995). Let p and v be probability
measures which have finite second norm moments. Choose X and Z
independent of A,,n > 1 with X ~ p. Z ~ v and da(p,v) = (E|| X —
Z|l2)%. Then we have

M
BT, Tv) < (BfMX -~ 4Z|)
1) < (BI(X = 2)'B(A A (X - 2)):
< IE(AT AN (ENX - ZIP)2
= rdy(ps, v},
and
(4.2) da{T™" e, T*"v) < rda(p, v).

Equality in (4.2) is obtained by repeating the argument used in (4.1)
and using the independenc of {A,}.

Since E(A{A;) is a symmetric square matrix, the third inequality
in (4.1) follows from Lemma 4.1 and the fact that |A| < [|A]| for any
eigenvalue A of A and any matrix norm ||| - ||

(2) For n > m,

Ao (T, T*"p1) < (E|| A1 Az - AnX — A1 Az - - A Y |%)2
<rm(E|X - Y|,

where Y = Ay A X + Ay Ay 1B+ -+ + A1 B + B. The
first inequality in (4.3) follows from the fact that the distribution of

(4.3)
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Ay -+ AnX is the same as that of A, -+ A1 X. Since (B|| X — Y|2)2 <
00, Vn,m, T""u is a Cauchy sequence in the metric dy. Completeness
of (I'g,dy)tells us the existence of a unique probability measure, say ,
in T'y, such that T*"u converges to 7 at exponential rate. Moreover from
(4.2), m does not depend on the initial distribution .

(3) implies that if the distribution of Xj is d;(point mass at z), then
the distribution of X, converges weakly to 7 as n goes to infinity. In this
case 7 is the unique invariant probability measure for a Markov chain
X, n > 0with [ ||z|?dr < oo, since Xy, n > 0is weak Feller. Therefore
X, with Xy ~ 7 is strictly stationary and ergodic (Breiman(1968)). O

Proof of Corollary £2.1. First, note that by assumption, [|E(A]A;)|] <
00. Choose X and Z as in the proof of Theorem 2.1. By the same process
used to prove the inequality (4.2), we obtain that

(4.4) do(T* u, T*v) < rlw) . K, Vp,v €Ty,
where [Z] is the integer part of 2 and
K = dp(THn=lwIm)y, rin=lilm) )
= (B(An_(a)m - A1 X = An_ (2] ALZ]?))?
< 1B Ay |35 (B()| X - 2]%)2

< 0C,

(4.5)

Thus do(T**u, T™v) — 0 as n — oco. By the same arguments used in
the proof of Theorem 2.1 (2) and (3), we have that T*"u is a Cauchy
sequence and hence the result follows. (]

To prove the Theorem 3.1, we need thve following Lemma(see Bhat-
tacharya and Lee(1988), Gordin and Lipsic (1978)). Let T be the tran-
sition operator given in (2.4) and I be the identity operator.

LemmMa 4.2. Let f € L2 (RPHY m). IF 00, [|T(f = f)ll2 < co, then
f — f belongs to the range of T — I, and hence FCLT holds for f and
the variance parameter to the limit Brownian motion is ||gl|3 — ||7g||3

where g = — z;o:OTn(f - JF)

Proof of theorem 3.1. (1) Write X}, for X,, in the case of Xo =~ p and
Xn{z) = X%, Let f be any Lipschitzian function on RP*?71, that is,
|f(z) — f(y)| £ M|jz — y|| for some M > 0 and for all z,y. It is easy to
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check that every Lipschitzian function f is in L*(RP9~1 7). Then, for
r? = || E(AT A < 1,

77 - DI < [ [ [ Bl — S @] mia)
(46) <3 [ [ Blxa(@) - Xl Pr(ayyr(da)
<t [ [lo = ylPnayye(ao)

Hence |[T*(f — fil2 < Mr"([ [ |z - y||27r(dy)7r(d:n))%. This together
with 7 € [ implies that 3.2 |7°(f — f)li2 < o0. Thus the conclusion
follows immediately from Lemma 4.2.

(2) Let Fy(-) be the process defined by (3.1) with Xy = 7, and Fy

the corresponding process with Xo ~ p. If f is as in (1),

1 =
E(max |[Fy(t) — Fa(0)]) < M 7> ;}EIIXE — Xill

<t S [ [ 2 - yim(dyutaz),
né/]a:y yp(de

which converges to 0 as n goes to infinity. Therefore F(t) and F,(t)
have the same limit.
Finally, take g = 4. d

Proof of Corollary 8.1. Due to Theorem 2.1 and Corollary 2.1, X,
with X ~ 7 is a strictly stationary ergodic Markov chain. Combining
(4.4) and (4.6), we obtain that

7 = < M [ [ BlXa(e) - Xalw) Pr(dy)n(z)
< M2zl - K,

e o]
where K is given in (4.5). Thus Z:HT”(f — fll2 < oo, and the FCLT

n=0

holds for f. O

References

[1] H. An, M. Chen, and F. Huang, The geometric egodicity and exisience of moments
for a class of non-linear time series model, Stat. and Prob. Letters 31 (1897), 213~
224.



504 Oesook Lee and Jihyun Kim

[2] A K. Bera and M. L. Higgins, A test for conditional heteroscedasticity in time
series models, J. Time Series Anal. 13 (1992), 501-519.
[3] M. Benda, A central limit theorem for contractive stochastic dynamical systems,
J. Appl. Prob. 35 (1998), 200-205.
[4] R. N. Bhattacharya and O. Lee, Asymptotics of a class of Markov processes which
are not in general irreducible, Ann. Prob. 16 (1988), no. 3, 1333-1347.
[5] P. J. Bickel and D. A. Freedman, Some asymptotic theory for the bootstrap, Ann.
Stat. 9 (1981), no. 6, 1196-1217.
i6] T. Bollerslev, Generalized autoregressive conditional heteroskedasticily, J. Econo-
metrics 31 (1986), 307-327.
[7] M. Borkovec, Hrtremal behavior of the autoregressive process with ARCH(1) er-
rors, Stoch. Processes and their Appl. 85 (2000), 189-207.
[8] P. Bougerol and N. Picard, Stationarity of GARCH processes and of some non-
negative time series, J. Econometrics 52 (1992), 115-127.
[9] N. Breiman, Probability, Addison-Wesley, 1968.
[10] R. Burton and U. Résler, An L? convergence theorem for random affine mappings,
J. Appl. Prob. 32 (1995), 183-192.
[11] R. F. Engle, Autoregressive conditional heteroscedasticity with estimales of the
variance of the United Kingdom inflation, Econometrica 50 (1982), 987-1007.
[12] P. W. Glynn and 8. P. Meyn, A Lyapounov bound for solutions of the Foisson
equation, Ann Prob. 24 (1996), no. 2, 916-931.
[13] M. I. Gordin and B. A. Lifsic, The central limit theorem for stationarity ergodic
Markov processes, Dokl. Akad. Nauk, SSSR. 19 {1978), 392-393.
[14] D. Guégan and J. Diebolt, Probabilistic properties of the §— ARCH maodel,
Statistea Sinica 4 (1994), 71-87.
[15] R. A. Horn and C. R. Johnson, Mairiz Analysis. Cambridge Univ. Press, Cam-
bridge, 1990.
[16] O. Lee, Limit theorems for some doubly stochastic processes, Stat. and Prob.
Letters 32 (1997), 215-221.
(171 Z. Lu, A note on geometric ergodicity of autoregressive conditionel heteroscedas-
ticity (ARCH} model, Stat. and Prob. Letters 30 (1996), 305-311.
[18} S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Springer,
London, 1993.
[19] D. B. Nelson, Stationarity and persistence in the GARCH(1,1) model, Economet-
ric Theory 6 (1990), 318-334.
[20] A. Rudolph, A central limit theorem for random coefficient autoregressive models
and ARCH/GARCH models, Adv. Appl. Prob. 30 (1998), 113-121.
[21] A. A. Weiss, ARMA models with ARCH errors, J. Time Series Anal. 5 (1984),
124-143.

DEPARTMENT OF STATISTICS, EwHA WoMANS UNIVERSITY, SEOUL 120-750, KOREA
E-mail: oslee@mm.ewha.ac.kr



